功能磁性纳米材料的构建及诊疗应用基础-东南大学
磁性纳米材料在生物医学领域的应用研究

磁性纳米材料在生物医学领域的应用研究磁性纳米材料是一种具有特殊磁性性质和微小尺寸的纳米粒子,其应用领域广泛,尤其在生物医学领域中具备巨大的潜力。
本文将重点探讨磁性纳米材料在生物医学领域中的应用研究进展,涉及其在诊断、治疗和生物分析等方面的应用。
一、磁性纳米材料在医学诊断中的应用1. 磁共振成像(MRI)磁性纳米材料具有优异的磁性性能,可作为MRI对比剂,提高诊断的准确性和敏感性。
通过将磁性纳米材料注射到患者体内,可以更清晰地展现组织和器官的结构,检测疾病的早期变化。
2. 磁性粒子法磁性纳米粒子可以与药物或抗体等生物标志物结合,通过外加磁场作用,将其靶向输送至病变部位,实现对疾病的定位和治疗。
这种磁性粒子法已广泛应用于肿瘤治疗、心脑血管疾病诊断与治疗以及传统药物的改良。
二、磁性纳米材料在医学治疗中的应用1. 靶向治疗利用磁性纳米材料的磁性效应,将其与药物结合,可以实现药物的靶向输送,减少对正常细胞的损害,提高治疗效果。
例如,通过将磁性纳米材料修饰在药物分子上,可以实现对肿瘤细胞的选择性杀伤。
2. 热疗磁性纳米材料在外加磁场的作用下产生剧烈的磁性加热效应,可用于局部热疗。
将磁性纳米材料注射到肿瘤组织中,通过对磁场加热,使肿瘤组织局部升温,达到杀灭肿瘤的目的。
这种热疗方法具有非侵入性、无辐射的特点,被广泛应用于肿瘤治疗领域。
三、磁性纳米材料在生物分析中的应用1. 生物标记磁性纳米材料可以作为生物标记物,通过与生物分子(如蛋白质、抗体等)结合,实现对生物分子的检测和定量分析。
磁性纳米材料的磁性效应可通过磁性检测方法进行分析,具备高灵敏度和快速反应的特点。
2. 磁性免疫分析磁性纳米材料结合传统的免疫分析方法,可以实现对生物样品中微量成分的快速检测。
通过对磁性纳米材料的修饰和功能化,可以提高检测的灵敏度和选择性,并且实现高通量、自动化的分析过程。
总结:磁性纳米材料在生物医学领域中的应用研究已取得了许多令人瞩目的进展。
磁性功能材料的制备与性能调控

磁性功能材料的制备与性能调控磁性功能材料作为一类具有特殊性能的材料,在诸多领域中有着广泛的应用。
磁性材料的研究一直是科学领域中的热点之一,人们希望能够通过制备方法和性能调控来开发出更加理想的磁性功能材料。
磁性材料的制备是实现材料特性调控的基础。
一种常见的制备方法是溶液法。
这种方法可以通过调控溶液中的成分和条件来改变所得材料的形貌和结构。
例如,通过调控溶液中的化学物质浓度和pH值,可以制备出不同形貌的磁性材料。
磁性纳米颗粒是一种常见的溶液法制备的材料,其颗粒大小可以通过控制溶液中的反应速率和条件来实现。
此外,溶液法还可以实现材料表面的修饰,如包覆材料、合金化等,进一步改变材料的磁性和性能。
除了溶液法,磁性材料的制备还有其他多种方法。
固相法是一种常见的制备方法之一。
通过高温烧结等工艺,可以将粉末材料制备成块状材料。
这种方法可以制备具有高磁性的材料,且所得材料具有较好的力学性能。
此外,通过制备不同形状的磁性材料,如纤维、膜等,还可以拓展其在各个领域的应用。
磁性功能材料的性能调控是进一步扩展其应用领域的关键。
一种常用的方法是外场调控。
外加磁场、电场、温度等外场可以通过改变磁性材料内部的磁矩排列来实现性能调控。
例如,通过施加磁场,可以调控材料的磁性相变和磁畴结构,从而实现材料的磁性可逆性和磁性增强等效应。
此外,还可以通过外加磁场来调控材料的介电性能、热学性能等。
这种方法具有广泛的应用前景,可以为磁性功能材料的设计和制备提供新的思路。
另一种重要的性能调控方法是合金化。
通过调控不同元素之间的相互作用和配比,可以改变材料的磁性和物理性能。
合金化可以使材料具有更高的韧性、磁导率等,从而拓展其在电子信息、医学和磁存储等领域的应用。
同时,通过调控合金中的微观结构和相互作用方式,还可以进一步改变材料的磁畴耦合、临界温度等性能,为磁性功能材料的性能调控提供更多的可能性。
总之,磁性功能材料的制备与性能调控在材料科学领域中具有重要的意义。
纳米磁性材料的应用探索

纳米磁性材料的应用探索纳米磁性材料的应用探索纳米磁性材料是一种具有微小尺寸的磁性材料,通常由纳米级颗粒组成。
由于其独特的性质,纳米磁性材料在多个领域具有广泛的应用。
下面我们逐步探索纳米磁性材料的应用。
首先,纳米磁性材料在信息存储方面具有重要的应用。
通过利用纳米级颗粒的小尺寸和高磁化强度,可以制造出高密度的磁存储介质。
例如,硬盘驱动器中的磁盘就是利用纳米磁性材料记录和存储数据的。
此外,纳米磁性材料还可以应用于磁存储器件的研究和开发,如自旋转换磁性随机存储器(spin-transfer torque magnetic random access memory,STT-MRAM)。
其次,纳米磁性材料在医学领域也有广泛的应用前景。
通过将纳米磁性材料与药物结合,可以制造出具有靶向输送功能的纳米药物载体。
这些纳米药物载体可以在体内精确地输送药物到疾病部位,提高治疗效果,减少副作用。
此外,纳米磁性材料还可以用于磁共振成像(magnetic resonance imaging,MRI)技术的增强剂,提高图像的分辨率和对比度,帮助医生更准确地诊断和治疗疾病。
再次,纳米磁性材料在环境保护领域也具有重要的应用价值。
纳米磁性材料可以被用作吸附剂,用于去除废水中的重金属离子和有机污染物。
这是因为纳米磁性材料具有较大的比表面积和高吸附能力。
此外,纳米磁性材料还可以用于水处理和污染物检测等方面,提高环境保护的效率和准确性。
最后,纳米磁性材料还有许多其他的应用领域,如能源存储、传感器技术和生物传感等。
例如,纳米磁性材料可以用于制造高性能的锂离子电池和超级电容器,提高能源存储的效率和容量。
此外,纳米磁性材料的磁性特性还可以应用于传感器技术,用于检测和测量环境中的温度、湿度、压力等参数。
总结来说,纳米磁性材料具有广泛的应用前景,涉及信息存储、医学、环境保护、能源存储、传感器技术等多个领域。
随着纳米技术的不断发展,纳米磁性材料的应用将会越来越多样化和创新化。
2018年度高等学校科学研究优秀成果奖(科学技术)拟授奖项目

49 乙肝病毒进化和免疫遗传在致癌中的作用
50 有机-无机复合膜的亚纳米通道构筑及其分离性能研究 51 高稳定性有机半导体的四元设计原理、绿色加工及光电器件 52 固态单自旋量子相干控制与精密测量实验研究 53 日冕物质抛射的传播演化和地磁效应 54 情境大数据融合表示与分析挖掘研究及应用
恒,卢晓红
大学,南京大学,北京交通大学
李冬生,安永辉,周林仁,匡亚川,何建 平,兰春光,周智,欧进萍
大连理工大学
胡浩权,靳立军,李扬,刘全润,李显,张 建波,王鹏飞,邹亮,华维
大连理工大学
自然奖 自然奖 自然奖 自然奖 自然奖 自然奖 自然奖 自然奖 自然奖
自然奖
二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖
55 生物靶向诊治肿瘤方法学研究
56 抑制细胞增殖与分化异常的新机制研究 57 精神分裂症的遗传易感性研究 58 纤维形态光伏及能量储存器件 59 新型微纳光子器件原理及应用研究 60 子宫内膜癌分子特征及发病分子机制研究
61 高气压脉冲气体放电若干关键基础问题研究
全部完成人
全部完成单位
周仲荣,王文健,温泽峰,金学松,刘启 跃,莫继良,肖新标,朱旻昊
四川大学,重庆师范大学,重庆大学
41
不易成炭高分子材料的高效凝聚相阻燃体系构建及其作用机制
王玉忠,邓聪,赵海波,胡小平,邵珠宝, 刘云,王俊胜,王德义,赵春霞
四川大学
奖种
自然奖 自然奖 自然奖 自然奖 自然奖
Magneticnanoparticles磁性纳米粒子

Magneticnanoparticles磁性纳米粒子磁性纳米粒子(Magnetic Nanoparticles)是一种具有特殊物理和化学性质的纳米材料,具有广泛的应用前景。
本文将介绍磁性纳米粒子的制备方法、表征手段以及在生物医学、环境治理和能源等领域的应用。
1. 制备方法磁性纳米粒子的制备方法多种多样,常见的包括物理合成、化学合成和生物合成等。
物理合成方法包括热分解、溶胶-凝胶法和磁控溅射等,可以通过调节反应条件来控制粒子的尺寸和形貌。
化学合成方法主要通过溶液反应来合成纳米粒子,常见的包括共沉淀法、热分解法和水热法等。
生物合成方法则利用生物体内的酶、植物提取物等来合成纳米粒子,具有环境友好性和可再生性。
2. 表征手段对磁性纳米粒子的表征主要包括形貌结构、晶体结构、磁性能和表面性质等方面。
形貌结构可以通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)等观察到,可以了解粒子的形态、尺寸和分布情况。
晶体结构常常通过X射线衍射(XRD)来进行分析,可以确定晶体相和晶格参数。
磁性能可以通过振动样品磁强计(VSM)等仪器来测试,可以获得粒子的矫顽力、饱和磁化强度和磁导率等参数。
表面性质则常常通过傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)等技术来研究,可以了解粒子表面的化学组成和功能基团等信息。
3. 生物医学应用磁性纳米粒子在生物医学领域具有广泛的应用前景。
一方面,磁性纳米粒子可以作为纳米载体,用于药物传递和基因传递等方面。
通过表面修饰可以增加纳米粒子与生物体内靶标的亲和性,实现靶向输送药物和基因,提高药物的疗效和减少副作用。
另一方面,磁性纳米粒子还可用于磁共振成像(MRI)和磁热疗法等诊断和治疗方面。
通过控制纳米粒子的磁性能和形貌,可以实现对肿瘤等异常组织的定位和治疗。
4. 环境治理应用磁性纳米粒子还可以在环境治理领域发挥重要作用。
一方面,磁性纳米粒子可以用于水处理和废水处理等方面。
通过表面修饰可以增加纳米粒子与污染物的亲和性,实现对重金属离子和有机污染物的吸附和去除。
纳米磁性材料ppt课件

3. 1988年,法国巴黎大学教授研究组首先在Fe/Cr纳米结构的多 层膜中发现了巨磁电阻效应,引起国际上的反响。此后,美国、 日本和西欧都对发展巨磁电阻材料及其在高技术中的应用投入很 大的力量,兴起纳米磁性材料的开发应用热。1988年,由非晶态 FeSiB退火通过掺杂Cu和Nb控制晶粒,获得了新型的纳米晶软磁材 料; 4. 1988年,人们发现了磁性多层膜的巨磁电阻效应,并由此产生 一门新兴学科:自旋电子学。 5. 1993年,人们通过理论研究发现,纳米级的软磁和硬磁颗粒复 合将综合软磁Ms高,硬磁Hc高的优点获得磁能积比现有最好NdFeB 高一倍的新型纳米硬磁材料。 6. 进人21世纪以来,利用模板生长一维磁性纳米丝的研究很活跃, 材料包括单一金属、合金、化合物、多层材料、复合材料等,应 用目标也从存储介质到细胞分离,多种多样。
(4)生成磁性液体的必要条件 生成磁性液体的必要条件是强磁性颗粒要足够小,
在致可以削弱磁偶极矩之间的静磁作用,能在基液中作无 规则的热运动。基液包括:水基、煤油基、短基、二醋基、 聚苯基、硅油基、氟碳基等。
(5)磁性液体的特点
在磁场作用下可以被磁化,可以在磁场作用下运动, 但同时它又是液体,具有液体的流动性。
二、纳米磁性材料的定义
纳米磁性材料是指材料尺寸限度 Nano Material
在纳米级,通常在1-100nm的准
0D
零维超细微粉,一维超细纤维
(丝)或二维超薄膜或由它们组
成的固态或液态磁性材料。当传
1D
统固体材料经过科技手段被细化
到纳米级时,其表面和量子隧道
等
4、 磁性液体
(1)磁性液体的定义 磁性液体是由纳米磁性微粒包复一层长链的有机表
面活性剂,高度弥散于一定基液中,而构成稳定的具有 磁性的液体。其中磁性微粒尺寸通常小于10nm,呈超顺 磁性。
推荐国家科技进步奖项目公示项目名称基于磁共振成像的多模态分子

教授 Jia-Hong Gao 和 Ai-Ling Lin 也来函邀请将我们关于老年性痴呆 AD 患者的磁共振 图片编入其关于神经退行性疾病多模态磁共振研究综述中。
推广应用情况:
1)成果应用 应用单位遍及四川大学附属华西医院、复旦大学附属华山医院、第二军医大学附属长征医院等
全国 36 家医院,产生了显著的社会效益(附件 26-35)。
应用单位联系 人/电话 杨建勇
/13802543290 耿道颖
/13918539866 刘士远
/13761304518 宦怡
/13891808716 胡春洪
/13506219750 肖文波
/13486192697 卢光明
/13951608346 周正扬
/13951984590 杨明
/13913951919
应用单位名称
中山大学附属第一 医院
复旦大学附属华山 医院
第二军医大学附属 长征医院
第四军医大学附属 西京医院
苏州大学附属第一 医院
浙江大学医学院附 属第一医院
南京军区南京总医 院
南京大学医学院附 属鼓楼医院
南京市儿童医院
要应用单位情况 应用技术 MR 分子影像和功能影像学技术和方法
分子和功能 MR 在急性缺血性脑卒中的应 用
项目名称
推荐国家科技进步奖项目公示 基于磁共振成像的多模态分子影像与功能影像的研究与应用
推荐单位 教育部
推荐单位意见: 我单位认真审阅了该项目推荐书及附件材料,确认全部材料真实有效,相关栏目均
符合国家科学技术奖励工作办公室的填写要求。 分子影像和功能影像为 21 世纪新兴交叉前沿学科,为我国十二五和十三五的重点
2.功能 MR 成像的研究与应用:将 fMRI 与多种影像数据处理算法结合,系统研究 多种脑疾病的病理生理机制,创建脑功能损伤的评价方法。①在国际上率先发现了脑 默认网络在阿尔兹海默病进程中的重要作用,认为其功能连接可作为临床影像学标志; ②运用功能数据与抑郁症严重程度之间的关系进行建模,在国际上率先得到较为准确 的抑郁症诊断模型;③采用先进的基于表面形态学算法,针对孤独症生成简明的预测 模型。④发现轻微肝性脑病脑结构、功能连接均存在异常,为疾病的早期干预提供了 重要证据。⑤本项目组还参与了由美国国立卫生研究院牵头的“人类 1000 脑功能连接 组学计划”,贡献了 10%的病例,共同构建世界级数据资源库,实现多个脑疾病相关的 fMRI 数据的共享。
纳米磁性功能复合材料

纳米磁性功能复合材料摘要:磁性功能材料一直是国民经济和军事领域的重要基础材料。
早在1930年,Fe3O4 微粒就被用来做成磁带;此后,Fe3O4粉末和粘合剂结合在一起被制成涂布型磁带;后来,又采用化学共沉淀工艺制成纳米Fe3O4磁性胶体,用来观察磁畴结构。
20世纪60年代磁性液体的诞生亦与此有着密切的关系。
如今,磁性功能材料广泛的应用于通信、自动控制、电信和家用电器等领域,在信息存储、处理和传输中已经成为不可缺少的组成部分,尤其在微机、大型计算机中的应用具有重要地位。
面对纳米科技的发展浪潮,磁性材料无论在研究领域还是在应用领域,都已取得了长足的进步。
在磁性材料方面,量子理论的发展与磁性材料的结合,使得磁性材料的发展进入材料设计阶段。
正文:纳米磁性功能复合材料一、纳米磁性功能复合材料的定义。
<1>、磁性复合材料:以高分子材料为基体与磁性功能体复合而成的一类功能材料。
常用的磁性材料主要有铁磁性的软磁材料和硬(永)磁材料。
软磁材料的特点是低矫顽力和高磁导率。
硬磁材料则表现在高矫顽力和高磁能积。
除了上述磁性材料外,尚有铁磁材料和反(逆)铁磁材料。
<2>、纳米材料:尺度为1~100nm的超微粒经压制、烧结或溅射而成的凝聚态固体。
它具有断裂强度高、韧性好、耐高温等特性。
<3>、纳米复合材料:分散相尺度至少有一维小于100nm的复合材料。
二、纳米磁性微粒的磁学特性。
<1>磁畴结构:磁畴(Magnetic Domain)理论是用量子理论从微观上说明铁磁质的磁化机理。
所谓磁畴,是指磁性材料内部的一个个小区域,每个区域内部包含大量原子,这些原子的磁矩都象一个个小磁铁那样整齐排列,但相邻的不同区域之间原子磁矩排列的方向不同,如图所示。
各个磁畴之间的交界面称为磁畴壁。
宏观物体一般总是具有很多磁畴,这样,磁畴的磁矩方向各不相同,结果相互抵消,矢量和为零,整个物体的为零磁距,它也就不能吸引其它磁性材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年高等学校科学研究优秀成果奖(科学技术)推荐项目公示材料(自然奖)
1、项目名称:功能磁性纳米材料的构建及诊疗应用基础
2、推荐奖种:高等学校科学研究优秀成果奖自然科学奖
3、推荐单位(专家):东南大学
4、项目简介:
磁性纳米材料因其丰富的磁学特性和良好的生物相容性,在生物医学领域有广泛的应用前景。
如何构建生物医用磁性纳米材料,解决其控制制备的关键科学问题并建立相关标准,发现磁性纳米材料新的生物效应,并解决其在生物医学应用中核心科学问题,是实现临床实际应用的挑战和迫切需求。
经过多年研究取得了如下重要科学发现:
1. 系统研究了磁性纳米材料的控制制备及表面修饰,研究成果发表在Coll. Surf. A与Nanoscale Res. Lett.,共计被SCI正面他引260篇次。
研制出10L纳米 -Fe2O3弛豫率国家标准物质(GBW(E)130387),教育部组织的科技成果鉴定认为该标准物质填补了国内外空白,对磁共振成像造影剂研制、生产及临床应用具有重要意义。
提出了一种交变磁场诱导磁性纳米颗粒组装的新机制,制备得到具有各向异性磁热效应的水凝胶,结果发表在Angew. Chem. Int. Ed.、Adv. Mater.等专业期刊上,被同行认为“交变磁场组装磁性纳米颗粒是过去十几年
来除了静磁场控制组装以外首次提出的新的组装方式和机制”,“首次制备具有各向异性磁热效应的磁性水凝胶”,“在未来的临床热疗中具有重要应用前景”。
2. 发现了磁性纳米材料的pH依赖双模拟酶活性与促成骨新效应,为发展新型诊疗技术提供了重要基础。
发现氧化铁纳米颗粒具有pH依赖双模拟酶活性,揭示了其在酸性条件下(如细胞溶酶体)的类过氧化物酶活性以及中性条件下(如细胞质)类过氧化氢酶活性。
结果发表在ACS Nano并被亮点报道,被同行认为是“开拓性的工作”,促进了类酶纳米材料的发展。
进一步通过纳米氧化铁颗粒表面修饰普鲁士蓝壳层,极大地提高了其类酶活性和生物检测的灵敏度,结果在J. Mater. Chem.发表后被同行评价为“构建的纳米结构模拟酶具有极好的电化学稳定性和更高的催化活性”,最近还被载入普通高等学校规划教材《酶工程》第三版中。
还发现磁性纳米纤维支架在外加静磁场中可以显著促进成骨细胞分化,该策略在Nanoscale期刊发表后被国际上多家实验室应用,并且被评价为“磁性纳米纤维复合材料为骨组织缺损修复提供了一种有潜力的治疗策略”。
3. 创新构建了组装磁性纳米颗粒的复合超声微气泡,实现了增强的超声/磁共振双模态成像,深入探讨了磁性纳米颗粒与聚合物膜材分子的组装调控及释放机制,发展了超声调控类酶磁性纳米颗粒无损、高效传输进入细胞质的技术,为量化调控复合材料以及声能控制磁性微气泡药物精准靶向输运奠定了基础。
结果发表在Biomater.、Small、ACS Appl. Mater. Interfaces等期刊,被同行评价为“这一令人兴奋的结果在未来疾病的双模态诊疗中极具潜力”。
10篇代表论文被SCI他引837篇次,其中被影响因子 7的期刊论文他引181篇次。
培养全国百篇优博2名、国家自然科学基金杰出青年1名、教育部新世纪优秀人才2名,并且连续两期牵头国家重大科学研究计划项目研究(973首席科学家),并分别以良好和优秀成绩通过验收。
5、主要完成人情况表。