一元二次方程PPT课件
合集下载
人教版九年级数学上册《一元二次方程》PPT优秀课件

③
①都是整式方程; ②都只含一个未知数; ③未知数的最高次数都是2.
那么这三个方程与一元一次方程的区别在哪里? 它们有什么共同特点呢?
知识要点
一元二次方程的概念 等号两边都是整式,只含有一个未知数(一元),并且未知
数的最高次数是2(二次)的方程,叫做一元二次方程.
一元二次方程的一般形式是 ax2+bx +c = 0(a,b,c为常数, a≠0)
想一想: 还有其他的方法吗?试说明原因. (20-x)(32-2x)=570
32-2x
32
20-x 20
归纳小结
建立一元二次方程模型的一般步骤
审
审题,弄 清已知量 与未知量 之间的关 系
设 设未知数
找
找出等量 关系
列
根据等量 关系列方 程
随堂演练
1.下列关于x的方程一定是一元二次方程的是( D )
解:当x=-3时,左边=9-(-3)-2=10, 则左边≠右边, 所以-3不是方程x2-x-2=0的解; 下面几个数同理可证. 经检验得-1,2为原方程的根.
获取新知
知识点三:建立一元二次方程模型
问题 在一块宽20m、长32m的矩形空地上,修筑三条宽相等 的小路(两条纵向,一条横向,纵向与横向垂直),把矩形空 地分成大小一样的六块,建成小花坛.如图要使花坛的总面积 为570m2,问小路的宽应为多少?
4.如图,在一块长12 m,宽8 m的矩形空地上,修建同样宽的两条互 相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种 花草,且栽种花草的面积为77 m2.设道路的宽为x m,则根据题意, 可列方程为 (12-x)(8-x)=77.
样的正方形,再将四周突出部分折起,就能制作一个无盖方盒.如果要制作的
一元二次方程的解法ppt课件

的各项系数a、b、c确定的,当 2 -4ac≥0时,它的实数根
是
公式法推导过程
这叫做一元二次方程的求根公式,解一元二次方程时,
2
把各项系数的值直接代入这个公式,若 -4ac≥0就可以
求得方程的根,这种解一元二次方程的方法叫做公式法.
尝试与交流
2
2
在一元二次方程 +bx+c=0(a≠0)中,如果 -4ac<0那
解:原方程可变形为(2x-1+x)(2x-1-x)=0
即(3x-1)(x-1)=0
3x-1=0或x-1=0
所以x1=
,x
2=1
观察与思考
2=4(x+2)
(x+2)
解方程
小丽、小明的解法如下:
小丽、小明的解法,哪个正确?
因式分解法练习
1.用因式分解法解下列方程
①x2-3x=0
② 3x2= x
③2( x-1 ) + x ( x-1 ) =0
叫做因式分解法
例题8
解下列方程
① = −
② + − + =
原方程可变形为x2+4x=0
原方程可变形为
x(x+4)=0
(x+3)(1-x)=0
x=0或x+4=0
x+3=0或1-x=0.
所以x1=0,x2=-4
所以x1=-3,x2=1
例题9
解方程
(2x-1)2-x2=0
的矩形割补成一个正方形
数学实验室
一个矩形通过割、拼、补,成为一个正方形的过程配方
的过程
数学实验室
数学实验室
数学实验室
数学实验室
是
公式法推导过程
这叫做一元二次方程的求根公式,解一元二次方程时,
2
把各项系数的值直接代入这个公式,若 -4ac≥0就可以
求得方程的根,这种解一元二次方程的方法叫做公式法.
尝试与交流
2
2
在一元二次方程 +bx+c=0(a≠0)中,如果 -4ac<0那
解:原方程可变形为(2x-1+x)(2x-1-x)=0
即(3x-1)(x-1)=0
3x-1=0或x-1=0
所以x1=
,x
2=1
观察与思考
2=4(x+2)
(x+2)
解方程
小丽、小明的解法如下:
小丽、小明的解法,哪个正确?
因式分解法练习
1.用因式分解法解下列方程
①x2-3x=0
② 3x2= x
③2( x-1 ) + x ( x-1 ) =0
叫做因式分解法
例题8
解下列方程
① = −
② + − + =
原方程可变形为x2+4x=0
原方程可变形为
x(x+4)=0
(x+3)(1-x)=0
x=0或x+4=0
x+3=0或1-x=0.
所以x1=0,x2=-4
所以x1=-3,x2=1
例题9
解方程
(2x-1)2-x2=0
的矩形割补成一个正方形
数学实验室
一个矩形通过割、拼、补,成为一个正方形的过程配方
的过程
数学实验室
数学实验室
数学实验室
数学实验室
《二次函数与一元二次方程》参考PPT课件

有两个不相 等的实数根
b2 – 4ac > 0
只有一个交点 有两个相等的 实数根
b2 – 4ac = 0
没有交点
没有实数根
b2 – 4ac < 0 16
随堂练习
1.不与x轴相交的抛物线是( D )
A. y = 2x2 – 3
B. y=-2 x2 + 3
C. y= -x2 – 3x D. y=-2(x+1)2 -3
7.一元二次方程 3 x2+x-10=0的两个根是x1-2 , x2=5/3,那么二次函数 y= 3 x2+x-10与x轴的交点坐
标是__(_-2_,_0)_(_5/_3,. 0)
19
8.已知抛物线y = ax2+bx+c的图象如图,则关 于x的方程ax2 + bx + c-3 = 0根的情况是( A)
20.5 m
6
0m
0s
4s
(4)当 h = 0 时, 20 t – 5 t 2 = 0 t2-4t =0 t 1 = 0,t 2 = 4 当球飞行 0s 和 4s 时,它的高度为 0m ,即 0s时,球从地面飞出,4s 时球落回地面。
7
二次函数与一元二次方程的关系(1)
已知二次函数,求自变量的值
2.若抛物线 y = ax2+bx+c= 0,当 a>0,c<0时,图
象与x轴交点情况是( C )
A. 无交点
B. 只有一个交点
C. 有两个交点 D. 不能确定
17
3. 如果关于x的一元二次方程 x2-2x+m=0有两
个相等的实数根,则m=_1__,此时抛物线 y=x2- 2x+m与x轴有_1_个交点.
《公式法》一元二次方程PPT课件 (共8张PPT)

= -q+(
)2
)2 =
-q
用配方法解一般形式的一元二次方程 解:把方程两边都除以 a,得x2 + x+ = 0
移项,得
配方,得 即 ∵4a2>0 x2 +
x2 +
x+(
x= )2 =)2 = +( )2
( x +
∴当b2-4ac≥0时, 解得 即 x= x= ±
x +
=±
用求根公式解一元二次方程的方法叫做
3、代入求根公式 :
X=
(a≠0, b2-4ac≥0)
4、写出方程的解: x1=?, x2=?
思考题: 1、关于x的一元二次方程ax2+bx+c=0 (a≠0)。 当
a,b,c 满足什么条件时,方程的两根为
互为相反数?
2、m取什么值时,方程 x2+(2m+1)x+m2-4=0
有两个相等的实数解
一元二次方程
用配方法解一元二次方程 2x2+4x+1=0 用配方法解一元二次方程的步骤: 1.把原方程化成 x2+px+q=0的形式。 2.移项整理 得 x2+px=-q 3.在方程 x2+px= -q 的两边同加上一次项系数 p的一半的平方。
x2+px+( 4. 用直接开平方法解方程 (x+
)2
练习:用公式法解方程 1、 x2 x -1= 0
2、 2x2 - 2 x+1= 0
用公式法解一元二次方程的
小结
由配方法解一般的一元
一般步骤: 1、把方程化成一般形式。 并写出a,b,c的值。 2、求出b2-4ac的值。
解一元二次方程ppt课件

21.2 解一元二次方程
重
难 ■题型二 利用根的判别式判断三角形的形状
题 型
例 2 已知△ABC 中,a,b,c 分别是∠A,∠B,∠C 的对边,且关于 x
突 的一元二次方程 b(x2-1)-2ax+c(x2+1)=0 有两个相等的实数根.判断
破 △ABC 的形状.
[解析] 根据已知条件得出 Δ=0,将等式变形,利用勾股定理的逆定理
B. 只有一个实数根
读
C. 有两个不相等的实数根
D. 没有实数根
[解题思路]
原方程
x(x-2)=1
化为一般形式
x2-2x-1=0
确定 a,b,c 的值
a=1,b=-2,c=-1
代入判别式 Δ
b2-4ac=8>0
判断根的情况
[答案] C
有两个不相等的实数根
方法点拨 应用根的判别式时要准确确定 a,b,c 的值,代入时要注意不 要丢掉各项系数的符号.
清 单
(1)x2-4x-3=0; (2)2x2-6x=1; (3)(t+3)(t-1)=12.
解
[解题思路] 按照下面的顺序进行求解.
读
[答案] 解:(1)移项,得 x2-4x=3,配方,得 x2-4x+4=3+4,即(x-
2)2=7,开方,得 x-2=±
,所以 x1=2+
,x2=2-
;
(2)二次项系数化为 1,得 x2-3x= ,配方,得 x2-3x+
21.2 解一元二次方程
考
点
21.2.1 配 方 法
清
单 ■考点一 直接开平方法
解
读
原理 根据平方根的意义进行“降次”,转化为一元一次方程求解
一元二次方程ppt课件

一元二次方程ppt课件
contents
目录
• 一元二次方程的定义 • 一元二次方程的解法 • 一元二次方程的应用 • 一元二次方程的判别式 • 一元二次方程的根的性质 • 一元二次方程的根与系数的关系
01
一元二次方程的定义
定义与特点
定义
只含有一个未知数,且未知数的 最高次数为2的整式方程叫做一元 二次方程。
根的判别条件
判别式
一元二次方程的判别式Δ=b²-4ac,当 Δ>0时,方程有两个不相等的实根;当 Δ=0时,方程有两个相等的实根;当 Δ<0时,方程没有实根。
VS
根的存在性
一元二次方程一定有两个实根,除非判别 式Δ<0。
根的性质与关系
根与系数的关系
一元二次方程的两个根x1和x2与系数a、b、c之间存在关系,如 x1+x2=-b/a,x1*x2=c/a等。
配方法
步骤 1. 将方程 $ax^2 + bx + c = 0$ 移项,使等号右侧为0。
2. 将二次项系数化为1,即方程两边都除以 $a$。
配方法
01
3. 将一次项系数的一半的平方加 到等式两边,使左侧成为一个完 全平方项。
02
4. 对方程两边同时开平方,得到 $x$ 的解。
公式法
总结词
利用一元二次方程的解的公式直接求解。
根的积
一元二次方程的根的积等于常数项与 二次项系数之比。
根的平方和与积的性质
要点一
根的平方和
一元二次方程的根的平方和等于常数项与二次项系数绝对 值的商。
要点二
根的平方积
一元二次方程的根的平方积等于二次项系数绝对值的商。
感谢您的观看
contents
目录
• 一元二次方程的定义 • 一元二次方程的解法 • 一元二次方程的应用 • 一元二次方程的判别式 • 一元二次方程的根的性质 • 一元二次方程的根与系数的关系
01
一元二次方程的定义
定义与特点
定义
只含有一个未知数,且未知数的 最高次数为2的整式方程叫做一元 二次方程。
根的判别条件
判别式
一元二次方程的判别式Δ=b²-4ac,当 Δ>0时,方程有两个不相等的实根;当 Δ=0时,方程有两个相等的实根;当 Δ<0时,方程没有实根。
VS
根的存在性
一元二次方程一定有两个实根,除非判别 式Δ<0。
根的性质与关系
根与系数的关系
一元二次方程的两个根x1和x2与系数a、b、c之间存在关系,如 x1+x2=-b/a,x1*x2=c/a等。
配方法
步骤 1. 将方程 $ax^2 + bx + c = 0$ 移项,使等号右侧为0。
2. 将二次项系数化为1,即方程两边都除以 $a$。
配方法
01
3. 将一次项系数的一半的平方加 到等式两边,使左侧成为一个完 全平方项。
02
4. 对方程两边同时开平方,得到 $x$ 的解。
公式法
总结词
利用一元二次方程的解的公式直接求解。
根的积
一元二次方程的根的积等于常数项与 二次项系数之比。
根的平方和与积的性质
要点一
根的平方和
一元二次方程的根的平方和等于常数项与二次项系数绝对 值的商。
要点二
根的平方积
一元二次方程的根的平方积等于二次项系数绝对值的商。
感谢您的观看
一元二次方程课件ppt

• 问题1、绿苑小区住宅设计,准备在每两幢楼 房之间,开辟面积为900平方米的一块长方 形绿地,并且长比宽多10米,那么绿地的长 和宽各为多少?
(x+10)
x
问题1、绿苑小区住宅设计,准备在每两幢楼房之间, 开辟面积为900平方米的一块长方形绿地,并且 长比宽多10米,那么绿地的长和宽各为多少?
例1.将方程(8-2x)(5-2x)=18化成一元二次 方程的一般形式,并写出其中的二次项系数、一次
项系数及常数项.
• 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此, 方程(8-2x) (•5-2x)=18必须运用整式运算进行整理,包括 去括号、移项等.
• 解:去括号,得: • 40-16x-10x+4x2=18 • 移项,得:4x2-26x+22=0 • 其中二次项系数为4,一次项系数为-26,常数项为22.
3
你会用描点法画二次函数y=x2的图象吗?
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
方程
二次项 一次项 常数 系数 系数 项
2x2 x 3 0 2
1
-3
3x2 5 0
3
0
-5
x2 3x 0 1
-3
0
2、将下列一元二次方程化为一般形式,并分别 指出它们的二次项系数、一次项系数和常数项:
一元二次方程的应用-ppt课件

难
例1
如图,某小区计划在一块长为 20 m,宽为 12 m
题
型 的矩形场地上修建三条互相垂直且宽度一样的小路,其余
突
破 部分种花草,若要使花草的面积达到 160 m2,则小路的宽
为 ______ m.
第一课时 几何图形面积问题
[解析]如解析图,设小路的宽为 x m,将小路进行平
重
难
题 移,则其余部分可合成相邻两边的长分别为(20-2x) m,
握手问题、照相问
素之间算一 题、比赛问题(每
次
双循环
每两个元素
之间算两次
两队之间赛一场)
循环次数
n(n-1)
互赠贺卡、比赛问
题(每两队之间赛 n(n-1)
两场)
第三课时 循环问题、销售问题及数字问题
归纳总结
考
点
解决循环问题,首先确定是单循环还是双循环,即确定
清
单 每两个元素之间算一次还是算两次,再代入公式列方程求解
清
单
2 的
26
m)的空旷场地为提前到场的观众设立面积为
300
m
解
读 封闭型矩形等候区.如图,为了方便观众进出,在两边空出
两个宽各为 1 m 的出入口,共用去隔栏绳 48 m.求工作人
员围成的这个矩形的相邻两边的长度.
第一课时 几何图形面积问题
[答案] 解:设 AB=x m,则 BC=(48-2x+1+1) m,由
重 ■题型一 传播问题
难
例 1 某种病毒传播非常快,如果一个人被传染,经过
题
型 两轮传染后就会有 64 个人被传染.
考
点
清 题意得 x(48-2x+1+1)=300,解得 x1=10,x2=15.当 x=10
例1
如图,某小区计划在一块长为 20 m,宽为 12 m
题
型 的矩形场地上修建三条互相垂直且宽度一样的小路,其余
突
破 部分种花草,若要使花草的面积达到 160 m2,则小路的宽
为 ______ m.
第一课时 几何图形面积问题
[解析]如解析图,设小路的宽为 x m,将小路进行平
重
难
题 移,则其余部分可合成相邻两边的长分别为(20-2x) m,
握手问题、照相问
素之间算一 题、比赛问题(每
次
双循环
每两个元素
之间算两次
两队之间赛一场)
循环次数
n(n-1)
互赠贺卡、比赛问
题(每两队之间赛 n(n-1)
两场)
第三课时 循环问题、销售问题及数字问题
归纳总结
考
点
解决循环问题,首先确定是单循环还是双循环,即确定
清
单 每两个元素之间算一次还是算两次,再代入公式列方程求解
清
单
2 的
26
m)的空旷场地为提前到场的观众设立面积为
300
m
解
读 封闭型矩形等候区.如图,为了方便观众进出,在两边空出
两个宽各为 1 m 的出入口,共用去隔栏绳 48 m.求工作人
员围成的这个矩形的相邻两边的长度.
第一课时 几何图形面积问题
[答案] 解:设 AB=x m,则 BC=(48-2x+1+1) m,由
重 ■题型一 传播问题
难
例 1 某种病毒传播非常快,如果一个人被传染,经过
题
型 两轮传染后就会有 64 个人被传染.
考
点
清 题意得 x(48-2x+1+1)=300,解得 x1=10,x2=15.当 x=10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
读第7部分,思考,当戈文亮最终放弃了自 己的猎狐行动,读者在为他喝彩时,他自己 是怎样的呢?他意识到自己成功了吗?他的 情绪怎么样?请揣摩他当时的心态,在课文 中找到相关的语句。是谁最终肯定了他的成 功?
冲突篇
冲突、冲突是作品情节的基础,没有 冲突就没有情节。
在文中寻找矛盾冲突。
韦老师 戈文亮自己
*所有的矛盾都在“爱”的力量中悄 然化解!
*在人与人之间,人与自然之间都 需要我们尊重生命,充满爱心地活 着。
初涉文本
•读第一部分,假如你是导演,你 将如何拍摄故事的开端? •主人公是谁?身份如何?为何要 夜半出门?为什么要猎狐?他和 狐狸之间有什么恩怨?
初涉文本
•主人公是 个怎样的 人?情节 会怎样的 发展?请 找出论据。
情节篇
•速读课文,给每一部分加一
个小标题。
例:英雄少年独闯恐怖林。
情节篇
•按照时间顺序来排列这七个 部分,可以吗?为什么?
(第二课时)
?
1、什么是一元二次方程? 2、一元二次方程的一般形式是怎样的?
3. 结合作业出现的问题讲解.
• 认识了一元二次方程,接下来我们 就要探求一元二次方程的解.
• 方程解的定义是怎样的呢?
能使方程左右两边相等的 未知数的值就叫方程的解
问题 要组织一次排球邀请赛,参赛 的每两队之间都要比赛一场,根据场 地和时间等条件,赛程计划安排7天,
C 3.24<x <3.25 D 3.25<x <3.26
通过这节课的学习, 谈谈你掌握了什么?
从生活走进数学 让数学回归生活
温故知新
小说的三要素: •故事情节 •人物形象 •人物所处的具体环境 (自然、社会)
猎狐
沈石溪
有关狐狸的成语
狐狸,性多 疑,遇见敌 人时肛门放 出臭气,乘 机逃跑。皮 可做衣服。
戈文亮
母狐 小狐 父亲
讨论:每一对矛盾冲突对推动情节 所起到的作用。
以戈文亮为矛盾冲突的五对冲突中,每 一处都有有让我们怦然心动的细节,请 同学们选取基中一对矛盾冲突,深入到 人物的内心,与作品本身对话,与自己 的内心对话,以《一点点感动》为题, 写出心中的感受。
主题篇
讨论:从情节、人物、冲突中选择 最容易分析文本主题的角度。给本 文写一个题记或者尾记。
例例题题讲讲解解
(3)已知m, n都是方程x2 2006x 2008 0 的根,试求(m2 2006m 2007)(n2 2006n 2007)的值.
?
解 :∵m, n是方程x2 2006x 2008 0 的根,由根的定义知: m2 2006m 2008 0 n2 2006n 2008 0 即: m2 2006m 2008 n2 2006n 2008
人物篇
•回顾第一部分,戈文亮留给我们的 印象是…… •在第三部分,戈文亮的形象是怎样的? •他为什么要复仇? •他复仇的目的是什么?
•戈文亮渴望自己成为什么样的人? •他对男子汉的理解 是什么?
•他认为必须做什么才能证明他自己 是个真正的男子汉?
仔细阅读4、5、6三部分,在其中 寻找有哪些因素催化了戈文亮性格 的突变,致使他最终放弃了杀狐? 在这些因素中?谁又起到了关键的 作用?
狐假虎威 狐死首丘 狐朋狗友 兔死狐悲
整体感知
•初读课文, 积累新词。
•找出小说最 精彩,最打 动你的地方。
sŭn chōng dòng lán
隼舂
恫岚
quán duì yùn lèi
鬈碓 愠 酹
měng shàn shào xīsū
懵 讪 潲 窸窣
铤而走险 呕心沥血
身陷囹圄 姹紫嫣红
步履蹒跚 揶揄(yéyú)
每天安排4场比你赛能,根比据赛方组程织探者应邀 请多少个队参索加出比方赛程? 的解吗?
解:设邀请了x队参加比赛,根据题意得:
1 x(x 1) 28
2
即:x(x-1)=56
?
思考:
• 你能否说出下列方程的解根?
• 1) 3xx2236 00
• 2) x2 36 0
• 3) (x 6)2 0
3)若4a 2b c 0,则一元二次方程
ax2 bx c 0元二次
方程ax2 bx c 0的一解的范围是C
x
3.23
ax2 bx c -0.06
3.24 -0.02
3.25 0.03
3.26 0.07
A 3<x <3.23
B 3.23<x <3.24
则a的值为B
A.1
B.-1 C.1或-1 D.0
?
例例题题讲讲解解
(2)关于x的方程
(m 2)2 x2 3m2x m2 4 0
有一根为0,则2m2 4m 3
的值为多少?
?
解 :∵0是方程的解 代入得m2 4 0 m 2 经检验m 2都符合题意 2m2 4m 3 2 22 4 2 3 3 或2m2 4m 3 2 (2)2 4 (2) 3 19 代数式的值为3或19.
(m2 2006m 2007)(n2 2006n 2007) (2008 2007)(2008 2007) 4015
1)若a b c 0,则一元二次方程 ax2 bx c 0必有一解为1 . 2)若a b c 0,则一元二次方程 ax2 bx c 0必有一解为 -1.
一元二次方程的根的情况与一元一 次方程有什么不同吗?
练习:
1)下面哪些数是方程x2 x 6 0 的根?
-4 -3 -2 -1 0 1 2 3 4
2)你能写出方程 x2 x 0 的根吗?
0或1 即:平方后是它本身的数是哪些?
例题讲解
1)已知关于x的一元二次方程
(a 1)x2 x a2 1 0,的一根是0
•第三部分和第五部分在文中 作为插叙对整个情节的发展 所起的作用是什么?
情节篇
•找到描写戈文亮内心冲突的 片段,体会心理描写对于发 展所起的作用。
•寻找每次戈文亮欲杀母狐时 的紧要关头,体会作者如何 制造悬念和意外,使情节一 波三折,惊心动魄。
情节篇
对于结局的表述,在表现父 亲有手法上欲扬先抑,使整 个结局似乎在意料之外,又 在情理之中。
冲突篇
冲突、冲突是作品情节的基础,没有 冲突就没有情节。
在文中寻找矛盾冲突。
韦老师 戈文亮自己
*所有的矛盾都在“爱”的力量中悄 然化解!
*在人与人之间,人与自然之间都 需要我们尊重生命,充满爱心地活 着。
初涉文本
•读第一部分,假如你是导演,你 将如何拍摄故事的开端? •主人公是谁?身份如何?为何要 夜半出门?为什么要猎狐?他和 狐狸之间有什么恩怨?
初涉文本
•主人公是 个怎样的 人?情节 会怎样的 发展?请 找出论据。
情节篇
•速读课文,给每一部分加一
个小标题。
例:英雄少年独闯恐怖林。
情节篇
•按照时间顺序来排列这七个 部分,可以吗?为什么?
(第二课时)
?
1、什么是一元二次方程? 2、一元二次方程的一般形式是怎样的?
3. 结合作业出现的问题讲解.
• 认识了一元二次方程,接下来我们 就要探求一元二次方程的解.
• 方程解的定义是怎样的呢?
能使方程左右两边相等的 未知数的值就叫方程的解
问题 要组织一次排球邀请赛,参赛 的每两队之间都要比赛一场,根据场 地和时间等条件,赛程计划安排7天,
C 3.24<x <3.25 D 3.25<x <3.26
通过这节课的学习, 谈谈你掌握了什么?
从生活走进数学 让数学回归生活
温故知新
小说的三要素: •故事情节 •人物形象 •人物所处的具体环境 (自然、社会)
猎狐
沈石溪
有关狐狸的成语
狐狸,性多 疑,遇见敌 人时肛门放 出臭气,乘 机逃跑。皮 可做衣服。
戈文亮
母狐 小狐 父亲
讨论:每一对矛盾冲突对推动情节 所起到的作用。
以戈文亮为矛盾冲突的五对冲突中,每 一处都有有让我们怦然心动的细节,请 同学们选取基中一对矛盾冲突,深入到 人物的内心,与作品本身对话,与自己 的内心对话,以《一点点感动》为题, 写出心中的感受。
主题篇
讨论:从情节、人物、冲突中选择 最容易分析文本主题的角度。给本 文写一个题记或者尾记。
例例题题讲讲解解
(3)已知m, n都是方程x2 2006x 2008 0 的根,试求(m2 2006m 2007)(n2 2006n 2007)的值.
?
解 :∵m, n是方程x2 2006x 2008 0 的根,由根的定义知: m2 2006m 2008 0 n2 2006n 2008 0 即: m2 2006m 2008 n2 2006n 2008
人物篇
•回顾第一部分,戈文亮留给我们的 印象是…… •在第三部分,戈文亮的形象是怎样的? •他为什么要复仇? •他复仇的目的是什么?
•戈文亮渴望自己成为什么样的人? •他对男子汉的理解 是什么?
•他认为必须做什么才能证明他自己 是个真正的男子汉?
仔细阅读4、5、6三部分,在其中 寻找有哪些因素催化了戈文亮性格 的突变,致使他最终放弃了杀狐? 在这些因素中?谁又起到了关键的 作用?
狐假虎威 狐死首丘 狐朋狗友 兔死狐悲
整体感知
•初读课文, 积累新词。
•找出小说最 精彩,最打 动你的地方。
sŭn chōng dòng lán
隼舂
恫岚
quán duì yùn lèi
鬈碓 愠 酹
měng shàn shào xīsū
懵 讪 潲 窸窣
铤而走险 呕心沥血
身陷囹圄 姹紫嫣红
步履蹒跚 揶揄(yéyú)
每天安排4场比你赛能,根比据赛方组程织探者应邀 请多少个队参索加出比方赛程? 的解吗?
解:设邀请了x队参加比赛,根据题意得:
1 x(x 1) 28
2
即:x(x-1)=56
?
思考:
• 你能否说出下列方程的解根?
• 1) 3xx2236 00
• 2) x2 36 0
• 3) (x 6)2 0
3)若4a 2b c 0,则一元二次方程
ax2 bx c 0元二次
方程ax2 bx c 0的一解的范围是C
x
3.23
ax2 bx c -0.06
3.24 -0.02
3.25 0.03
3.26 0.07
A 3<x <3.23
B 3.23<x <3.24
则a的值为B
A.1
B.-1 C.1或-1 D.0
?
例例题题讲讲解解
(2)关于x的方程
(m 2)2 x2 3m2x m2 4 0
有一根为0,则2m2 4m 3
的值为多少?
?
解 :∵0是方程的解 代入得m2 4 0 m 2 经检验m 2都符合题意 2m2 4m 3 2 22 4 2 3 3 或2m2 4m 3 2 (2)2 4 (2) 3 19 代数式的值为3或19.
(m2 2006m 2007)(n2 2006n 2007) (2008 2007)(2008 2007) 4015
1)若a b c 0,则一元二次方程 ax2 bx c 0必有一解为1 . 2)若a b c 0,则一元二次方程 ax2 bx c 0必有一解为 -1.
一元二次方程的根的情况与一元一 次方程有什么不同吗?
练习:
1)下面哪些数是方程x2 x 6 0 的根?
-4 -3 -2 -1 0 1 2 3 4
2)你能写出方程 x2 x 0 的根吗?
0或1 即:平方后是它本身的数是哪些?
例题讲解
1)已知关于x的一元二次方程
(a 1)x2 x a2 1 0,的一根是0
•第三部分和第五部分在文中 作为插叙对整个情节的发展 所起的作用是什么?
情节篇
•找到描写戈文亮内心冲突的 片段,体会心理描写对于发 展所起的作用。
•寻找每次戈文亮欲杀母狐时 的紧要关头,体会作者如何 制造悬念和意外,使情节一 波三折,惊心动魄。
情节篇
对于结局的表述,在表现父 亲有手法上欲扬先抑,使整 个结局似乎在意料之外,又 在情理之中。