纳米材料的应用(目前最全详细讲解)
纳米材料的主要应用

纳米材料的主要应用纳米材料作为一种新兴材料,其在许多领域中都有着广泛的应用。
以下是纳米材料主要应用的几个方面。
1. 生物医药领域纳米材料在生物医药领域中的应用非常广泛,可以用于制造可控释放药物、制造生物传感器以及制造生物医学成像剂等等。
由于纳米材料的特殊结构和性质,使得其具有更好的药物释放效果和更好的生物相容性,能够大大提高药效和降低副作用,从而在医学领域中得到了越来越广泛的应用。
2. 纳米电子学领域纳米材料可以制备出更小、更快、更强的电子元件,如纳米线、纳米管、纳米传感器等等。
这些纳米材料的制备和应用,为电子产品的微型化、高速化和高强度提供了新的途径。
同时,在纳米电子学领域中,纳米材料的导电性、光学响应、热学响应等特性也得到了广泛研究,为电子产品的全新功能提供了可能性。
3. 能源领域纳米材料在能源领域中的应用也越来越受到关注。
例如,通过纳米材料的制备和改性,可以制备出更高效的太阳能电池、储氢材料、储能材料等等,同时也可以改善普通材料的性能,使得其在节能降耗等方面有更好的表现。
纳米材料的应用,能够为能源领域的可持续发展提供新的方向和动力。
4. 材料工程领域纳米材料的制备和应用,能够改善许多材料的性能。
例如,通过纳米材料的掺杂或改性,可以增强材料的硬度、韧性、导电性等等,促进材料的多功能化和纳米技术的产业化。
纳米材料还可以用于制造高效的光催化剂、生物传感材料等等,开创了材料工程领域的新领域和新方向。
总的来说,纳米材料的应用越来越广泛,未来还有很大的发展潜力。
随着科技的不断进步,纳米材料将在更多领域中得到应用,为我们的生活带来更多的便利和惊喜。
纳米材料在实际生活中的应用知识讲解

在现实生活中,纳米技术有着广泛的用途。
1、超微传感器传感器是纳米微粒最有前途的应用领域之一。
纳米微粒的特点如大比表面积、高活性特异物性、极微小性等与传感器所要求的多功能、微型化、高速化相互对应。
另外,作为传感器材料,还要求功能广、灵敏度高、响应速度快、检测范围宽、选择性好、耐负荷性高、稳定可靠,纳米微粒能较好地符合上述要求。
2、催化剂在化学工业中,将纳米微粒用做催化剂,是纳米材料大显身手的又一方面。
如超细硼粉、高铬酸铵粉可以作为炸药有效催化剂;超细的铂粉、碳化钨粉是高效的氢化催化剂;超细银粉可以作为乙烯氧化的催化剂;超细的镍粉、银粉的轻烧结体作为化学电池、燃料电池和光化学电池中的电极可以增大与液相或气体之间的接触面积,增加电池效率,有利于小型化。
超细微粒的轻烧结体可以生成微孔过滤器,作为吸附氢气的储藏材料。
还可作为陶瓷的着色剂,用于工艺美术中。
3、医学、生物工程尺寸小于10纳米的超细微粒可以在血管中自由移动,在目前的微型机器人世界里,最小的可以注入人的血管,它一步行走的距离仅为5纳米,机器人进行全身健康检查和治疗,包括疏通脑血管中的血栓,清除心脏动脉脂肪沉积物等,还可以吞噬病毒,杀死癌细胞。
这些神话般的成果,可以使人类在肉眼看不见的微观世界里享用那取之不尽的财富。
4、电子工业量子元件主要是通过控制电子波动的相位来进行工作,因此它能够实现更高的响应速度和更低的电力消耗。
另外,量子元件还可以使元件的体积大大缩小,使电路大为简化,因此,量子元件的兴起将导致一场电子技术的革命。
目前,风靡全球的因特网,如果把利用纳米技术制造的微型机电系统设置在网络中,它们就会互相传递信息,并执行处理任务。
不久的将来,它将操纵飞机、开展健康监测,并为地震、飞机零件故障和桥梁裂缝等发出警报。
那时,因特网亦相形见绌。
5、“会呼吸”的纳米面料。
纳米是一种基于纳米材料的化学处理技术,纳米布料是用一种特殊的物理和化学处理技术将纳米原料融入面料纤维中,从而在普通面料上形成保护层,增加和提升面料的防水、防油、防污、透气、抑菌、环保、固色等功能,可广泛应用于服装、家用纺织品以及工业用纺织品。
纳米材料的用途

纳米材料的用途纳米材料是一种高度结构有序的材料,其颗粒尺寸一般在1-100纳米之间。
由于其特殊的微观结构和尺寸效应,纳米材料在许多领域有着广泛的应用。
以下是纳米材料的一些主要用途。
1. 催化剂:纳米材料由于其大比表面积和高活性,可用于催化反应中。
纳米金属催化剂在催化氢化反应、氧化反应、脱氧反应等方面表现出良好的效果。
此外,纳米催化剂还可以用于除臭、净化空气和水等领域。
2. 材料增强:纳米材料的添加可以显著提高传统材料的性能。
例如,在复合材料中添加纳米颗粒可以提高其强度、硬度和耐磨性,使其具有更好的力学性能。
3. 纳米电子学:纳米材料在电子学领域具有重要的应用价值。
纳米颗粒可以被用于制造更小的电子元件,如纳米晶体管、纳米电路等。
此外,纳米材料还可以用于制造更高性能的电子设备,如纳米存储器、纳米传感器等。
4. 药物传输:纳米材料在药物传输中的应用也备受关注。
纳米颗粒可以用作药物的载体,通过调控其表面性质,实现药物的靶向传递和缓释。
此外,纳米颗粒的小尺寸有助于其在体内的吸收和代谢,提高药物的疗效和生物利用率。
5. 环境保护:纳米材料在环境保护中也具有潜在的应用前景。
纳米颗粒可以用作污染物的吸附剂和催化剂,用于处理废水、废气等。
此外,纳米材料还可以用于制造高效的太阳能电池和光催化材料,用于清洁能源的开发和利用。
6. 医疗诊断:纳米材料在医疗诊断中也有广泛的应用。
纳米颗粒可以用于制造更灵敏的生物传感器,用于检测疾病标志物和病原体。
此外,纳米材料还可以用于分子影像学和肿瘤治疗,提高医学影像的分辨率和治疗的精准性。
总之,纳米材料由于其特殊的结构和性能,具有广泛的应用前景。
随着纳米技术的不断发展和进步,纳米材料将会在更多领域展现其独特的潜力,为人们的生活和工作带来更多的便利和创新。
纳米材料在实际生活中的应用

VS
纳米材料在空气净化器中的应用可以 提高净化器的性能和效果,为人们创 造更加健康、清新的室内环境。
纳米材料在土壤修复中的应用
纳米材料可以用于土壤修复中,如纳米 SiO2、纳米ZnO等。这些纳米材料可以吸 附土壤中的重金属离子和有机污染物,并通 过光催化作用将其降解。
纳米材料在土壤修复中的应用可以提高修复 的效率和效果,降低对生态环境的影响,保
纳米材料的特性
纳米材料具有高比表面积、高孔隙率、高反应活性、高催化活性等特性,这些 特性使得纳米材料在众多领域具有广泛的应用潜力。
纳米材料的制备方法
物理法
包括机械研磨法、真空蒸发法、激光脉冲法等,这些方法可以制备出不同尺寸和 形状的纳米材料。
化学法
包括溶液法、气相法、等离子体法等,这些方法可以通过控制反应条件制备出具 有特定性能的纳米材料。
提高纳米材料的安全性
确保纳米材料在生产、运输和使用过程中的安全性,是推动其广泛应用的关键。
加强纳米材料毒理学和生物相容性的研究,以便更好地评估其长期影响和潜在风险 。
建立严格的安全标准和规范,对纳米材料进行分类和标签,以保障使用者安全。
降低纳米材料的成本
纳米材料目前的生产 成本较高,限制了其 大规模应用。
伤。
改善药物溶解性
纳米药物载体可以改善一些难溶 性药物的溶解性,从而提高药物
的生物利用度。
纳米材料在组织工程中的应用
组织修复与再生
纳米材料可以作为生物活性因子和药物的载体,用于组织修 复和再生,如骨、软骨和血管等组织的修复。
药物控释
纳米材料可以作为药物控释的载体,实现药物的缓慢释放和 长效作用,提高治疗效果并减少副作用。
降低成本
纳米材料制造工艺相对简 单,可以降低太阳能电池 的成本,提高其商业化应 用的潜力。
纳米材料在日常生活中的应用

纳米材料在日常生活中的应用纳米材料是一种非常小型的材料,其尺寸约为1到100纳米。
由于其小尺寸特性,纳米材料在许多领域中都有广泛的应用,包括电子学、生物医药学、化学、能源学和材料学等。
近年来,纳米材料在日常生活中的应用也越来越多,下面就来介绍一些。
1. 纳米银材料在消毒领域的应用银是一种广泛用于清洗和消毒的材料,而纳米银材料的消毒效果更加突出。
由于纳米银材料的粒径非常小,其表面积比普通银材料大几百倍。
这意味着更多的银原子可以与环境中的细菌和病毒接触,从而杀死它们。
纳米银材料可以应用于医院、食品工业、以及个人卫生用品等场合中。
2. 纳米材料在防晒霜中的应用纳米二氧化钛是一种常用的防晒剂成分,因为它能够吸收紫外线,并转化为热能。
纳米二氧化钛具有非常小的颗粒大小,这意味着它能够均匀分散在防晒霜中,并能够对肌肤进行更好的覆盖和保护作用。
此外,纳米二氧化钛对于皮肤的刺激比某些化学防晒剂更小,从而使其更适合于敏感肌肤人群使用。
3. 纳米材料在涂料中的应用纳米材料已经开始在涂料中得到广泛应用,因为它们有许多有益的性质,如防水、防污、自清洁等。
在一些城市中,建筑物外面已经涂上了这种涂料,并表现出了长久不褪色、自清洁的效果。
同样的,汽车和飞机也在使用这种涂层,这样可以帮助它们减少污垢堆积和氧化。
4. 纳米材料在催化剂领域的应用一些纳米材料具有催化性能,如纳米白金和纳米铜等。
这些材料广泛用于化学工业、石油和天然气生产、以及汽车排放处理等领域。
由于纳米材料的高比表面积,使得它们与废气接触的面积更大,从而提高了催化反应的效率,使得催化剂处理工作更加高效。
5. 纳米材料在生物医药学领域的应用纳米材料也被广泛应用于生物医学。
纳米药物可以通过皮肤、肌肉和静脉注射等方式进入人体,从而舒缓或治疗各种疾病。
纳米材料的小尺寸使得它们可以反应更多的生物分子,如细胞、酶和受体等。
这意味着纳米药物可以更好地针对特定类型的细胞和分子结构,从而提高了治疗效果和无副作用的程度。
纳米材料在生活中的应用

纳米材料在生活中的应用
纳米材料因其独特的物理、化学和生物性质,被广泛应用于各个领域,以下是纳米材料在生活中的应用举例:
1.食品包装:纳米材料可以用于制作食品包装材料,能够提高食品的保鲜性和延长保质期。
2.医学诊断:纳米材料可以用于制作生物传感器和检测试剂盒,能够帮助医生进行快速和准确的诊断。
3.环保领域:纳米材料可以用于制造高效的污水处理材料、空气净化材料等,有助于保护环境。
4.电子产品:纳米材料可以用于制造高性能的电子产品,如电池、电容器、半导体器件等,提高产品性能和功率密度。
5.汽车制造:纳米材料可以用于制造轻量化的汽车零部件,如车身、车门、车轮等,提高汽车的燃油效率和性能。
6.纺织品:纳米材料可以用于制造具有防水、防油、防污、防紫外线等功能的纺织品,提高纺织品的使用寿命和舒适度。
7.化妆品:纳米材料可以用于制造化妆品,如纳米银、纳米二氧化钛等,能够提高产品的稳定性和抗菌性。
总之,纳米材料的应用涵盖了众多领域,对改善人们的生活质量和促进社会经济发展都具有重要意义。
纳米材料的应用领域

纳米材料的应用领域
一、纳米材料的应用领域
纳米材料由于具有独特的物理、化学和生化性能,在多个应用领域得到广泛应用。
1、纳米材料在生物和医学领域的应用
纳米材料在生物和医学领域具有重要的应用,它可用于检测和治疗多种疾病,如癌症、心血管疾病等。
此外,纳米材料还可以用于改进药物的效果,减少其副作用,加速以及改善其吸收,以及制备精简的生物传感器来检测特定的化学分子。
2、纳米材料在能源领域的应用
纳米材料也在能源领域得到广泛应用,它可用于提高太阳能电池的效率,改善新兴的储能材料,以及改善太阳能催化剂和锂离子电池的性能。
此外,纳米材料也可以用于改进燃料电池的性能,有助于降低能源消耗。
3、纳米材料在环境领域的应用
纳米材料可以应用于多种环境保护措施,如净水、催化、大气污染控制等,以及制造节能、环保产品,例如可再生能源设备等。
此外,纳米材料还可以用于太阳能收集和节水节能,以及先进环境净化技术的研究和开发。
4、纳米材料在电脑、网络和通信领域的应用
纳米材料也可用于计算机、网络和通信技术,它可以用于实现小型、超快的集成电路,以及高速、精确的通信技术。
此外,纳米材料
还可以用于研究更快、更便宜的计算机存储器,以及更先进的感知技术。
纳米材料的主要应用

纳米材料的主要应用纳米材料是一种具有尺寸在纳米级别的材料,具有与宏观材料不同的物理、化学和生物学性质。
由于其独特的特性,纳米材料被广泛应用于各个领域,包括材料科学、医药领域、能源领域和环保领域等。
以下是纳米材料的主要应用。
1.材料科学领域纳米材料在材料科学领域具有广泛的应用。
纳米颗粒可以用于制备新型的高强度、高韧性材料,用于改善传统材料的性能。
例如,纳米碳管材料可以用于制备轻质、高强度的复合材料,纳米陶瓷材料可以用于制备超硬和超导材料。
此外,纳米颗粒还可以用于制备新型的催化剂、传感器和光学材料等。
2.医药领域纳米材料在医药领域有着广泛的应用。
纳米颗粒可以用于制备纳米药物载体,用于传递药物到特定的靶标细胞,提高药物的疗效和减少药物的副作用。
此外,纳米材料还可以用于制备新型的诊断工具,用于检测和治疗疾病。
例如,纳米金颗粒可以用于制备纳米探针,用于肿瘤的早期诊断和治疗。
3.能源领域纳米材料在能源领域有着广泛的应用。
纳米颗粒可以用于制备高效的太阳能电池,用于太阳能的转换。
纳米材料还可以用于制备高能量密度的电池材料,用于储存和释放电能。
此外,纳米材料还可以用于制备高效的催化剂,用于提高能源转换的效率。
4.环保领域纳米材料在环保领域有着广泛的应用。
纳米颗粒可以用于制备新型的吸附材料,用于去除有害物质和污染物。
纳米材料还可以用于制备新型的光催化剂,用于光解有机物和净化废水。
此外,纳米材料还可以用于制备高效的气体传感器,用于监测大气污染物和有害气体。
总结起来,纳米材料具有独特的物理、化学和生物学性质,可以广泛应用于各个领域。
随着纳米材料的不断发展和研究,相信其在未来会有更多的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 4、金纳米微粒用于遗传基因测试
• Verigene 医疗系统采用金纳米微粒涂层对 DNA 分子鉴别关键性的蛋白质和重要基因, 仅仅按一下按钮便能进行复杂的血液测试, 完成医学诊断。
• 5、纳米等级汽车光泽剂 • 如果汽车使用普通光泽剂,涂上之后会出现漩涡 状痕迹,或者出现难看的光泽或雾状结构。 • 汽车美容公司“神鹰1号”称,使用纳米等级巴西 棕榈蜡将永远保持清洁。由于棕榈蜡微粒非常小, 它们呈现出透明状。它们的分子尺寸大小能够填 充细微的瑕疵。目前,防晒霜制造商在生产防晒 霜时也采用了纳米等级的氧化锌。
日用陶瓷-盘子
建筑陶瓷-墙面砖
化工陶瓷
结构陶瓷-陶瓷刀
功能陶瓷-电子陶瓷
图6-电瓷绝缘子
饰面瓦-鱼鳞瓦
氧化锌避雷器
新型无机非金属材料
传统的无机非金属材料具有抗腐蚀、耐 高温等许多优点,但也有质脆、经不起热冲 击等弱点。新型无机非金属材料继承了传统 材料的许多优点,并克服某些弱点,使材料 具有更加优异的特性,用途更加广泛。新型
可以分为金属材料、无机非金属材料、高分 子材料和复合材料四大类。
无机非金属材料
无机非金属材料指某些元素的氧化物、 碳化物、氮化物、硼化物、硫系化合物(包 括硫化物、硒化物及碲化物)和硅酸盐、钛 酸盐、铝酸盐、磷酸盐等含氧酸盐为主要 组成的无机材料。包括陶瓷、玻璃、水泥、
耐火材料、搪瓷及天然矿物材料等。
无机非金属材料的特性有:1.能承受高温, 强度高。2.具有电学特性。3.具有光学特 性。4.具有生物功能。
氧化铝陶瓷具有机械强度高、硬度大、 高频介电损耗小、高温绝缘电阻高、耐化学 腐蚀性和导热性良好等优良综合技术性能, 以及原料来源广、价格相对便宜、加工制造 技术较为成熟等优势,已被广泛应用于电子、 电器、机械、化工、纺织、汽车、冶金和航 空航天等行业,成为目前世界上用量最大的 氧化物陶瓷材料。
第8章 纳米材料与纳米技术的应用举例 • 1、纳米啤酒瓶—纳米复合材料 • 米勒醇酒公司采用黏土纳米材料制造塑料啤酒瓶, 可保留二氧化碳,不让氧气轻易进入,避免啤酒 变质,而且不易碎裂。但一些消费者关注纳米材 料用于食物包装是否安全,是否它们会像灰尘一 样对人体无害。
2 纳米防弹衣及其他服装
• 因纳米碳管既轻又强度极高,是钢的10—100倍, 用它来作防弹衣就像用羽绒做成的防寒服一样, 既可折来叠去,又能抵御强大的子弹的冲击力。
纳米服装
二个月不用洗——信不信由你
• 3、纳米电池 • 日常充电电池中,锂离子从钴酸锂正极快速地穿过 隔膜抵达碳负极,这种传统充电电池功率较低,很 快就会耗完电,使用时还很容易着火或爆炸。 • 美国 MIT 的常业明教授采用新型纳米材料—磷酸铁 锂代替正极,可以大幅改善充电电池的性能。目前, 一些公司现已开始使用这种纳米电池应用于高功率 电器和仪器,这种电池安装在雪佛莱电动汽车,该 款汽车于2010年上市。
氧化铝陶瓷电阻 纺织瓷件
氧化铝髋关节
高压钠灯
高纯氧化铝透明陶瓷管
氮化硅陶瓷 氮化硅陶瓷的性能:作为一种理想的高温结构材料, 最主要的应具备如下性能:(1)强度好、韧性好;(2) 抗氧化性好;(3)抗热震性好;(4)抗蠕变性好;(5) 结构稳定性好;(6)抗机械振动。 氮化硅除抗机械振动性能和韧性相对比较差外,其余 几种性能都优于一般陶瓷,曾被誉为“像钢一样强,像金 钢石一样硬,像铝一样轻”。由于制备工艺不同和所获得 显微结构的差别,Si3N4陶瓷的综合性能有很大的变化。 各中资料所提供的数据繁多,下面仅介绍一般参考值。
光学性质 :由于量子尺寸效应,纳米半导体微
粒的吸收光谱一般存在蓝移现象,其光吸收率很大, 所以可应用于红外线感测器材料。
生物医药材料应用 :纳米粒子比红血细胞
(6~9nm)小得多,可以在血液中自由运动,如果利 用纳米粒子研制成机器人,注入人体血管内,就可以 对人体进行全身健康检查和治疗, 疏通脑血管中的 血栓,清除心脏动脉脂肪沉积物等,还可吞噬病毒, 杀死癌细胞。在医药方面,可在纳米材料的尺寸上直 接利用原子、分子的排布制造具有特定功能 的药品 纳米材料粒子将使药物在人体内的输运更加方便。
玻璃、生化玻璃、溶胶-凝胶玻璃等。
图6-中空玻璃结构示意图
中空玻璃结构示意图
空心玻璃砖用于建筑隔断
热反射玻璃在建筑物上大量使用
陶瓷
陶瓷是指以天然或人工合成的无 机非金属物质为原料,经过成形和高 温烧结而制成的固体材料和制品。
陶鹰鼎——仰韶文化庙底沟类型 高36cm
三彩——我国古代陶器中一颗璀灿的明珠
光导纤维 光导纤维是现代科学创造的奇迹之一, 是使光像电流一样沿着导线传输。不过, 这种导线不是一般的金属导线,而是一种 特殊的玻璃丝,人们称它为光导纤维,又 叫光学纤维,简称光纤 。
光纤通信的特点 (1)传输频带极宽,通信容量很大。 (2)传输衰减小,可用于远距离无中断传输。 (3)信号串扰少,传输质量高。 (4)抗电磁干扰,保密性好。 (5)光纤尺寸小,质量轻,便于运输和铺设。 (6)耐化学侵蚀,适用于特殊环境。 (7)原料资源丰富。 (8)节约有色金属。
括无机玻璃、有机玻璃、金属玻璃等;狭义 上仅指无机玻璃,最常见的是硅酸盐玻璃。 这里主要谈无机玻璃。
玻璃制品的分类 无机玻璃的化学组成包括有众多元素的氧化物或非氧化物。 (1)普通玻璃 普通玻璃是以硅酸盐系统为主要基础的传统玻璃。包括 有平板玻璃、日用玻璃、光学玻璃、电真空玻璃、点光源玻 璃、玻璃纤维等。 (2)特种玻璃 随着社会和科学的发展,在玻璃材料科学领域中,由于 某些新品种是根据特殊用途专门研制的,其成分、性能、制 造工艺均与一般工业和日用玻璃有所差别,它们往往被归入 专门的一类,叫做特种玻璃。这些特种玻璃逐渐脱离了传统 玻璃的基础系统范围。常见的特种玻璃有光子学玻璃、微晶
光纤导管胃镜
利用光纤作手术
光纤式传感器
光纤式传感器
金属材料 金属是指具有良好的导电性和导热性, 有一定的强度和塑性的并具有光泽的物质, 如铜、锌和铁等。而金属材料则是指由金 属元素或以金属元素为主组成的具有金属 特性的工程材料,它包括纯金属和合金两 类。
纳米材料的概念
从迄今为止的研究状况看,关于纳米技术分为三种概念。 第一种,是1986年美国科学家德雷克斯勒博士在《创造的机 器》一书中提出的分子纳米技术。根据这一概念,可以使组合 分子的机器实用化,从而可以任意组合所有种类的分子,可以 制造出任何种类的分子结构。这种概念的纳米技术未取得重大 进展。
纳米材料的性质和应用
力学性质:纳米结构的材料强度与粒径 成反比。应用纳米技术制成超细或纳米晶粒 材料时,其韧性、强度、硬度大幅提高,使 其在难以加工材料刀具等领域占据了主导地 位。使用纳米技术制成的陶瓷、纤维广泛地 应用于航空、航天、航海、石油钻探等恶劣 环境下使用。
磁学性质 :利用纳米粒子的隧道量子效应和
第三种概念是从生物的角度出发而提出的。本来,生物在 细胞和生物膜内就存在纳米级的结构。 所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、 原子和分子内的运动规律和特性的一项崭新技术。科学家们在 研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、 几十个可数原子或分子,显著地表现出许多新的特性,而利用 这些特性制造具有特定功能设备的技术,就称为纳米技术。
纳米技术是一门交叉性很强的综合学科,研 究的内容涉及现代科技的广阔领域。 纳米科技现在已经包括纳米生物学、纳米电子 学、纳米材料学、纳米机械学、纳米化学等学科。 从包括微电子等在内的微米科技到纳米科技,人 类正越来越向微观世界深入,人们认识、改造微 观世界的水平提高到前所未有的高度。
• 9、纳米止血绷带 • 美国加州大学圣塔芭芭拉分校化学家莎拉-贝克 等意识到铝矽酸盐纳米微粒可影响人体自然的凝 血进程,并已经使用铝矽酸盐纳米微粒测试了患 者的凝血功能。 • 这种纳米绷带已申请了专利权,预计在战场上可 以止住严重的伤口流血,能够有效地挽救战场上 的受伤士兵。
***
8 纳米材料的具体应用
库仑堵塞效应制成的纳米电子器件具有超高速、 超容量、超微型低能耗的特点,有可能在不久的 将来全面取代目前的常规半导体器件。
热学性质:纳米材料的比热和热膨胀系数都
大于同类粗晶材料和非晶体材料的值,这是由于 界面原子排列较为混乱、原子密度低、界面原子 耦合作用变弱的结果。因此在储热材料、纳米复 合材料的机械耦合性能应用方面有其广泛的应用 前景。
• 7、金纳米微粒女性验孕纸 • 女性验孕纸测试条码上覆盖抗体的一些金纳米微 粒可以快速锁定绒毛膜促性腺激素,从而使验孕测 试更加快速有效。
• 8、纳米网球 • 威尔逊体育用品公司采用由纳米科技公司 InMat研 制的纳米技术制造出高端双核网球,这种黏性纳 米微粒技术将使网球更加坚硬、使用时间更长。 • 但是美国网球爱好者们并不想购买价格昂贵的网 球,威尔逊公司不得不停止这种纳米网球的制造 生产。
第二种概念把纳米技术定位为微加工技术的极限。也就是 通过纳米精度的“加工”来人工形成纳米大小的结构的技术。 这种纳米级的加工技术,也使半导体微型化即将达到极限。现 有技术即便发展下去,从理论上讲终将会达到限度。这是因为, 如果把电路的线幅变小,将使构成电路的绝缘膜的为得极薄, 这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解 决这些问题,研究人员正在研究新型的纳米技术。
传统无机非金属材料
水泥 水泥呈粉末状,当它与水混合后成为 可塑性浆体,经一系列物理化学作用凝结 硬化变成坚硬石状体,并能将散粒状材料 胶结成为整体。水泥浆体不仅能在空气中
硬化,还能在水中硬化、保持并继续增长 其强度,故水泥属于水硬性胶凝材料。
玻璃
玻璃是由熔融物冷却、硬化而得到的非 晶态固体。其内能和构形熵高于相应的晶体。 其结构为短程有序,长程无序。从熔融态转 变为固体时有一转变温度Tg。广义的玻璃包