磁性纳米材料技术的基本概念

合集下载

磁性纳米材料的合成与应用

磁性纳米材料的合成与应用

磁性纳米材料的合成与应用随着纳米科技的不断发展,磁性纳米材料也逐渐成为研究的热点之一。

磁性纳米材料是指粒径在10-100纳米(nm)之间的具有磁性的固体材料。

相对于传统的大尺寸材料,磁性纳米材料具有很多独特的物理和化学性质,因此在各种领域中的应用前景广阔。

一、磁性纳米材料的合成方法磁性纳米材料的制备方法多样,通常可以分为物理方法和化学方法两大类。

其中,热分解法、氢气还原法、溅射法、电子束辐照法等属于物理方法;溶胶凝胶法、沉淀法、水热法、微乳法、气相沉积法等则属于化学方法。

以溶胶凝胶法为例,其合成过程主要有以下几个步骤:1、制备溶胶:将气相或溶液中的金属离子制备成溶胶,首先需要选择合适的前驱体,二是通过溶液的反应或气相的淀积将前驱体转化为可溶的纳米颗粒。

2、凝胶化:将制备好的溶胶缓慢挥发或加热干燥,使其形成风干胶。

在此过程中,添加一定的交联剂(如甲醛、聚乙二醇等)或在高温反应中调整pH值,可控制溶胶的多孔性和凝胶化程度,从而调节所制备的纳米晶体尺寸和形状。

3、煅烧处理:将制备好的胶体样品在高温(500-800℃)下进行处理,去除交联剂和残留的有机物等,同时触发氧化和还原反应,形成纯净的金属氧化物或金属纳米晶体。

二、磁性纳米材料的性质与应用磁性纳米材料相对于传统材料,具有许多独特的物理和化学性质。

其中,最显著的特点就是具有高达250倍的表面积/体积比,因此很容易与其他物质发生相互作用。

此外,由于明显的量子尺寸效应以及面积效应,对于磁性纳米材料,磁性、光学、电学等性质的变化都非常显著。

1、磁性性质:由于磁性纳米颗粒的尺寸小到接近超顺磁体量级,因此它们展现出的磁性与大尺寸材料相比有很大不同。

例如,经常研究的磁性纳米颗粒具有具有众多的数量涨落、形状涨落和表面涨落,这些都极大地改变了它们的磁性。

此外,在磁性纳米颗粒中,磁向随着粒子尺寸而发生变化,表现出各种不同的磁性行为(如超顺磁性、顺磁性、铁磁性等),在磁性存储、生物医学等领域有着潜在的应用前景。

什么是磁性纳米材料

什么是磁性纳米材料

随着科技的发展越来越多的新型材料开始被研发和生产,其中纳米材料是应用较为广泛的一种,而纳米技术的不断发展也使得纳米材料的种类在不断的增加,其中磁性纳米材料多应用于医疗上,本次就分享什么是磁性纳米材料。

磁性纳米材料是指材料尺寸限度在纳米级,一般在1~100纳米的准零维超细微粉,一维超薄膜或二维超细纤维丝或由它们组成的固态或液态磁性材料。

磁性纳米材料具有量子尺寸效应、小尺寸效应和宏观量子隧道效应三种特征。

其中量子尺寸效应指的是因为材料的能级间距是和原子数N成反比的,所以当颗粒尺度小到一定的程度,颗粒内含有的原子数N有限,纳米金属费米能级附近的电子能级由准连续变为离散,纳米半导体微粒则存在不连续的最高被占据分子轨道和最低未被占据的分子轨道,能隙变宽。

当这能隙间距大于材料物性的热能,磁能,静电能,光子能等等时,就导致纳米粒子特性与宏观材料物性有显著不同。

小尺寸效应指的是当粒子尺度小到可以与光波波长,磁交换长度,磁畴壁宽度,传导电子德布罗意波长,超导态相干长度等物理特征长度相当或更小时,原有晶体周期性边界条件破坏,物性也就表现出新的效应,如从磁有序变成磁无序,磁矫顽力变化,金属熔点下降等。

宏观量子隧道效应指的则是微观粒子具有穿越势垒的能力。

而在相关研究中,发现宏观磁学量如磁化强度,磁通量等也具有隧道效应,这就是宏观量子隧道效应。

它限定了磁存储信息的时间极限和微电子器件的尺寸极限。

以上是对磁性纳米材料的相关介绍,下面介绍一家生产磁性材料的公司。

南京东纳生物科技有限公司是一家集产学研于一体的高新技术型企业,主要从事纳米材料及生物医学纳米技术,功能微球、体外诊断试剂与仪器等研发与生产。

公司拥有一批包括多名创业教授、博士后、博士及硕士的自主研发队伍,同时广泛联合各知名高校院所及医院的专家团队。

磁性纳米材料

磁性纳米材料

磁性纳米材料磁性纳米材料是指具有纳米尺度的磁性特性的材料。

由于其特殊的结构和性质,磁性纳米材料在科学研究和工业应用中具有广泛的应用前景。

磁性纳米材料具有以下几个特点:首先,磁性纳米材料具有较大的比表面积。

纳米材料由于其尺寸较小,其比表面积较大,因此磁性纳米材料具有更高的活性。

其次,磁性纳米材料具有优异的磁性能。

磁性纳米材料具有较高的矫顽力和剩磁,因此具有较高的磁导率和饱和磁感应强度。

此外,磁性纳米材料还具有优异的磁畴特性和磁矩特性。

再次,磁性纳米材料可通过外界磁场进行控制。

磁性纳米材料中的磁矩会对外界磁场做出响应,因此可以通过外界磁场来控制磁性纳米材料的性质和行为。

磁性纳米材料在科学研究领域具有广泛的应用。

一方面,磁性纳米材料可以用于磁共振成像(MRI)、细胞分离、基因和药物传递、磁性流体和磁性流体密封等医学领域。

由于纳米材料具有较高的比表面积和强大的磁性能,因此可以提高MRI的分辨率和灵敏度,并且可以在细胞分离和基因药物传递等领域具有广泛的应用前景。

另一方面,磁性纳米材料也可以应用于磁记录和磁传感等信息技术领域。

磁性纳米材料可以用作磁性存储介质,由于其较大的磁畴特性和独特的磁矩特性,能够提高磁记录的存储密度和读写速度。

此外,磁性纳米材料还具有广泛的应用前景。

例如,磁性纳米材料可以应用于环境领域,用于水处理和废水处理。

由于纳米材料具有较大的比表面积,可以提高水中杂质的吸附和去除效果。

另外,磁性纳米材料还可以应用于能源领域,例如用于催化剂的支撑材料、锂离子电池和燃料电池的电极材料等。

总之,磁性纳米材料具有广泛的应用前景,可以在医学、信息技术、环境和能源等领域发挥重要作用。

随着纳米技术的不断发展和应用的扩大,磁性纳米材料的研究和应用将会进一步深入。

纳米磁性材料

纳米磁性材料

纳米磁性材料
纳米磁性材料是一种具有特殊磁性性质的材料,其尺寸在纳米级别范围内。

由于其独特的结构和性能,纳米磁性材料在磁性材料领域具有重要的应用前景。

本文将对纳米磁性材料的特性、制备方法以及应用进行介绍。

首先,纳米磁性材料具有特殊的磁性特性。

由于其尺寸处于纳米级别,纳米磁性材料表现出与传统磁性材料不同的磁性行为。

例如,纳米磁性材料可能表现出更强的磁性、更高的磁饱和强度以及更低的磁滞回线。

这些特殊的磁性特性使得纳米磁性材料在磁记录、磁传感器和磁医学等领域具有重要的应用价值。

其次,纳米磁性材料的制备方法多种多样。

目前,常见的纳米磁性材料制备方法包括溶剂热法、溶胶凝胶法、化学气相沉积法等。

这些方法能够控制纳米磁性材料的形貌、尺寸和结构,从而调控其磁性能。

例如,通过调节制备条件和控制合成过程,可以制备出具有不同磁性特性的纳米磁性材料,满足不同领域的需求。

最后,纳米磁性材料在多个领域具有广泛的应用。

在磁记录领域,纳米磁性材料被用于制备高密度、高稳定性的磁记录介质,推动了信息存储技术的发展。

在磁传感器领域,纳米磁性材料被应用于制备高灵敏度、高分辨率的磁传感器,用于地磁探测、生物医学成像等领域。

在磁医学领域,纳米磁性材料被用于制备靶向性药物输送系统,实现对肿瘤的靶向治疗。

综上所述,纳米磁性材料具有特殊的磁性特性,其制备方法多样,应用领域广泛。

随着纳米技术的发展和磁性材料研究的深入,相信纳米磁性材料将在更多领域展现出其独特的优势和潜力。

磁性纳米材料

磁性纳米材料

磁性纳米材料
磁性纳米材料是一种具有特殊磁性的纳米级材料,具有广泛的应用前景。

磁性纳米材料的磁性来源于其微观结构和组成,通常包括铁、镍、钴等金属或合金。

这些材料在纳米尺度下具有独特的磁性行为,因此被广泛应用于磁记录、生物医学、磁性流体、传感器等领域。

首先,磁性纳米材料在磁记录领域具有重要应用。

由于其微小的尺寸和优异的磁性特性,磁性纳米材料被广泛用于磁盘存储、磁带存储等领域。

相比传统的磁性材料,磁性纳米材料具有更高的磁记录密度和更快的磁记录速度,能够大大提高存储设备的性能。

其次,磁性纳米材料在生物医学领域也有重要应用。

通过将药物包裹在磁性纳米材料上,可以实现靶向输送,提高药物的生物利用度和疗效,减少药物对健康组织的损伤。

此外,磁性纳米材料还可以作为磁共振成像(MRI)的对比剂,提高影像的清晰度和对比度,有助于医生更准确地诊断疾病。

另外,磁性纳米材料还被广泛应用于磁性流体和传感器领域。

磁性流体是一种由磁性纳米颗粒悬浮在载体液体中形成的流体,具有良好的磁响应性和流变性能,可以用于制备磁性密封、磁性制动器、磁性悬浮等产品。

而磁性纳米材料制备的传感器具有灵敏度高、响应速度快、体积小等优点,可以用于环境监测、生物传感、医学诊断等领域。

总的来说,磁性纳米材料具有广泛的应用前景,其在磁记录、生物医学、磁性流体、传感器等领域的应用正在不断拓展和深化。

随着纳米技术的不断发展,相信磁性纳米材料将会在更多领域展现出其独特的价值和潜力。

纳米磁性材料

纳米磁性材料

纳米磁性材料
纳米磁性材料是指其颗粒的尺寸在纳米级别的材料,具有特殊的磁性能。

与传统磁性材料相比,纳米磁性材料具有更高的磁化强度、更低的磁化场强度、更大的磁导率、更高的剩磁和更低的矫顽力。

纳米磁性材料的应用非常广泛。

首先,纳米磁性材料在信息存储方面有着重要的应用。

由于其高磁化强度,可以制备出容量更大、速度更快的硬盘和磁带。

同时,纳米磁性材料还可以用于磁存储器和磁传感器的制备,提高了数据存储密度和读写速度。

其次,纳米磁性材料在医学方面也有着广泛的应用。

由于纳米磁性材料具有较大的表面积和较佳的生物相容性,可以用于制备纳米药物载体,实现药物在体内的定向输送、缓慢释放和靶向治疗。

此外,纳米磁性材料还可用于磁共振成像、磁性标记和磁疗治疗等领域。

再次,纳米磁性材料在环境方面也有着一定的应用前景。

纳米磁性材料可以用于水处理、废气处理和固体废物处理等方面。

例如,纳米磁性材料可用于去除水中的重金属离子和有机污染物,净化水质。

另外,纳米磁性材料还可以用于油水分离、溶剂回收和垃圾处理等领域,具有很好的应用潜力。

总的来说,纳米磁性材料由于其特殊的磁性能,具备了广泛的应用前景。

随着纳米技术的进一步发展和应用,纳米磁性材料
在各个领域中的应用将会进一步拓展,并给人们的生活和工作带来更多的便利和改变。

纳米材料与技术-纳米磁性材料doc

纳米材料与技术-纳米磁性材料doc

第十章 纳米磁性材料一、材料的磁性二、纳米微粒的磁学性能 三、纳米固体材料的磁学性能 四、纳米磁性材料一、材料的磁性1. 材料的磁现象① 天然磁石:主要成分为Fe 3O 4,属于一种尖晶石结构的铁氧体,其显著特点是具有吸铁的能力,称为永磁材料,也称为硬磁或恒磁材料。

慈(磁)石的发现、磁石吸铁的发现、磁石指南和最早磁指南器(司南)的发明、指南针的发明和应用、地球磁偏角的发现、地球磁倾角的利用、磁在医药上的应用、北极光地球磁现象和太阳黑子、太阳磁现象的记载等,都是中国最早发现、发明、应用和记载的。

② 1820年,奥斯特发现电流产生磁场:距导线r 米处的磁场强度H 为: H = I / 2 r (A/m)1 A/m = 4103Oe (Oersted)材料在外加磁场 H (直流、交变或脉冲磁场)作用下,会在材料内部产生一定的磁通量密度,称其为磁感应强度B ,单位为T(Tesla)或韦伯/米2(Wb/m 2)。

1T = 1 Wb/m 21T = 104Gauss:磁导率,为材料的本征参数: 4 10-7亨利/米③ 其他表征磁性材料的参数:相对磁导率:r=/磁化率: = r– 1磁化强度:M = H2. 材料磁性的微观机理 ① 基本概念:磁偶极子:线度小至原子的小磁铁,可等效为环绕电路流动的电荷,如电子绕原子核的运动、电子的自旋、旋转的电子核等。

磁偶极矩P m :真空中每单位外加磁场作用在磁偶极子上的最大力矩。

磁矩m :P m 与0的比值,单位为A·m 2。

② 材料的宏观磁性:由组成材料的原子中电子的磁矩引起,产生磁矩的原因有二:i )电子绕原子核的轨道运动,产生一个非常小的磁场,形成一个沿旋转轴方向的轨道磁矩m o 。

ii )每个电子本身作自旋运动,产生一个沿自旋轴方向的自旋磁矩m s ,它比m o 大得多。

故每个电子可看成一个小磁体,具有永久的m o 和m s 。

Bohr 磁子B= e ħ/2m e每个电子的m s B, m o 受不断变化方向的晶格场作用,不能形成联合磁矩。

纳米磁性材料的研究与应用

纳米磁性材料的研究与应用

纳米磁性材料的研究与应用纳米科技是当代研究热点之一,其广泛应用于生命科学、能源、材料科学等领域。

其中,纳米磁性材料作为一种具有特殊性质的纳米材料,被广泛地用于医学诊断、生物分析、环境修复等领域。

一、纳米磁性材料的概述纳米磁性材料是指颗粒大小在 1-100 纳米之间,具有磁性的材料。

它们具有单分散性、可控性、高比表面积和磁学/光学/电学等方面的特殊性质。

这些特殊性质是由于其尺寸、形状、晶体结构、表面活性和磁基团之间相互作用等因素的综合影响所导致的。

依据其组成和性质不同,可以将纳米磁性材料分为不同类型,如金属纳米粒子、氧化铁纳米颗粒、合金纳米颗粒、共轭高分子/纳米介孔复合物等。

二、纳米磁性材料的制备方法纳米磁性材料的制备方法多种多样,其中较常见的方法包括溶剂热反应法、凝胶燃烧法、水热法、微乳液法和溶胶-凝胶法等。

以氧化铁磁性材料为例,常见的制备方法如下:1. 溶剂热反应法:将铁离子和氧化剂在有机溶剂中进行反应,可以制备出分散性良好且颗粒大小均匀的氧化铁纳米颗粒。

2. 水热法:将铁离子和氢氧化钠在高温下反应,可以制备出纳米结晶体,通过后续处理方法分离得到纳米氧化铁颗粒。

3. 微乳液法:调整微乳液的温度和 pH 值,通过配位作用和凝胶化作用制备纳米铁氧体。

以上方法仅是其中的几种,不同制备方法对于纳米磁性材料的制备和性质有着不同的影响。

三、纳米磁性材料的应用1. 医学诊断纳米磁性材料由于其磁性和生物兼容性的特点,成为目前医学诊断领域研究的热点。

主要应用于拟诊和治疗。

例如,一个正在研究的磁共振图像增强的方法是通过将磁性荧光标记的纳米颗粒注入肿瘤或其他医学样本中,然后使用磁共振成像技术 (Magnetic Resonance Imaging),以便诊断和定位疾病。

此外,还可以利用这些纳米材料跟踪带药的情况,实现精准医疗。

2. 生物分析在生物分析中,利用纳米磁性材料对生物分子进行捕获和可视化分析的方法成为一种新兴的关键技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、纳米是什么?纳米的英文名称是:nano meter,简称nm。

一种长度单位,一等于十亿分之一米,千分之一微米。

大约是三、四个原子的宽度。

2、纳米科学技术纳米科学技术是用单个原子、分子制造物质的科学技术。

纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物,又将引发一系列新的科学技术,例如纳电子学、纳米材科学、纳机械学等。

纳米科学技术被认为是世纪之交出现的一项高科技。

纳米材料与纳米粒子
1、纳米材料(nano material),纳米材料又称为超微颗粒材料,由纳米粒子组成。

2、纳米粒子(nano particle),纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型人介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。

当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。

纳米材料的奇异特性
1、表面效应:粒子直径减少到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加。

这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。

表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很大的化学活性,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加。

2、小尺寸效应:指纳米粒子尺寸下降到一定值时,费米能级附近的电子能级由连续能级变为分立能级的现象。

这一效应可使纳米粒子具有高的光学非线性、特异催化性和光催化性质等。

3、体积效应:指纳米粒子的尺寸与传导电子的德布罗意波长相当或更小时,周期的边界条件将被破坏,磁性、内压、光吸收、热阻、化学活性、催化性及熔点等都较普通粒子发生了很大的变化。

如光吸收显著增加并产生吸收峰的等离子共振频移,由磁有序态向磁无序态,超导相向正常相转变等。

4、宏观量子隧道效应:微观粒子具有贯穿势垒的能力称为隧道效应。

近来年,人们发现一些宏观量,例如微颗粒的磁化强度、量子相干器件中的磁通量以及电荷等亦具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,故称为宏观的量子隧道效应MQT(Macroscopic Quantum Tunneling)。

这一效应与量子尺寸效应一起,确定了微电子器件进一步微型化的极限,也限定了采用磁带磁盘进行信息储存的最短时间。

纳米材料的分类
1、纳米颗粒型材料:应用时直接使用纳米颗粒的形态称为纳米颗粒型材料。

2、纳米固体材料:纳米固体材料通常指由尺寸小于15纳米的超微颗粒在高压力下压制成型,或再经一定热处理工序后所生成的致密型固体材料。

3、纳米膜材料:颗粒膜材料是指将颗粒嵌于薄膜中所生成的复合薄膜,通常选用两种在高温互不相溶的组元制成复合靶材,在基片上生成复合膜,当两组份的比例大致相当时。

就生成迷阵状的复合膜,因此改变原始靶材中两种组份的比例可以很方便地改变颗粒膜中的颗粒大小与形态,从而控制膜的特性。

对金属与非金属复合膜,改变组成比例可使膜的导电性质从金属导电型转变为绝缘体。

4、纳米磁性液体材料:磁性液体是由超细微粒包覆一层长键的有机表面活性剂,高度弥散于一定基液中,而构成稳定的具有磁性的液体。

从20世纪70年代纳米颗粒材料问世,80年代中期实验室合成纳米块体材料,到现在有20多年的历史,从研究内涵和特点大致可分三个阶段:
1、第一阶段(1990年以前)
探索用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。

2 、第二阶段(1994年以前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复合,纳米微粒与常规块体复合及发展复合材料的合成及物性的探索一度成为纳米材料研究的主导方向。

3、第三阶段(1994年以后)纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,正在成为纳米材料研究的新的热点。

国际上,把这类材料称为纳米组装材料体系或者称为纳米尺度的图案材料。

第三阶段的研究对象主要是:纳米丝、管、微孔等。

三、纳米材料的制备方法纳米材料的制备方法――物理方法
1、真空冷凝法用真空蒸发、加热、高频感应等方法使原料气化或形成等粒子体,然后骤冷。

其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。

2、物理粉碎法通过机械粉碎、电火花爆炸等方法得到纳米粒子。

其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。

3、机械球磨法采用球磨方法,控制适当的条件得到纯元素、合金或复合材料的纳米粒子。

其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。

纳米材料的制备方法――化学方法
1、气相沉积法利用金属化合物蒸气的化学反应合成纳米材料。

其特点产品纯度高,粒度分布窄。

2、沉淀法把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。

其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。

3、水热合成法高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。

其特点纯度高,分散性好、粒度易控制。

4、溶胶凝胶法金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。

其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。

5、微乳液法两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。

其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备。

相关文档
最新文档