新人教版七年级上册数学《整式的加减》全章教案

合集下载

2024秋七年级数学上册第二章整式的加减2.2整式的加减2去括号教案(新版)新人教版

2024秋七年级数学上册第二章整式的加减2.2整式的加减2去括号教案(新版)新人教版
六、拓展与延伸
1.提供与本节课内容相关的拓展阅读材料:
《代数运算指南》:这本书详细介绍了代数的基本概念和运算方法,包括整式的加减、乘除等。通过阅读这本书,学生可以进一步加深对整式加减的理解和掌握。
《数学问题解决策略》:这本书提供了一系列的数学问题解决方法,包括代数问题的解决方法。学生可以通过阅读这本书,学习到更多的数学问题解决策略,提高解决问题的能力。
九.重点题型整理
1. 去括号
(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
例题:去括号:-(a + b)= -a - b
(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
例题:去括号:-(a - b)= a - b
2. 合并同类项
(1)找出整式中的同类项,即具有相同字母和相同指数的项。
(2)解决实际问题,如计算购物找零、面积计算等。
例题:综合应用:计算购物找零:28 - 5(3 + 2) - 1 = 28 - 5*5 - 1 = 28 - 25 - 1 = 2
5. 整式加减的实际应用
(1)将整式加减应用于实际问题,如购物找零、计算面积等。
例题:实际应用:计算购物找零:32 - 5(4 + 2) = 32 - 5*6 = 32 - 30 = 2
在教学过程中,我发现学生们对去括号和合并同类项这两个重点内容的理解存在一定的困难。因此,我特别强调了这两个重点,并通过举例和比较来帮助学生理解。通过小组讨论和实践活动,学生们能够更好地将理论知识应用到实际问题中,提高了解决问题的能力。
在教学过程中,我也注意到了学生的参与度和互动情况。通过鼓励学生提问和参与小组讨论,我能够及时解答学生的疑问,帮助学生克服难点,提高学习效果。

人教版七年级上数学《整式的加减》教案

人教版七年级上数学《整式的加减》教案

《整式的加减》教案【教学目标】1.掌握整式的加减运算。

2.学会运用整式的加减运算解决简单的实际问题。

3.培养学生的数学思维能力和解决问题的能力。

【教学重点】掌握整式的加减运算。

【教学难点】正确进行整式的加减运算,解决简单的实际问题。

【教具准备】小黑板、练习纸。

【教学过程】一、复习导入1.复习整式的概念及单项式、多项式的概念。

2.导入新课:我们学习了整式的有关概念,那么整式如何进行加减运算呢?今天我们就来学习整式的加减运算。

二、探索新知1.出示例1,并列出算式。

(1)例1:某学校为开展体育活动,购置了10个篮球,每个50元;购置了15个排球,每个40元。

请计算学校总共花费了多少钱?学生分组讨论,列出算式,并计算。

教师检查学生的计算结果,并引导学生得出结论:总花费=10×50+15×40=1000+600=1600(元)。

(2)学生分组讨论:如何用数学式子表示这一过程?并展示自己的想法。

教师引导学生理解:这里有两个算式,可以合并成一个算式。

教师板书:10×50+15×40=1600。

(3)出示练习:某学校为开展活动,购置了20个足球,每个35元;购置了25个皮球,每个25元。

请计算学校总共花费了多少钱?并列式计算。

学生独立完成,并展示自己的计算过程及结果。

教师引导学生观察两个算式:有什么相同?有什么不同?并让学生讨论它们的异同点。

通过讨论使学生明确:①它们都是两个整式的和;②它们的和都是一个具体的数值。

教师进一步引导学生得出结论:整式的加法是有意义的运算。

同时指出:在整式的加减运算中,同类项可以合并。

合并同类项时,把同类项的系数相加,字母和字母的指数不变。

并出示几个例题让学生练习合并同类项,进一步熟悉整式的加减运算。

人教版七年级数学上册第二章《整式的加减》教案

人教版七年级数学上册第二章《整式的加减》教案

人教版七年级数学上册第二章《整式的加减》教案一. 教材分析《整式的加减》是人教版七年级数学上册第二章的内容,主要包括整式的加减运算以及合并同类项的方法。

本节内容是学生学习代数初步知识的重要环节,为后续学习方程和不等式打下基础。

通过本节内容的学习,学生应该能够理解整式的加减运算法则,掌握合并同类项的方法,并能熟练进行整式的加减运算。

二. 学情分析七年级的学生已经掌握了实数的基本运算,具备了一定的逻辑思维能力。

但是,对于整式的加减运算和合并同类项的方法,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。

此外,学生可能对于代数式的运算规则还不够熟悉,需要教师在教学过程中进行引导和培养。

三. 教学目标1.理解整式的加减运算法则;2.掌握合并同类项的方法;3.能够熟练进行整式的加减运算;4.培养学生的逻辑思维能力和代数运算能力。

四. 教学重难点1.整式的加减运算法则;2.合并同类项的方法;3.整式的加减运算的实践应用。

五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法。

通过教师的讲解和示例,让学生理解整式的加减运算法则和合并同类项的方法,通过练习和讨论,让学生巩固所学知识,提高运算能力。

六. 教学准备教师准备教案、PPT、练习题等教学资源。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入整式的加减运算,例如:“已知两个数的和是20,差是5,求这两个数分别是多少?”让学生思考和讨论,引导学生认识到整式的加减运算的重要性。

2.呈现(15分钟)教师通过PPT展示整式的加减运算法则和合并同类项的方法,并进行讲解和示例。

例如,对于两个整式的加减运算,先将同类项合并,再进行加减运算。

同时,教师可以通过举例说明合并同类项的方法,如系数相加减,字母和字母的指数不变。

3.操练(15分钟)教师布置一些练习题,让学生独立完成。

例如,计算以下整式的和:(1)2x+ 3y - 4x + 5y;(2)4a^2 - 3a - 2a^2 + 5a。

2024整式的加减教案人教版数学七年级上册教案

2024整式的加减教案人教版数学七年级上册教案

2024整式的加减教案人教版数学七年级上册教案一、教学目标1.理解整式的概念,掌握整式的加减运算。

2.能够熟练运用整式的加减法则,解决实际问题。

3.培养学生的数学思维能力,提高解决问题的能力。

二、教学重点与难点1.教学重点:整式的加减运算。

2.教学难点:整式加减法则的应用。

三、教学过程1.导入新课同学们,我们在上一节课学习了整式的概念,那么大家知道整式之间可以进行哪些运算吗?对,今天我们就来学习整式的加减运算。

2.学习整式的加减法则我们来看一下什么是整式的加减运算。

整式的加减运算,就是将两个或多个整式合并成一个整式的过程。

我们来看一下整式的加减法则。

整式的加减法则可以概括为:同类项相加减,系数相加减。

3.示例讲解下面,我们通过几个例子来具体讲解整式的加减运算。

例1:将整式3x^2+2x5和2x^23x+4合并成一个整式。

解:3x^2+2x5+2x^23x+4=5x^2x1例2:将整式4x^32x^2+x和3x^22x1合并成一个整式。

解:4x^32x^2+x+3x^22x1=4x^3+x^2x14.练习与巩固下面,我们来做一些练习题,巩固一下整式的加减运算。

练习题1:将整式5x^23x+2和2x^2+x1合并成一个整式。

解:5x^23x+2+2x^2+x1=7x^22x+1练习题2:将整式6x^34x^2+3x和x^22x+1合并成一个整式。

解:6x^34x^2+3x+x^22x+1=6x^33x^2+x+15.解决实际问题下面,我们来看一个实际问题,看看如何运用整式的加减运算来解决问题。

问题:某工厂生产一批产品,每件产品的成本为2x+3y元,其中x表示原材料成本,y表示人工成本。

如果工厂要生产100件产品,那么总共的成本是多少?解:总成本=100×(2x+3y)=200x+300y通过今天的学习,我们掌握了整式的加减运算,可以解决一些实际问题。

大家在课后要加强练习,熟练掌握整式的加减法则,提高解决问题的能力。

七年级数学上册 整式的加减法教案 新人教版

七年级数学上册 整式的加减法教案 新人教版

整式的加减(一)一、教学目标知识与技能:1. 理解同类项的概念,并能正确辨别同类项。

2. 掌握合并同类项的法则,能进行同类项的合并。

3.会利用合并同类项将整式化简。

过程与方法:1. 探索在具体情境中用整式表示事物之间的数量关系,发展学生的抽象概括能力。

2.通过类比得出合并同类项的法则,在教学中渗透“类比”的数学思想。

情感、态度与价值观:1.通过参与同类项、合并同类项法则的探究活动,提高学习数学的兴趣。

2.培养学生合作交流的意识和探索精神。

二、教学重点与难点重点:合并同类项法则。

难点:对同类项概念的理解以及合并同类项法则的应用。

三、学习课时(四课时——第一课时)四、重、难点突破通过实际问题引出同类项和合并同类项概念的探讨,在学习过程中,让学生自己经历探索与交流的活动,自主得到同类项的概念,并利用数的分配律观察并归纳出合并同类项的法则。

五、教学方法讨论及探究式教学方法六、教具:PPt课件七、教学过程设计(一)引入:师:听说七星公园里的动物们都搬新家啦!同学们去动物的新家参观过吗?生:(兴奋地)去过!师:不知大家在游玩的时候有没有注意到这样一种现象,工作人员总是把老虎和老虎关在同一个笼子里,而山羊和山羊关在另一个笼子里。

师:(问题提出)为什么不能把二者关在一起呢?生:(略)(二)新课:师:这是一个与类别有关的问题,因为二者属于不同种类的动物。

既然说到类别问题,请同学们帮我把下列水果进行分类。

(电脑显示,菠萝,樱桃,猕猴桃等一系列水果)生:学生分类师:很显然,我们可以把菠萝,樱桃和猕猴桃各自放在一起。

其实象这样的分类问题在我们的日常生活中随处可见。

那么在我们的数学学习中也有分类问题,请同学们思考下面这个问题。

(小组讨论)探讨:写列有一组单项式,你能根据这些单项式的特征将它们进行分类吗?(8n -7a 2b 3ab 2 2a 2b 6xy 5n -3xy -ab 2)生:各种分类方法都有。

如:按系数的正负分,按所含字母分。

人教版数学七年级上册第二章整式的加减教学设计

人教版数学七年级上册第二章整式的加减教学设计
3.合作学习,共同探究:
-鼓励学生进行小组合作,共同探讨整式加减的法则和技巧。
-通过小组讨论和互评,促进学生之间的交流,提高解决问题的能力。
4.多元评价,促进发展:
-采用过程性评价和终结性评价相结合的方式,全面评估学生的学习成果。
-注重评价学生的思考过程、合作态度和创新能力,激发他们的潜能。
5.知识拓展,提高能力:
-在确保学生掌握基本知识的基础上,适当拓展整式加减的深度和广度,提高他们的思维水平。
-引导学生进行总结反思,形成知识网络,提高解决问题的综合能力。
四、教学内容与过程
(一)导入新课
1.教学策略:利用生活实例,引起学生对整式加减的兴趣,为新课的引入做铺垫。
-教师通过多媒体展示购物小票,提出问题:“同学们,你们在购物时,是否注意过小票上的价格是如何计算的?其实,这里面就涉及到了我们今天要学习的整式的加减运算。”
2.难点:从具体到抽象的过渡、逻辑推理能力的提升、解决实际问题的应用。
-学生往往难以从具体的数字运算直接过渡到抽象的代数符号运算,需要教师通过直观的教具和生动的例子帮助学生理解。
-逻辑推理能力的培养是本章的难点,学生需要在教师的引导下,通过大量练习逐步提高。
-将整式的加减应用于解决实际问题,需要学生具备一定的抽象思维和问题分析能力,这对他们来说是一个挑战。
-引导学生学会倾听、尊重他人意见,形成良好的集体氛围。
二、学情分析
学生在进入七年级阶段,已经在小学阶段积累了基本的算术运算能力,对于数的概念和简单的四则运算有了较为扎实的掌握。在此基础上,本章整式的加减教学将有助于学生从具体的数字运算过渡到抽象的代数表达式的运算。然而,学生可能在学习过程中面临以下挑战:
1.基础练习:根据课堂所学的整式加减法则,完成课后练习题第1至第5题。这些题目旨在帮助学生掌握整式的基本概念和加减运算方法,加强对同类项合并的理解。

人教版七年级数学上册第二章《整式的加减》教学设计

人教版七年级数学上册第二章《整式的加减》教学设计

人教版七年级数学上册第二章《整式的加减》教学设计一. 教材分析人教版七年级数学上册第二章《整式的加减》是学生在初中阶段首次接触整式运算的内容。

本章主要介绍整式的加减运算,包括同类项的定义、合并同类项的方法以及整式的加减法则。

通过本章的学习,学生能够掌握整式加减的基本运算方法,并为后续的代数学习打下基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,对基本的数学运算有一定的了解。

但是,对于整式的加减运算,学生可能还存在一定的困难,特别是在理解同类项的定义和运用整式加减法则方面。

因此,在教学过程中,需要注重引导学生理解同类项的概念,并通过大量的例子让学生熟悉并掌握整式的加减运算方法。

三. 教学目标1.知识与技能目标:学生能够理解同类项的概念,掌握合并同类项的方法,能够运用整式加减法则进行简单的整式运算。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的问题解决能力和合作能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生的耐心和细心。

四. 教学重难点1.教学重点:同类项的定义,合并同类项的方法,整式加减法则的应用。

2.教学难点:同类项的判断,整式加减运算的灵活运用。

五. 教学方法1.情境教学法:通过生活实例引入同类项的概念,激发学生的学习兴趣。

2.启发式教学法:通过提问引导学生思考,培养学生的问题解决能力。

3.合作学习法:通过小组讨论和合作,培养学生的合作能力和交流能力。

六. 教学准备1.教学PPT:制作精美的PPT,展示同类项的定义和整式加减运算的例子。

2.练习题:准备一些练习题,用于巩固学生的学习效果。

七. 教学过程1.导入(5分钟)利用生活实例,如购物时计算总价,引入同类项的概念,激发学生的学习兴趣。

2.呈现(10分钟)通过PPT展示同类项的定义和合并同类项的方法,让学生直观地理解同类项的概念,并学会如何合并同类项。

3.操练(10分钟)让学生通过小组合作,解决一些同类项的合并问题,巩固学生对同类项的理解和合并同类项的方法。

整式的加减数学教案优秀5篇

整式的加减数学教案优秀5篇

整式的加减数学教案优秀5篇《整式的加减》教学设计篇一教学目标:1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

过程与方法:通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

分层次教学,讲授、练习相结合。

情感、态度、价值观:培养学生观察、归纳、概括及运算能力教学重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

教学难点:单项式概念的建立。

教学过程:一、复习引入:1、列代数式(1)若正方形的边长为a,则正方形的面积是;(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为;(3)若x表示正方形棱长,则正方形的体积是(4)若m表示一个有理数,则它的相反数是;(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。

(让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。

)2、请学生说出所列代数式的意义。

3、请学生观察所列代数式包含哪些运算,有何共同运算特征。

由小组讨论后,经小组推荐人员回答,教师适当点拨。

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。

)二、讲授新课:1.单项式:通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。

然后教师补充,单独一个数或一个字母也是单项式,如a,5。

2.练习:判断下列各代数式哪些是单项式?(1)x?12;(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5。

(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)3.单项式系数和次数:直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 整式(1)教学目标和要求:1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

教学重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

难点:单项式概念的建立。

教学方法:分层次教学,讲授、练习相结合。

教学过程:一、复习引入:1、列代数式(1)若正方形的边长为a,则正方形的面积是;(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为;(3)若x表示正方体棱长,则正方体的体积是;(4)若m表示一个有理数,则它的相反数是;(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。

2、请学生说出所列代数式的意义。

3、请学生观察所列代数式包含哪些运算,有何共同运算特征。

二、讲授新课:1.单项式:由数与字母的乘积组成的代数式称为单项式。

补充,单独一个数或一个字母也是单项式,如a ,5。

2.练习:判断下列各代数式哪些是单项式? (1)21 x ; (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。

3.单项式系数和次数:直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。

以四个单项式31a 2h ,2πr ,a bc ,-m 为例,让学生说出它们的数字因数是什么,,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。

4.例题:例1:判断下列各代数式是否是单项式。

如不是,请说明理由;如是,请指出它的系数和次数。

①x +1; ②x 1; ③πr 2; ④-23a 2b 。

答:①不是,因为原代数式中出现了加法运算;②不是,因为原代数式是1与x 的商;③是,它的系数是π,次数是2; ④是,它的系数是-23,次数是3。

通过其中的反例练习及例题,强调应注意以下几点:①圆周率π是常数;②当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等; ③单项式次数只与字母指数有关。

6.课堂练习:课本p56:1,2。

三、课堂小结:①单项式及单项式的系数、次数。

②根据教学过程反馈的信息对出现的问题有针对性地进行小结。

③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。

四、课堂作业:课本p59:1,2。

板书设计:单项式1、单项式的定义例12、单项式的系数、次数例2教学反思:2.1 整式(2)教学目标和要求:1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念。

2.通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力。

由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新。

3.初步体会类比和逆向思维的数学思想。

教学重点和难点:重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。

难点:多项式的次数。

教学方法:分层次教学,讲授、练习相结合。

教学过程:一、复习引入:1.列代数式:(1)长方形的长与宽分别为a、b,则长方形的周长是;(2)某班有男生x人,女生21人,则这个班共有学生人;(3)鸡兔同笼,鸡a只,兔b只,则共有头个,脚只。

2.观察以上所得出的四个代数式与上节课所学单项式有何区别。

(1)2(a+b) ; (2)21+x ; (3)a+b ; (4)2a+4b 。

二、讲授新课:1.多项式:板书由学生自己归纳得出的多项式概念。

上面这些代数式都是由几个单项式相加而成的。

像这样,几个单项式的和叫做多项式(polynomi a l)。

在多项式中,每个单项式叫做多项式的项(term)。

其中,不含字母的项,叫做常数项(const a nt term)。

例如,多项式5232+-x x 有三项,它们是23x ,-2x ,5。

其中5是常数项。

一个多项式含有几项,就叫几项式。

多项式里,次数最高项的次数,就是这个多项式的次数。

例如,多项式5232+-x x 是一个二次三项式。

注意:(1)多项式的次数不是所有项的次数之和;(2)多项式的每一项都包括它前面的符号。

2.例题:例1:判断:①多项式a 3-a 2b+a b 2-b 3的项为a 3、a 2b、a b 2、b 3,次数为12;②多项式3n 4-2n 2+1的次数为4,常数项为1。

(这两个判断能使学生清楚的理解多项式中项和次数的概念,第(1)题中第二、四项应为-a 2b 、-b 3,而往往很多同学都认为是a 2b 和b 3,不把符号包括在项中。

另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数。

) 例2:指出下列多项式的项和次数:(1)3x -1+3x 2; (2)4x 3+2x -2y 2。

解:略。

例3:指出下列多项式是几次几项式。

(1)x 3-x +1; (2)x 3-2x 2y 2+3y 2。

解:略。

例4:已知代数式3x n -(m -1)x +1是关于x 的三次二项式,求m 、n 的条件。

解:略。

单项式与多项式统称整式(integr a l expression)。

例4分析时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力。

)通过其中的反例练习及例题,强调应注意以下几点:6.课堂练习:课本p59:1,2。

①填空:-45a 2b -34a b +1是 次 项式,其中三次项系数是 ,二次项为 ,常数项为 ,写出所有的项 。

②已知代数式2x 2-mnx 2+y 2是关于字母x 、y 的三次三项式,求m 、n 的条件。

三、课堂小结:①理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几。

②这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统。

四、课堂作业: 课本p60:3板书设计:教学反思:2.1 整式(3)教学内容:补充内容,课本64页提到这个内容教学目的和要求:1.理解多项式的升(降)幂排列的概念,会进行多项式的升(降)幂排列。

2.通过尝试和交流,让学生体会到多项式升(降)幂排列的可行性和必要性。

3.初步体验排列组合思想与数学美感,培养学生的审美观。

教学重点和难点:重点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。

难点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。

教学方法:分层次教学,讲授、练习相结合。

教学过程:一、复习引入:请运用加法交换律,任意交换多项式x2+x+1中各项的位置,可以得到几种不同的排列方式?在众多的排列方式中,你认为那几种比较整齐?(以上由学生小组讨论,得出结果后,教师可投影演示,然后与全班同学共同探讨。

充分发挥学生的主体作用,让学生成为知识的发现者,感受成功的喜悦,体验其中蕴含的数学美,增强学好数学的信心。

)由讨论发现任意交换多项式x2+x+1中各项的位置,可以得到六种不同的排列方式,在众多的排列方式中,像x2+x+1与1+x+x2这样的排列比较整齐。

二、讲授新课:1.升幂排列与降幂排列:这两种排列有一个共同点,那就是x的指数是逐渐变小(或变大)的。

我们把这种排列叫做升幂排列与降幂排列。

(板书课题:升幂排列与降幂排列。

) 例如:把多项式5x2+3x-2x3-1按x的指数从大到小的顺序排列,可以写成-2x3+5x2+3x-1,这叫做这个多项式按字母x的降幂排列。

若按x的指数从小到大的顺序排列,则写成-1+3x+5x2-2x3,这叫做这个多项式按字母x的升幂排列。

板书由学生自己归纳得出的多项式概念。

上面这些代数式都是由几个单项式相加而成的。

像这样,几个单项式的和叫做多项式(polynomi a l)。

在多项式中,每个单项式叫做多项式的项(term)。

其中,不含字母的项,叫做常数项(const a nt term)。

例如,多项式5232+-xx有三项,它们是23x,-2x,5。

其中5是常数项。

一个多项式含有几项,就叫几项式。

多项式里,次数最高项的次数,就是这个多项式的次数。

例如,多项式5232+-xx是一个二次三项式。

注意:(1)多项式的次数不是所有项的次数之和;(2)多项式的每一项都包括它前面的符号。

(教师介绍多项式的项和次数、以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想。

)2.例题:例1:游戏:规则:五个学生上前自己选一张卡片,根据教师要求排成一列,下面同学把排列正确的式子写下来。

例如:按x式子:-11x7y5-35x3+3x2y2-7xy3+2y(可激发学生的学习兴趣,活跃课堂气氛,帮助学生进一步理解新知,从活动中巩固新学知识。

)例2:把多项式2πr -1+3πr 3-π2r 2按r 升幂排列。

解:按r 的升幂排列为:323421r r r π+π-π+-。

说明:π是数字,不是字母,题目中一次项、二次项、三次项系数分别为2π、-π2、3π。

例3:把多项式a 3-b 3-3a 2b +3a b 2重新排列。

(1)按a 升幂排列; (2)按a 降幂排列。

解:(1)按a 的升幂排列为:322333a b a ab b +--。

(2)按a 的降幂排列为:322333b ab b a a +--。

想一想:观察上面两个排列,从字母b 的角度看,它们又有何特点?(由学生参照例题自己解答。

)例4: 把多项式-1+2πx 2-x -x 3y 用适当的方式排列。

分析:题中含有2个字母x 和y ,而各项中关于x 的指数层次较全,因此,选择关于x 的升(降)幂排列较为合理。

解:按x 的升幂排列为:3221yx x x +π+--。

例5:把多项式x 4-y 4+3x 3y -2xy 2-5x 2y 3用适当的方式排列。

(1)按字母x 的升幂排列得: ;(2)按字母y 的升幂排列得: 。

注意:(1)重新排列多项式时,每一项一定要连同它的符号一起移动;(2)含有两个或两个以上字母的多项式,常常按照其中某一字母升幂排列或降幂排列。

三、课堂小结:对一个多项式进行排列,这样的写法除了美观之外,还会为今后的计算带来方便。

在排列时我们要注意:①重新排列多项式时,每一项一定要连同它的符号一起移动,原首项省略的“+”号交换到后面时要添上;②含有两个或两个以上字母的多项式,常常按照其中某一字母升(降)幂排列。

板书设计:教学反思:2.2 整式的加减(1)教学目标和要求:1.理解同类项的概念,在具体情景中,认识同类项。

相关文档
最新文档