非线性电阻的伏安特性曲线实验

合集下载

伏安特性曲线的测量实验报告

伏安特性曲线的测量实验报告

伏安特性曲线的测量实验报告篇一:电路元件伏安特性的测量实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。

二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。

任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f来表示,即用I-U 平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。

根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。

线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。

该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。

线性电阻白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f,根据伏安特性曲线便可计算出电阻元件的阻值。

三、实验设备与器件1.直流稳压电源1 台2.直流电压表1 块3.直流电流表1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管1 只7.稳压二极管1 只8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。

调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。

2将图1-2中的1kΩ线性电阻R换成一只12V,的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。

电路元件特性曲线的伏安特性测量法 实验报告

电路元件特性曲线的伏安特性测量法 实验报告

实验报告课程名称:_______________________________指导老师:________________成绩:__________________ 实验名称:_______________________________实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1.熟悉电路元件的特性曲线;2.学习非线性电阻元件特性曲线的伏安测量方法;3掌握伏安测量法中测量样点的选择和绘制曲线的方法; 4.学习非线性电阻元件特性曲线的示波器观测方法。

二、实验内容和原理1、电阻元件、电容元件、电感元件的特性曲线 在电路原理中,元件特性曲线是指特定平面上定义的一条曲线。

例如,白炽灯泡在工作时,灯丝处于高温状态,其灯丝电阻随着温度的改变而改变,并且具有一定的惯性;又因为温度的改变与流过灯泡的电流有关,所以它的伏安特性为一条曲线。

电流越大、温度越高,对应的灯丝电阻也越大。

一般灯泡的“冷电阻”与“热电阻”可相差几倍至十几倍。

该曲线的函数关系式称为电阻元件的伏安特性,电阻元件的特性曲线就是在平面上的一条曲线。

当曲线变为直线时,与其相对应的元件即为线性电阻器,直线的斜率为该电阻器的电阻值。

电容和电感的特性曲线分别为库伏特性和韦安特性,与电阻的伏安特性类似。

线性电阻元件的伏安特性符合欧姆定律,它在u-i 平面上是一条通过原点的直线。

该特性曲线各点斜率与元件电压、电流的大小和方向无关,所以线性电阻元件是双向性元件。

非线性电阻的伏安特性在u-i 平面上是一条曲线。

普通晶体二极管的特点是正向电阻和反向电阻区别很大。

正向压降很小正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十几伏至几十伏时,其反向电流增加很小,粗略地可视为零。

线性与非线性电阻的伏安特性曲线

线性与非线性电阻的伏安特性曲线

线性电阻和非线性电阻的伏安特性曲线一、实验原理当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件的电阻。

若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,该类元件称为线性元件。

若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。

一般金属导体的电阻是线性电阻,它与外加电压的大小和方向无关,其伏安特性是一条直线(见图1)。

从图上看出,直线通过一、三象限。

它表明,当调换电阻两端电压的极性时,电流也换向,而电阻始终为一定值,等于直线斜率的倒数VR。

I常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。

下面对它的结构和电学性能作一简单介绍。

图1线性电阻的伏安特性图2晶体二极管的p-n结和表示符号晶体二级管又叫半导体二极管。

半导体的导电性能介于导体和绝缘体之间。

如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。

加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体 (也叫n型半导体);另一种杂质加到半导体中会产生许多缺少电子的空穴(空位),这种半导体叫空穴型半导体 (也叫p型半导体)。

晶体二极管是由两种具有不同导电性能的n型半导体和p型半导体结合形成的p-n结构成的。

它有正、负两个电极,正极由p型半导体引出,负极由n型半导体引出,如图2(a)所示。

p-n结具有单向导电的特性,常用图2(b)所示的符号表示。

关于p-n结的形成和导电性能可作如下解释。

图3 p-n结的形成和单向导电特性如图3(a)所示,由于p区中空穴的浓度比n区大,空穴便由p区向n区扩散;同样,由于n区的电子浓度比p区大,电子便由p区扩散。

随着扩散的进行,p区空穴减少,出现了一层带负电的粒子区(以Ө表示);n区的电子减少,出现了一层带正电的粒子区(以⊕表示)。

非线性元件伏安特性实验报告

非线性元件伏安特性实验报告

使用公式
eU =
hc λ
计算光的波长。
1
【实验数据记录、实验结果计算】
1、整流二极管 正向:
表一 测量整流二极管的正向伏安特性数据
编号
1
2
3
4
5
U(V)
0.000
0.118
0.211
0.359
0.518
I(mA) 0.000
0.000
0.000
0.000
0.257
编号
8
9
10
11
12
U(V)
0.587
最后得到:整流二极管的开启电压 U =
−A =
B
0.619(V)
2
负向:
编号 U(V) I(μA)
1 -1.41 -0.13
表二 测量整流二极管的负向伏安特性数据
2
3
4
5
6
7
8
9
-3.59 -5.93 -7.71 -9.85 -11.05 -12.71 -14.94 -16.75
-0.35 -0.58 -0.76 -0.97 - 1.09 -1.26 -1.48 -1.66
稳压二极管:工作在第三象限,起初通过电流较小时,电压变化较大,当电压到达 工作电压后,电压变化开始趋于平缓。
发光二极管:其工作原理与检波二极管正向伏安特性相似,当电压超过其开启电压
最后得到:
稳压二极管的工作电压 U =
−A =
B
-5.10(V)
4
3、发光二极管
编号 U(V) I(mA)
1 1.730 10.59
表三 发光二极管的伏安特性数据(红光)
2
3

实验六非线性伏安特性曲线的研究

实验六非线性伏安特性曲线的研究

实验六非线性伏安特性曲线的研究一、实验目的1. 掌握非线性元件的基本特性2. 学习并掌握二极管、稳压二极管的特性及应用3. 学习使用数字万用表与模拟万用表进行电路测试二、实验仪器数字万用表、模拟万用表、双踪示波器、直流电源、稳压电源、干电池、二极管、稳压二极管、电阻器、半导体二极管特性试验板。

三、实验步骤1. 对于一个二极管,连接一个三级的线性电路,设置恒流源,并连接一个数字万用表测量电压沿着源和负载电阻的变化,然后将数据绘制在电容电路上的U-I曲线。

增加负载电阻的阻值,绘制更多的点,然后分析和绘制反向特性曲线。

2. 将恒流源与单稳压二极管特性试验板连接,此时的数据为平均输出功率与稳定电压之间的变化,绘制到输出功率与稳定电压之间的曲线中。

3. 为单个稳压电阻连接定电源,测试数据来绘制器件的特性曲线,然后在负载线路中,计算出绘图的值。

4. 对于一个稳压二极管连接一个电路中,测量电流随着电压的变化,从而得到稳压二极管的Zener特性曲线。

四、实验结果与分析1. 实验第一部分得到的二极管的I-V特性曲线可以用于设计电路,特别是在微波和高速数字电路中。

2. 稳压二极管的特点是在一定电压范围内可维持相对稳定的电压值,因此可以被用于稳压电源,防止诸如过流和过电压等情况下对其他元件造成损害。

3. 由于稳压二极管具有稳压功能,因此可以被用于电子系统中,例如用于抵消噪声,或在输出中稳定地维持电压水平。

五、实验总结本实验通过研究非线性伏安特性曲线,主要了解了二极管、稳压二极管的特性及应用,同时也学会了使用数字万用表与模拟万用表进行电路测试,更好地了解电子元件的工作原理与应用。

《线性和非线性电阻的伏安特性测量》实验报告,2023

《线性和非线性电阻的伏安特性测量》实验报告,2023

《基础物理实验》实验报告实验:线性和非线性电阻的伏安特性的测量姓名:学号:班级:成绩:合作者:指导教师:日期:2022 年____月____日【注意事项】(在开始实验操作前请仔细阅读以下说明)1.测量时,可调稳压电源的输出电压由0 V缓慢逐渐增加,应时刻注意电压表和电流表的读数,切勿超过规定值。

2.稳压电源输出端切勿碰线短路。

3.测量中,随时注意电流表读数,及时更换电流表量程,勿使仪表超量程。

【预习题】1. 下图分别为纯电阻、白炽灯泡、普通二极管、稳压二极管的伏安特性曲线,请根据伏安特性曲线分析各种电阻有什么特点?答:纯电阻:纯电阻的伏安特性是一条直线,电压与电流成线性关系,电阻数值恒定,为线性电阻。

白炽灯泡:白炽灯泡的伏安特性是关于原点对称的曲线,其斜率由小变大,说明其电阻值由小变到大,白炽灯泡为非线性电阻。

普通二极管:二极管加反向电压时,流过二极管的电流很小,几乎为0,说明电阻非常大,趋于断路;当二极管加正向电压时,刚开始电流变化较小,但电压大于一定值时,电流会随电压的缓慢升高而急剧增大,说明电阻急剧变小,二极管为非线性电阻。

稳压二极管:稳压二极管的正向特性与普通二极管的正向特性相似。

加反向电压时,在某范围内的电压,电流较小;一旦超出一定电压,电流就会突然增加,而稳压二极管上的电压几乎恒定不变。

说明电阻刚开始非常大,随着电压增大,一旦达到一定值时,电阻急剧减小,稳压管为非线性电阻。

2. 电流表内接方式和电流表外接方式分别适用于什么情况?答:电流表内接方式适用于待测电阻值远大于电流表的内阻。

电流表外接方式适用于待测电阻值远小于伏特表的内阻。

【实验目的】1.学习由测量电压、电流求电阻值的方法(伏安法)。

2.通过对二极管伏安特性的测量,了解非线性电学元件的导电特性。

3.学习减少伏安法中系统误差的方法。

【实验仪器】【实验内容与步骤】1.测定线性电阻的伏安特性(1)确定采用外接(内接、外接)法测伏安特性,并按图接线。

伏安特性实验报告结论(3篇)

伏安特性实验报告结论(3篇)

第1篇一、实验概述伏安特性实验是电学基础实验之一,旨在通过测量电学元件在电压与电流作用下的关系,绘制出伏安特性曲线,从而分析元件的电阻特性。

本实验采用逐点测试法,对线性电阻、非线性电阻元件的伏安特性进行了测量和绘制。

二、实验目的1. 理解伏安特性曲线的概念,掌握伏安特性曲线的绘制方法。

2. 通过实验验证欧姆定律,了解电阻元件的伏安特性。

3. 分析非线性电阻元件的特性,掌握其应用领域。

三、实验原理1. 伏安特性曲线:在电阻元件两端施加电压,通过电阻元件的电流与电压之间的关系称为伏安特性曲线。

根据伏安特性的不同,电阻元件分为线性电阻和非线性电阻。

2. 线性电阻:线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,斜率代表电阻值。

其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关。

3. 非线性电阻:非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

四、实验步骤1. 准备实验仪器:直流稳压电源、直流电压表、直流电流表、电阻元件、导线等。

2. 连接实验电路:将电阻元件与直流稳压电源、直流电压表、直流电流表连接成闭合回路。

3. 测量电压与电流:逐步调节直流稳压电源的输出电压,记录对应的电流值。

4. 绘制伏安特性曲线:以电压为横坐标,电流为纵坐标,将实验数据绘制成曲线。

五、实验结果与分析1. 线性电阻伏安特性曲线:实验结果表明,线性电阻元件的伏安特性曲线是一条通过坐标原点的直线。

斜率代表电阻值,与实验理论相符。

2. 非线性电阻伏安特性曲线:实验结果表明,非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线。

在低电压下,电阻值较小,随着电压的增大,电阻值逐渐增大,直至趋于饱和。

这与实验理论相符。

3. 伏安特性曲线的应用:通过伏安特性曲线,可以分析电阻元件在不同电压下的电阻值,从而了解电阻元件的电阻特性。

在工程实践中,伏安特性曲线对于设计电路、选择电阻元件具有重要意义。

实验十六 线性电阻和非线性电阻的伏安特性曲线

实验十六  线性电阻和非线性电阻的伏安特性曲线
电压与电流之比称为该元件的电阻。若一个元件两端的 电压与通过它的电流成比例,则伏安特性曲线为一条直 线,这类元件称为线性元件;若元件两端的电压与通过 它的电流不成比例,则伏安特性曲线不是直线,而是一 条曲线,这类元件称为非线性元件。
I (A ) 2.0 1.0
-2.0 0 2.0 4.0 -1.0
V (V )
实验十六 线性电阻和非线性电阻的 伏安特性曲线
通过一个元件的电流随外加电压变化的 关系曲线,称为伏安特性曲线,从伏安特性 曲线所遵循的规律,可以得知该元件的导电 特性。
在坐标纸上描绘伏安特性曲线之前,应 阅读附录三中的内容。
2023/3/13
1
实验十六 线性电阻和非线性电阻伏安特性曲线
【实验目的】 1.测绘电阻的伏安特性曲线。 2.了解晶体二极管的单向导电特性。 3.学会用作图法表示实验结果。
2023/3/13
2
实验十六 线性电阻和非线性电阻伏安特性曲线
【实验装置】 稳压电源
滑线变阻器
二极管及其正 向保护电阻
导线
电流表 2023/3/13 Nhomakorabea电压表
电键(单刀双 掷开关)
金属电阻(高、 低)
3
实验十六 线性电阻和非线性电阻伏安特性曲线
【实验原理】
当一个元件两端加上电压,元件内有电流通过时,
3.将电压调为零,改变加在电阻上的电压方向(可将电阻 R 调转 180°连接),取电压为 0.00V,-0.50V,-1.00V,-1.50V,…,读出相应 的电流值。电流、电压值最好不要凑整数。
4.将测得的正、反向电压和相应的电流值填入自拟的表格,以电 压为横坐标,电流为纵坐标,给出金属电阻的伏安特性曲线。
2023/3/13
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性电阻和非线性电阻的伏安特性曲线
【教学目的】
1、测绘电阻的伏安特性曲线,学会用图线表示实验结果。

2、了解晶体二极管的单向导电特性。

【教学重点】
1、测绘电阻的伏安特性曲线;
2、了解二极管的单向导电特性。

【教学难点】
非线性电阻的导电性质。

【课程讲授】
提问:1.如何测绘伏安特性曲线?
2.二极管导电有何特点?
一、实验原理
常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。

下面对它的结构和电学性能作一简单介绍。

图1线性电阻的伏安特性图2晶体二极管的p-n结和表示符号晶体二级管又叫半导体二极管。

半导体的导电性能介于导体和绝缘体之间。

如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。

加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体 (也叫n型半导体);另一种杂质加到半导体中会产生许多缺少电子的空穴(空位),这种半导体叫空穴型半导体 (也叫p型半导体)。

晶体二极管是由两种具有不同导电性能的n型半导体和p型半导体结合形成的p-n结构成的。

它有正、负两个电极,正极由p型半导体引出,负极由n型半导体引出,如图2(a)所示。

p-n结具有单向导电的特性,常用图2(b)所示的符号表示。

关于p-n结的形成和导电性能可作如下解释。

图3 p-n结的形成和单向导电特性
如图3(a)所示,由于p区中空穴的浓度比n区大,空穴便由p区向n区扩散;同样,由于n区的电子浓度比p区大,电子便由p区扩散。

随着扩散的进行,p区空穴减少,出现了一层带负电的粒子区(以Ө表示);n区的电子减少,出现了一层带正电的粒子区(以⊕表示)。

结果在p型与n型半导体交界面的两侧附近,形成了带正、负电的薄层,称为p-n结。

这个带电薄层内的正、负电荷产生了一个电场,其方向恰好与载流子(电子、空穴)扩散运动的方向相反,使载流子的扩散受到内电场的阻力作用,所以这个带电薄层又称为阻挡层。

当扩散作用与内电场作用相等时,p区的空穴和n区的电子不再减少,阻挡层也不再增加,达到动态平衡,这时二极管中没有电流。

如图3(b)所示,当p-n结加上正向电压(p区接正,n区接负)时,外电场与内电场方向相反,因而削弱了内电场,使阻挡层变薄。

这样,载流子就能顺利地通过p-n结,形成比较大的电流。

所以,p-n结在正向导电时电阻很小。

如图3(c)所示,当p-n结加上反向电压(p区接负,n区接正)时,外加电场与内场方向相同,因而加强了内电场的作用,使阻挡层变厚。

这样,只有极少数载流子能够通过p-n 结,形成很小的反向电流。

所以p-n结的反向电阻很大。

晶体二极管的正、反向特性曲线如图12-4所示。

从图上看出,电流和电压不是线性关系,各点的电阻都不相同。

凡具有这种性质的电阻,就称为非线性电阻。

图4晶体二极管的伏安特性图5测电阻伏安特性的电路
二、实验仪器
直流稳压电源,万用表(2台),电阻,白炽灯泡,灯座,短接桥和连接导线,实验用九孔插件方板。

三、实验步骤
(一)测绘金属膜电阻的伏安特性曲线
1.按图5接好线路,图中R>>A R (A R毫安表的内阻)。

注意将分压器的滑动端调至电
压为零的位置;电表的量限要选择得适当。

2.经教师检查线路后,接通电源,调节滑线变阻器的滑动头,从零开始逐步增大电压(例加取0.00V,0.50V,1.00V,1.50V,…),读出相应的电流值。

3.将电压调为零,改变加在电阻上的电压方向(可将电阻R调转180°连接),取电压为0.00V,-0.50V,-1.00V,-1.50V,…,读出相应的电流值。

4.将测量的正、反向电压和相应的电流值填入预先自拟的表格。

以电压为横坐标,电流为纵坐标,绘出金属膜电阻的伏安特性曲线。

(二)测绘晶体二极管的伏安特性曲线
测量之前,先记录所用晶体管的型号(为测出反向电流的数值,采用锗管)和主要参数(即最大正向电流和最大反向电压),再判别晶体管的正、负极。

1.为了测得晶体二极管的正向特性曲线,可按照图6所示的电路联线。

图中R为保护晶体二极管的限流电阻,电压表的量限取1伏左右。

经教师检查线路后,接通电源,缓慢地增加电压,例如,取0.00V,0.10V,0.20V,…(在电流变化大的地方,电压间隔应取小一些),读出相应的电流值。

最后断开电源。

图6测晶体二极管正向伏安特性的电路 图7测晶体二极管反向伏安特性的电路
2.为了测得反向特性曲线,可按图7联接电路。

将电流表换成微安表,电压表换接比1伏大的量限,接上电源,逐步改变电压,例如,取0.00V ,1.00V ,2.00V ,…,读出相应的电流值。

确认数据无错误和遗漏后,断开电源,拆除线路。

3.以电压为横轴,电流为纵轴,利用测得的正、反向电压和电流的数据,绘出晶体二极管的伏安特性曲线。

由于正向电流读数为毫安,反向电流读数为微安,纵轴上半段和下半段坐标纸上每小格代表的电流值可以不同,但必须分别标注清楚。

四、注意事项
1.测晶体二极管正向伏安特性时,毫安表读数不得超过二极管允许通过的最大正向电流值。

2.测晶体二极管反向伏安特性时,加在晶体管上的电压不得超过管子允许的最大向电压。

实验时,如果违反上述任一条规定,都将会损坏晶体管。

五、思考题
1.在图6和图7中,电表的接法有何不同?为什么要采用这样的接法?
2.如何作出伏欧特性曲线(V R -曲线)?金属膜电阻和晶体二极管的伏欧特性曲线各具有什么特性?
3.有一个12伏、15瓦的钨丝灯泡,已知加在灯泡上的电压与通过热灯丝的电流之间的关系为n I KV =其中K 、n 是与该灯泡有关的常数,现在要用实验方法确定K 、n 。

(1)请画出实验的线路图;(2)请简述如何用作图法求出K 和n 值,最后得到I 随V 变化的经验公式。

(注:本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!)。

相关文档
最新文档