磁性纳米材料的应用
磁性纳米材料在生物医学领域的应用研究

磁性纳米材料在生物医学领域的应用研究磁性纳米材料是一种具有特殊磁性性质和微小尺寸的纳米粒子,其应用领域广泛,尤其在生物医学领域中具备巨大的潜力。
本文将重点探讨磁性纳米材料在生物医学领域中的应用研究进展,涉及其在诊断、治疗和生物分析等方面的应用。
一、磁性纳米材料在医学诊断中的应用1. 磁共振成像(MRI)磁性纳米材料具有优异的磁性性能,可作为MRI对比剂,提高诊断的准确性和敏感性。
通过将磁性纳米材料注射到患者体内,可以更清晰地展现组织和器官的结构,检测疾病的早期变化。
2. 磁性粒子法磁性纳米粒子可以与药物或抗体等生物标志物结合,通过外加磁场作用,将其靶向输送至病变部位,实现对疾病的定位和治疗。
这种磁性粒子法已广泛应用于肿瘤治疗、心脑血管疾病诊断与治疗以及传统药物的改良。
二、磁性纳米材料在医学治疗中的应用1. 靶向治疗利用磁性纳米材料的磁性效应,将其与药物结合,可以实现药物的靶向输送,减少对正常细胞的损害,提高治疗效果。
例如,通过将磁性纳米材料修饰在药物分子上,可以实现对肿瘤细胞的选择性杀伤。
2. 热疗磁性纳米材料在外加磁场的作用下产生剧烈的磁性加热效应,可用于局部热疗。
将磁性纳米材料注射到肿瘤组织中,通过对磁场加热,使肿瘤组织局部升温,达到杀灭肿瘤的目的。
这种热疗方法具有非侵入性、无辐射的特点,被广泛应用于肿瘤治疗领域。
三、磁性纳米材料在生物分析中的应用1. 生物标记磁性纳米材料可以作为生物标记物,通过与生物分子(如蛋白质、抗体等)结合,实现对生物分子的检测和定量分析。
磁性纳米材料的磁性效应可通过磁性检测方法进行分析,具备高灵敏度和快速反应的特点。
2. 磁性免疫分析磁性纳米材料结合传统的免疫分析方法,可以实现对生物样品中微量成分的快速检测。
通过对磁性纳米材料的修饰和功能化,可以提高检测的灵敏度和选择性,并且实现高通量、自动化的分析过程。
总结:磁性纳米材料在生物医学领域中的应用研究已取得了许多令人瞩目的进展。
磁性纳米材料在生物医学领域的应用

磁性纳米材料在生物医学领域的应用随着科技的不断发展和人类对健康的日益重视,医学领域的研究也在不断地深入和扩展。
其中,磁性纳米材料在生物医学领域的应用备受关注。
一、磁性纳米材料的优势磁性纳米材料具有特殊的物理性质和化学性质,在生物医学领域中具有广泛的应用前景。
首先,磁性纳米材料具有高度的生物相容性和低毒性,这使得它可以被在体内被完全代谢,不会对人体造成任何损害。
其次,这种材料能和生物界面发生相互作用,并可以通过磁场控制其运动和定位,这在生物分析、诊断和治疗等方面具有广泛的应用。
不仅如此,纳米材料的比表面积大,并且容易穿透细胞膜进入细胞内部,有利于进行分子影像学和精准医学。
二、磁性纳米材料在生物分析中的应用磁性纳米材料在生物分析中的应用主要体现在生物分子的检测和分离等方面。
例如,在DNA检测中,利用磁性纳米材料将其与特定的生物分子结合,并通过磁场控制其带着目标分子一起被分离出来,从而实现对目标分子的快速、准确检测。
三、磁性纳米材料在生物成像中的应用磁性纳米材料在生物成像中的应用主要是通过MRI技术进行的。
MRI技术是一种基于磁共振现象的成像方法,而磁性纳米材料则是协助MRI成像的重要辅助材料。
当磁性纳米材料进入生物体内后,在外加磁场作用下,它们会发生自发磁化现象,并产生局部磁场的变化。
通过对这种变化的探测和分析,可以获得高分辨率、高对比度的生物影像,并进行生物学结构和病理状态的分析,从而实现了早期疾病的检测和诊断。
四、磁性纳米材料在靶向治疗中的应用磁性纳米材料在靶向治疗中的应用主要是利用其在生物体内的运动受外界磁场的影响,从而在磁场作用下将其定位到特定的生物细胞或组织中,实现对目标细胞或组织的相应治疗。
例如,在肿瘤治疗中,利用磁性纳米材料制成的纳米磁珠可以通过靶向的方式精确定位到肿瘤部位,并通过外界的磁场控制其在肿瘤周围旋转,从而将肿瘤细胞的膜破坏,进而抑制肿瘤的生长。
五、磁性纳米材料在药物传递中的应用磁性纳米材料在药物传递中的应用主要是利用其在生物体内的特殊化学和物理特性,实现对药物的载体化和精准输送。
磁性纳米粒子的制备与应用

磁性纳米粒子的制备与应用磁性纳米粒子是一种磁性材料,其粒径通常小于100 nm。
由于其小尺寸和磁性特性,磁性纳米粒子在材料、医药、环境等领域有着广泛的应用前景。
本文将介绍磁性纳米粒子的制备方法和应用情况。
一、制备方法1. 化学合成法化学合成法是制备磁性纳米粒子的常用方法之一。
其基本原理是通过化学反应在溶液中形成磁性纳米粒子。
化学合成法的优点是操作简便,制备工艺成熟,能够通过调控反应条件控制粒子的大小和形态。
但由于化学反应过程控制困难,容易产生杂质等问题,因此需要一定的技术和实验经验。
2. 高温热分解法高温热分解法是制备磁性纳米粒子的另一种常用方法。
其基本原理是将金属配合物溶解在有机溶剂中,然后加热反应,使其分解生成磁性纳米粒子。
高温热分解法的优点是制备过程简单,并能够实现大规模生产。
但由于需要高温反应,容易造成粒子聚集和表面氧化等问题,需要注意反应条件的控制。
3. 生物合成法生物合成法是一种新兴的制备磁性纳米粒子的方法。
其基本原理是利用微生物或植物细胞的代谢过程,在体内或外界合成磁性纳米粒子。
生物合成法的优点是操作简单,生产环保,能够实现纯度高、尺寸分布窄的磁性纳米粒子的制备。
但其制备条件较为苛刻,需要针对具体生物体系进行研究和改进。
二、应用情况1. 磁性纳米粒子在材料领域的应用磁性纳米粒子在材料领域有着广泛的应用前景。
其可以作为材料掺杂物,用于调节材料的磁性、导电性等特性;也可以作为材料支撑物,提高材料的比表面积和活性;此外,还可以制备磁性纳米材料,用于制作磁性存储器、磁性隔离膜等材料。
2. 磁性纳米粒子在医药领域的应用磁性纳米粒子在医药领域有着广泛的应用前景。
其可以作为磁性成像探针,用于肿瘤等疾病的诊断;也可以作为靶向药物载体,通过磁性控制将药物输送到靶位点,提高治疗效果;此外,还可以制备高分子磁性纳米粒子,在组织工程和再生医学等领域中应用。
3. 磁性纳米粒子在环境领域的应用磁性纳米粒子在环境领域有着广泛的应用前景。
磁性纳米材料在医学领域中的应用研究

磁性纳米材料在医学领域中的应用研究一、引言随着科学技术的发展和人们对生命和健康的需求日益增加,纳米技术逐渐成为一个热门的研究领域。
磁性纳米材料作为纳米材料的一种,因其在生物医学领域中的广泛应用而备受关注。
在医学领域中,磁性纳米材料具有很好的生物相容性和生物活性,因此具有广泛的应用前景。
本文主要探讨磁性纳米材料在医学领域中的应用研究。
二、磁性纳米材料的概述磁性纳米材料是一种尺寸小于100nm的具有磁性的材料。
磁性纳米材料具有许多优良的物理和化学性质,包括高比表面积、高磁化率、高化学稳定性和生物相容性等。
这些优良的性质使得磁性纳米材料成为一种理想的生物医学材料,并在药物输送、生物成像和疾病治疗等方面得到了广泛的应用。
三、磁性纳米材料在药物输送中的应用药物输送是利用药物载体将治疗剂量传递到目标区域的技术。
磁性纳米材料由于具有较小的粒子大小和较大的比表面积,能够改进药物输送效率并减小药物剂量。
同时,磁性纳米材料通过外部磁场调控,能够精确定位到萎缩组织和转移组织,这使得药物输送更加精准高效。
四、磁性纳米材料在生物成像中的应用生物成像是一种对生物体内部结构、功能和代谢进行观察和评价的技术。
磁性纳米材料在生物成像中的应用是其主要的应用领域之一。
磁性纳米材料能够提供高分辨率、高灵敏度的图像,同时具有良好的生物相容性和选择性。
常见的磁性纳米材料生物成像方法包括磁共振成像、磁性共振造影和磁化过渡增强成像等。
五、磁性纳米材料在疾病治疗中的应用疾病治疗是指利用药物和其他手段阻止、减轻或治愈某种疾病的过程。
磁性纳米材料在疾病治疗中的应用是其另一个重要的应用领域。
磁性纳米材料通过外部磁场引导和控制,能够在特定的组织和器官中释放药物,实现精准治疗。
同时,磁性纳米材料的高生物相容性和生物活性使得其在肿瘤治疗中有较广泛的应用。
六、磁性纳米材料在临床中的应用现状如今,磁性纳米材料在医学领域中的应用已经得到了广泛的关注和研究,其在药物输送、生物成像和疾病治疗等方面均有不同程度的应用。
磁性纳米材料在信息存储与读取中的应用研究新进展

磁性纳米材料在信息存储与读取中的应用研究新进展引言:磁性纳米材料是一类具有磁性,并且尺寸在纳米尺度范围内的材料。
由于其独特的特性,磁性纳米材料在信息存储与读取领域具有重要的应用潜力。
本文将从物理定律出发,详细解读磁性纳米材料在信息存储与读取中的应用研究的实验准备以及过程,并进一步探讨其应用和其他专业性角度。
物理定律与磁性纳米材料:1. 磁性效应:磁性纳米材料的最主要特性是磁性效应,即具备磁场的产生和响应能力。
这种磁性效应可以通过磁场对纳米材料中的自旋和轨道磁矩的控制来实现。
其中,最重要的物理定律是麦克斯韦方程组,尤其是安培定律和法拉第定律。
这些定律提供了磁场与电流之间的关系以及感生电磁场的产生规律。
实验准备:1. 合成纳米材料:为了研究磁性纳米材料在信息存储与读取中的应用,首先需要合成具有良好磁性的纳米材料。
常见的合成方法包括溶剂热法、球磨法、沉积法等。
在实验中,可以选择合适的材料,如铁氧体、铁磁金属等,通过控制反应条件和材料的形貌来调控纳米材料的磁性。
2. 磁性性能测试:为了了解纳米材料的磁性性能,可以使用磁性测试仪器进行测试。
最常用的测试方法之一是霍尔效应测量,它可以测量材料在外加磁场下的磁滞回线、剩余磁化率、饱和磁化等参数。
此外,也可以使用超导量子干涉仪(SQUID)来进行更为精确的磁性测量。
实验过程:1. 信息存储:磁性纳米材料在信息存储中的应用主要集中在磁性硬盘和磁性随机存储器(MRAM)等领域。
其中,磁性硬盘的原理是基于外加磁场改变磁性纳米材料中的磁化方向,从而实现信息的存储。
实验过程中,可以使用磁场控制系统对纳米材料进行磁化和反磁化过程,并通过磁性测试仪器进行数据采集和分析。
2. 信息读取:为了读取储存在磁性纳米材料中的信息,需要使用磁力显微镜等仪器进行磁性图像的获取和解读。
磁力显微镜通过测量纳米材料的磁滞回线,在扫描过程中获取每个点的磁场信息,并将其转化为磁性图像。
实验过程中,需要准备样品和显微镜,通过控制扫描和图像处理等参数,实现对信息的准确读取。
磁性纳米材料在药物传递中的应用

磁性纳米材料在药物传递中的应用在现代医学领域,药物传递系统的不断创新和优化是提高治疗效果、减少副作用的关键。
近年来,磁性纳米材料因其独特的物理化学性质,在药物传递领域展现出了巨大的应用潜力。
磁性纳米材料通常指尺寸在纳米级(1 100 纳米)的具有磁性的材料,如氧化铁纳米粒子等。
它们具有超顺磁性,即在外部磁场存在时能够被迅速磁化,而在磁场消失后磁性也很快消失,这一特性为其在药物传递中的应用奠定了基础。
首先,磁性纳米材料能够实现药物的靶向传递。
通过在纳米粒子表面修饰特定的分子,如抗体、配体等,可以使其特异性地结合到病变部位的细胞或组织上。
当施加外部磁场时,载药的磁性纳米粒子能够在磁场的引导下富集到靶向部位,提高药物在病灶处的浓度,从而增强治疗效果,同时减少药物对正常组织的损伤。
例如,对于肿瘤的治疗,磁性纳米粒子可以通过与肿瘤细胞表面的特异性抗原结合,在磁场作用下精准地将药物递送到肿瘤组织内部,提高抗肿瘤药物的疗效,降低全身性的毒副作用。
其次,磁性纳米材料还能够提高药物的负载量和稳定性。
由于其高比表面积和孔隙结构,磁性纳米材料可以负载大量的药物分子。
同时,纳米粒子的外壳可以对药物进行保护,防止其在体内环境中过早降解或失活,从而延长药物的半衰期,提高药物的生物利用度。
再者,磁性纳米材料能够实现药物的控释。
通过对纳米粒子的结构和组成进行设计,可以实现药物在特定条件下的缓慢释放。
例如,利用 pH 敏感的聚合物对磁性纳米粒子进行包裹,当纳米粒子到达肿瘤等酸性环境时,聚合物外壳发生降解,从而释放出药物。
这种控释机制能够更好地模拟药物在体内的自然代谢过程,减少药物的突释现象,降低药物的毒性。
在实际应用中,磁性纳米材料的制备方法和表面修饰技术至关重要。
常见的制备方法包括共沉淀法、水热法、溶胶凝胶法等。
这些方法可以制备出尺寸均匀、形貌可控的磁性纳米粒子。
而表面修饰则是为了提高纳米粒子的生物相容性、稳定性和靶向性。
常用的修饰材料有聚乙二醇(PEG)、壳聚糖、多肽等。
磁性纳米材料

磁性纳米材料磁性纳米材料是指具有纳米尺度的磁性特性的材料。
由于其特殊的结构和性质,磁性纳米材料在科学研究和工业应用中具有广泛的应用前景。
磁性纳米材料具有以下几个特点:首先,磁性纳米材料具有较大的比表面积。
纳米材料由于其尺寸较小,其比表面积较大,因此磁性纳米材料具有更高的活性。
其次,磁性纳米材料具有优异的磁性能。
磁性纳米材料具有较高的矫顽力和剩磁,因此具有较高的磁导率和饱和磁感应强度。
此外,磁性纳米材料还具有优异的磁畴特性和磁矩特性。
再次,磁性纳米材料可通过外界磁场进行控制。
磁性纳米材料中的磁矩会对外界磁场做出响应,因此可以通过外界磁场来控制磁性纳米材料的性质和行为。
磁性纳米材料在科学研究领域具有广泛的应用。
一方面,磁性纳米材料可以用于磁共振成像(MRI)、细胞分离、基因和药物传递、磁性流体和磁性流体密封等医学领域。
由于纳米材料具有较高的比表面积和强大的磁性能,因此可以提高MRI的分辨率和灵敏度,并且可以在细胞分离和基因药物传递等领域具有广泛的应用前景。
另一方面,磁性纳米材料也可以应用于磁记录和磁传感等信息技术领域。
磁性纳米材料可以用作磁性存储介质,由于其较大的磁畴特性和独特的磁矩特性,能够提高磁记录的存储密度和读写速度。
此外,磁性纳米材料还具有广泛的应用前景。
例如,磁性纳米材料可以应用于环境领域,用于水处理和废水处理。
由于纳米材料具有较大的比表面积,可以提高水中杂质的吸附和去除效果。
另外,磁性纳米材料还可以应用于能源领域,例如用于催化剂的支撑材料、锂离子电池和燃料电池的电极材料等。
总之,磁性纳米材料具有广泛的应用前景,可以在医学、信息技术、环境和能源等领域发挥重要作用。
随着纳米技术的不断发展和应用的扩大,磁性纳米材料的研究和应用将会进一步深入。
磁性纳米材料在生物医学中的应用

磁性纳米材料在生物医学中的应用在当今生物医学领域,磁性纳米材料正以其独特的性质和巨大的应用潜力,成为研究的热点之一。
这些微小而神奇的材料,为疾病的诊断、治疗以及生物医学研究带来了全新的机遇和突破。
磁性纳米材料之所以能在生物医学领域大放异彩,首先得益于它们极小的尺寸。
其纳米级的粒径使得它们能够轻易地进入细胞内部,实现对细胞层面的操作和研究。
同时,它们具有良好的磁响应性,这意味着可以通过外部磁场对其进行精确的操控和引导。
在疾病诊断方面,磁性纳米材料发挥着重要作用。
例如,在磁共振成像(MRI)中,磁性纳米粒子可以作为对比剂,显著提高成像的清晰度和分辨率。
传统的 MRI 对比剂在某些情况下效果有限,而磁性纳米粒子由于其独特的磁性能,能够更有效地改变组织的磁共振信号,使得病变部位更加清晰可见,有助于医生更准确地发现疾病。
另外,磁性纳米材料在生物传感领域也有出色的表现。
基于磁性纳米粒子的生物传感器可以快速、灵敏地检测各种生物标志物,如蛋白质、核酸等。
通过巧妙的设计和表面修饰,这些纳米材料能够特异性地与目标生物分子结合,产生可检测的信号,为疾病的早期诊断提供了有力的工具。
在疾病治疗方面,磁性纳米材料同样展现出了巨大的潜力。
热疗是其中一个重要的应用方向。
当磁性纳米粒子在交变磁场的作用下,会产生热量。
通过将这些纳米粒子精准地输送到肿瘤部位,然后施加交变磁场,就可以实现局部的高温治疗,有效地杀死肿瘤细胞,同时减少对周围正常组织的损伤。
药物输送是磁性纳米材料在治疗领域的另一个关键应用。
通过在磁性纳米粒子表面负载药物,可以实现药物的靶向输送。
在外部磁场的引导下,载药纳米粒子能够准确地到达病变部位,提高药物的局部浓度,增强治疗效果,同时降低药物的全身性副作用。
不仅如此,磁性纳米材料还在基因治疗中崭露头角。
它们可以作为基因载体,将治疗基因有效地递送到细胞内,实现基因的表达和修复,为一些遗传性疾病和难以治愈的疾病提供了新的治疗思路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁性纳米材料的应用磁性纳米颗粒是一类智能型的纳米材料,既具有纳米材料所特有的性质如表面效应、小尺寸效应、量子效应、宏观量子隧道效应、偶连容量高,又具有良好的磁导向性、超顺磁性类酶催化特性和生物相容性等特殊性质,可以在恒定磁场下聚集和定位、在交变磁场下吸收电磁波产热。
基于这些特性,磁性纳米颗粒广泛应用于分离和检测等方面。
(一)生物分离生物分离是指利用功能化磁性纳米颗粒的表面配体与受体之间的特异性相互作用(如抗原-抗体和亲和素 -生物素等)来实现对靶向性生物目标的快速分离。
传统的分离技术主要包括沉淀、离心等过程,这些纯化方法的步骤繁杂、费时长、收率低,接触有毒试剂,很难实现自动化操作。
磁分离技术基于磁性纳米材料的超顺磁性,在外加磁场下纳米颗粒被磁化,一旦去掉磁场,它们将立即重新分散于溶液中。
因此,可以通过外界磁场来控制磁性纳米材料的磁性能,从而达到分离的目的,如细胞分离、蛋白质分离、核酸分离、酶分离等,具有快速、简便的特点,能够高效、可靠地捕获特定的蛋白质或其它生物大分子。
此外,由于磁性纳米材料兼有纳米、磁学和类酶催化活性等特性,不仅能实现被检测物的分离与富集,而且能够使检测信号放大,具有重要的应用前景。
通常磁分离技术主要包括以下两个步骤:( 1)将要研究的生物实体标记于磁性颗粒上;(2)利用磁性液体分离设备将被标记的生物实体分离出来。
①细胞分离:细胞分离技术的目的是快速获得所需的目标细胞。
传统的细胞分离技术主要是根据细胞的大小、形态以及密度差异进行分离,如采用微滤、超滤和超滤离心等方法。
这些方法虽然操作简单,但是特异性差,而且纯度不高,制备量偏小,影响细胞活性。
但是利用磁性纳米材料可以避免一定的局限性,如在磁性纳米材料表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质和外源凝结素等),利用它们与目标细胞特异性结合,在外加磁场的作用下将细胞分离、分类以及对数量和种类的研究。
磁性纳米材料作为不溶性载体,在其表面上接有生物活性的吸附剂或其它配体等活性物,利用它们与目标细胞的特性结合,在外加磁场作用下将细胞分离。
温惠云等的地衣芽孢杆菌实验结果表明,磁性材料 Fe3O4 的引入对地衣芽孢杆菌的生长没有影响;Kuhara等制备了人单克隆抗体anti-hPCLP1,利用 anti-hPCLP1 修饰的磁纳米颗粒从人脐带血中成功分离了成血管细胞,PCLP1 阳性细胞分离纯度达到了 95%。
②蛋白质分离:利用传统的生物学技术(如溶剂萃取技术)来分离蛋白质程序非常复杂,而磁分离技术是分离蛋白分子便捷而快速的方法。
基于在磁性粒子表面上修饰离子交换基团或亲和配基等可与目标蛋白质产生特异性吸附作用的功能基团 , 使经过表面修饰的磁性粒子在外加磁场的作用下从生物样品中快速选择性地分离目标蛋白质。
王军等采用络合剂乙二胺四乙酸二钠和硅烷偶联剂KH-550寸磁性Fe3O4粒子进行表面修饰改性 , 并用其对天然胶乳中的蛋白质进行吸附分离。
结果表明 , 乙二胺四乙酸通过化学键合牢固地结合在磁性粒子表面 , 并通过羰基与蛋白质反应, 达到降低胶乳氮含量的目的。
③核酸分离经典的DNA/RN分离方法有柱分离法和一些包括沉积、离心步骤的方法,这些方法的缺点是耗时多,难以自动化,不能用于分析小体积样品,分离不完全。
使用磁性纳米材料进行核酸分离可避免这些局限。
吴能表等采用氧化硅包裹的磁性纳米粒子,平均粒径为20nm 左右,在外加磁场的作用下,从细胞粗提掖中快速分离质粒 DNA结果表明,制得的磁性纳米微球表面包裹SiO2,粒径均匀,分散性良好,且具有超顺磁性和较大的比饱和磁化强度,可以很好地从细胞悬液、组织、血液等样品中分离得到高质量的核酸。
④酶分离酶是一种生物蛋白质 , 目前常用的酶分离方法存在的问题是酶在分离后很容易失活 , 影响到它的催化活性。
用磁性纳米材料分离酶可以很好地保持它的活性和稳定性 , 同时也使得体系中酶的回收更加方便 , 提高了酶的使用效率。
Lin 等制备了用表氯醇修饰并用淀粉交联剂包覆的超顺磁性纳米颗粒,成功地将其应用于从大豆蛋白质分离淀粉酶的试验中;李梅基等通过化学共沉淀法合成纳米粒子Fe3O磁核,以壳聚糖为包裹材料包被自制的磁核,采用乳化交联法制备了具有核 - 壳结构的磁性高分子微球 - 壳聚糖磁性微球,并偶联肝素配基得到了一种新型亲和磁性微球,并将磁分离技术应用于凝血酶的分离纯化,得到了较好的效果。
(二)生物检测磁性纳米颗粒由于其较小的尺寸、较高的反应活性、优异的磁导向性质以及这些性质的可调控性,超顺磁性、高矫顽力、低居里温度与高磁化率等特性,使其在用于蛋白质、核酸等生物分子检测方面受到广泛关注。
将其结合到生物分子(如核酸、蛋白质、肽等)表面上时,产生的生物共轭物种由于尺寸依赖性和维度与生物大分子类似,很适合作为活性磁共振成像、药物释放与运输的大循环载体和组织工程的结构构架,同时又能用在分子识别和标记、DNA传感器和生物芯片中,可以利用其建立新的检测方法以改善目前检测方法所存在的缺陷。
①蛋白质检测当检测目标为低含量的蛋白质分子时 , 不能通过聚合酶链反应对其信号进行放大, 而磁性纳米材料与有机染料或是量子点荧光微球结合可以对某些特异性蛋白进行多元化检测,实现信号放大的作用。
Yang等采用一对分子探针分别连接荧光光学条码(彩色)和磁珠(棕色),对DN A(顶端镶板)和蛋白质(底截镶板)生物分子进行目标分析。
如果目标 DNA 序列或蛋白质存在,它将与两个磁珠结合在一起,形成一个三明治结构。
通过磁选,光学条码可以在单磁珠识别目标水平下,通过分光光度计或是在流式细胞仪读出。
通过此方法检测目标分子是基于数百万个荧光基团组成的微米尺寸光学条码信号的扩增而检测出来,其基因和蛋白的检出量可达到amol/L量级,甚至更低。
②免疫检测将磁性纳米材料作为抗体的固相载体 , 材料上的抗体与抗原特异性结合 , 形成抗体抗原的复合物 , 在磁力的作用下 , 使特异性抗原与其它物质分离 , 克服了放免和酶联免疫测定方法的缺陷。
这种分离方法具有灵敏度高、检测速度快、特异性高和重复性好等优点。
③酶检测将磁性纳米材料作为酶的固相载体。
主要由以下优点:(1)亲水性磁性纳米材料能够比较稳定地悬浮在水溶液中,并可在外加磁场作用下定位于某一部位;(2)作为酶的固定化载体,磁性纳米材料有利于固定化酶从反应体系中分离和回收,还可以利用外部磁场控制磁性材料固定化酶的运动和方向,从而代替传统的机械搅拌方式,提高固定化酶的催化效率;(3)磁性纳米材料作为酶的固定化载体,使固定化酶可重复使用,降低成本,可以提高酶的稳定性,改善酶的生物相容性、免疫活性、亲疏水性、分离效果及酶的回收操作。
④细菌和病毒检测采用磁性纳米粒子实现对细菌和病毒的检测具有检测速度快和对人为因素不敏感等优点,检测过程不需要孵育或复杂的PCR反应,其检测限和检测效率与传统方法相比具有明显的优势。
对于病毒和细菌,采用传统的方法检测,检测限只能达 100cfu/mL (cfu :菌落形成单位),但将磁性纳米粒子应用到生物传感器中,可将其检测限提高到10〜30 cfu/mL。
(三)水处理中的离子吸附分离随着工业与经济的快速发展,水域重金属污染已经成为危害较为严重的水污染问题之一。
重金属因具有毒性大、在环境中不易被代谢、易被生物富集和生物放大效应等特点,一旦未经处理而排放到自然界中,将极大地破坏生态系统,不但污染水环境,也会严重威胁水生物的生存和人类的健康。
磁分离法因其独特的分离原理和诸多优点使之成为最有发展前途的新型污水处理技术之一。
传统的处理技术以物理化学方法为主,将重金属进行沉淀或将其还原成低毒性的物质,然而这些处理技术一般成本较高,而且易引起二次污染;。
磁性纳米材料作为一种新型的功能材料,与传统的回收或修复技术相比,由于其低成本运行、无二次污染、还可以有选择地吸附重金属离子等优点,因而是非常具有吸引力的一种选择,从而为重金属废水的处理提供了更广泛的空间。
(四)水处理中的有机物吸附分离磁性纳米粒子因其具有表面电位高、比表面积大、超顺磁性和易分离等性质,对污水中多种有机物有较强的吸附能力或螯合作用,随之借助于具有诸多优点的超导磁分离技术,可将吸附污物的纳米粒子从污水中分离出来,从而达到净化污水的目的。
Zhu 等成功地合成了一种核壳结构的 Fe2O3-C 磁性纳米粒子。
测试结果显示,该磁性纳米粒子具有很好的疏水性以及亲油脂性,并且不易团聚。
将这种磁性纳米粒子应用于含油污水的清理以及吸附水体中有机污染时,通过实验发现,该磁性纳米粒子对于油污具有很高的吸附性。
同时,通过超声处理吸附油污的粒子后,磁性纳米粒子仍然保持很好的疏水性和超强的亲油性,而且可以多次循环使用。
(五)水体检测鉴于磁性纳米材料强大的功能特点以及在生化领域所取得的成功应用 , 科研工作者已经尝试将磁性微球引入环境监测领域 , 用于对环境中自热水体、工业废水、生活污水中部分有毒有机物、病毒、细菌的检测。
Wang 等通过溶胶 - 凝胶法制备了以 Fe3O4 为核的磁性核壳介孔氧化硅纳米材料。
该纳米颗粒是具有荧光、介孔和磁性一体化的多功能材料。
实验发现,该磁性核壳介孔氧化硅纳米材料对水相体系中的Hg2+离子具有很好的检测和选择吸附性。
(六)食品安全监测食品安全检测包括食品中各种致病微生物、农兽药残留、有毒有害毒素等的检测。
磁性纳米粒子具有超顺磁性特性,即在有外界磁场的情况下能表现出很强的磁感应,而在没有外加磁场的情况下不表现磁感应的现象。
基于磁性纳米材料的在食品安全分析中进行目标分析物的富集、分离等均是利用其超顺磁性。
巫远招等在Fe3O4-Au 微粒上固定乙酰胆碱酯酶 , 制得磁性复合粒子。
通过磁力将其吸附于涂覆了碳纳米管/纳米ZrO2/普鲁士蓝/Nafion复合膜的丝网印刷碳电极表面 , 制得一次性有机磷农药酶传感器。
该传感器采用复合纳米粒子修饰电极表面,具有较高的比表面活性,响应迅速,检测限低; ZrO2 可特异性地富集样品中的有机磷,磁性纳米颗粒包被乙酰胆碱酯酶可实现磁场分离和电极表面更新,且具有高灵敏度、低样品量、一次使用可抛弃、便携式等特点,可用于蔬菜等农产品中痕量有机磷的快速、简便、准确检测。