纳米材料的光学性能

合集下载

纳米材料与传统材料的区别与优势

纳米材料与传统材料的区别与优势

纳米材料与传统材料的区别与优势引言:随着科学技术的迅速发展,纳米材料作为近年来备受关注的领域,其在各个行业中的广泛应用引起了广泛的关注。

纳米材料相较于传统材料具有独特的物理特性和结构特征,为材料科学领域带来了新的突破和发展。

在本文中,我们将深入探讨纳米材料和传统材料之间的区别与优势。

一、纳米材料的定义与特点纳米材料是一种具有结构在纳米尺寸(1-100纳米)范围内的材料,其主要特点为尺寸效应、表面效应和界面效应的显著增强。

纳米材料的尺寸效应导致其具有独特的力学、电学、热学和光学等物理性质,而其巨大的比表面积则使得纳米材料在催化、能量存储和传感器等领域具有重要应用前景。

二、纳米材料与传统材料的区别1. 尺寸差异:纳米材料的尺寸通常在纳米级别,远小于传统材料的尺寸。

传统材料一般具有宏观尺寸,其物理特性相对单一。

而纳米材料的尺寸在纳米级别上会产生与传统材料截然不同的性质和特征。

2. 物理特性:纳米材料具有与传统材料不同的物理特性。

由于纳米尺寸效应的存在,纳米材料的表面积相对较大,故导致了纳米材料的电子、热传导、光电性质等物理特性的改变。

与此同时,纳米材料的力学性能和热学性能也有所不同。

3. 化学特性:纳米材料的化学特性与传统材料也存在差异。

纳米材料的比表面积相对较大,这使得它们在化学反应中的反应活性较高。

纳米材料的化学活性通常表现为较强的催化性能、吸附性能和阻燃性能等。

三、纳米材料的优势1. 增强的力学性能:纳米材料具有较高的强度和韧性,这主要归因于尺寸效应的存在。

纳米材料的晶粒尺寸较小,界面密度较高,因此可有效阻碍位错的移动,从而提高了其力学性能。

2. 特殊的光学性能:由于纳米材料的尺寸效应,使得其能够发生表面等离子共振,导致其吸收和发射光谱发生窄化和蓝移等现象。

这使得纳米材料在光电器件、生物传感器和信息存储等领域具有巨大的优势和潜力。

3. 高效的催化性能:纳米材料的巨大比表面积使得其在催化反应中具有较高的催化活性。

纳米材料的特性

纳米材料的特性

纳米材料的特性
纳米材料具有许多独特的特性,这些特性使其在各种领域中都具有广泛的应用前景。

以下是一些常见的纳米材料特性:
1.尺寸效应:纳米材料的尺寸通常在纳米级别,相比于宏观材料,其尺寸效应显著,导致其性能和行为发生变化。

例如,纳米颗粒的大比表面积可以增强其化学反应活性和光学性能。

2.表面效应:纳米材料的表面积与体积之比较大,因此表面效应对其性质具有显著影响。

例如,纳米材料的表面能、吸附性和电荷分布等表面特性与宏观材料不同。

3.量子效应:在纳米尺度下,量子效应开始显现,如量子限制效应、量子点效应等,这些效应导致纳米材料在光学、电学和磁学等方面表现出特殊的量子性质。

4.机械性能:纳米材料具有优异的力学性能,例如高强度、高硬度、高韧性等,这些性能使其在材料强化、纳米机械器件等方面具有重要应用价值。

5.光学性能:纳米材料的光学性能受到量子效应和尺寸效应的影响,表现出独特的光学特性,如量子点荧光、等离子体共振、表面增强拉曼散射等。

6.电学性能:纳米材料具有优异的电学性能,如高导电性、高介电常数、量子隧穿效应等,使其在电子器件、传感器、能源存储等领域具有广泛应用。

7.热学性能:纳米材料的热传导性能通常比宏观材料更好,这归因于其大比表面积和量子限制效应,因此被广泛应用于热界面材料、热导电器件等领域。

纳米材料的这些特性使其在材料科学、纳米技术、生物医学、电子器件等领域具有广泛的应用前景,对于推动科学研究和技术创新具有重要作用。

纳米材料性能

纳米材料性能

纳米材料性能
纳米材料是一种具有特殊结构和性能的材料,其尺寸在纳米级别,通常是10^-
9米。

由于其微观结构的特殊性,纳米材料表现出许多独特的性能,包括力学性能、光学性能、电学性能、热学性能等方面。

本文将对纳米材料的性能进行详细介绍。

首先,纳米材料的力学性能表现出明显的尺寸效应。

当材料的尺寸缩小至纳米
级别时,其力学性能会发生显著变化。

例如,纳米材料的强度和硬度通常会显著提高,同时具有更好的韧性和延展性。

这使得纳米材料在材料加工和结构设计中具有广阔的应用前景。

其次,纳米材料的光学性能也备受关注。

由于纳米材料的尺寸接近光波长的量级,因此其与光的相互作用表现出独特的效应。

例如,纳米材料可以表现出显著的光学增强效应,使得其在光传感、光催化和光电器件等领域具有重要的应用价值。

此外,纳米材料还表现出优异的电学性能。

由于其特殊的电子结构和表面效应,纳米材料可以表现出优异的导电性、磁性和介电性等特点。

这使得纳米材料在电子器件、储能材料和传感器等领域具有广泛的应用前景。

最后,纳米材料的热学性能也备受关注。

纳米材料由于其尺寸效应和表面效应,通常表现出优异的热导率和热稳定性。

这使得纳米材料在热管理材料和纳米热电材料等领域具有重要的应用潜力。

总之,纳米材料具有独特的力学性能、光学性能、电学性能和热学性能,这些
性能使得纳米材料在材料科学、纳米技术和纳米工程等领域具有广泛的应用前景。

随着纳米材料研究的不断深入,相信纳米材料的性能将会得到进一步的提升,为人类社会的发展带来更多的惊喜和可能。

纳米材料有哪四个特性

纳米材料有哪四个特性

纳米材料有哪四个特性纳米材料是指在三维空间中至少有一维处在纳米尺度范围(1nm~100nm)或由他们作为基本单元构成的材料。

这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。

例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。

纳米材料的基本特性由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。

纳米微粒尺寸小,表面能高,位于表面原子占相当大的比例。

随着粒径减小,表面原子数迅速增加。

这是由于粒径小,表面积急剧变大所致。

由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其它原子结合。

例如:金属的纳米粒子在空气中会燃烧,无机的纳米粒空子暴露在空气中会吸附并与气体进行反应。

纳米材料的表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。

随着粒径变小,表面原子所占百分数将会显著增加。

当粒径降到1nm时,表面原子数比例达到约90%以上,原子几乎全部集中到纳米粒子表面。

由于纳米粒子表面原子数增多,表面原子配位数不足和高的表面能,使这些原子易与其它原子相结合而稳定下来,故具有很高的化学活性。

2、小尺寸效应当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面层附近原子密度减小,导致声、光、电磁、热力学等待性呈现新的小尺寸效应。

例如:光吸收显著增加并产生吸收峰的等离子共振频移;磁有序态向磁无序态的转变;超导相向正常相的转变;声子谱发生改变等由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。

纳米光学材料在照明系统中的应用研究

纳米光学材料在照明系统中的应用研究

纳米光学材料在照明系统中的应用研究随着科技的不断发展,纳米光学材料在照明系统中的应用日益受到关注。

纳米光学材料具有优异的光学性能和微观结构,可以对光的传播和调控产生显著影响,因此在照明系统中有着广泛的应用前景。

本文将就纳米光学材料在照明系统中的应用进行深入研究,探讨其在提高光效率、色彩温度调控、提升光学性能等方面的作用。

第一部分将对纳米光学材料的基本性质进行介绍。

纳米光学材料是一种微观尺度下的材料,其具有较大的比表面积和特殊的光学性能。

纳米光学材料的结构可以通过调控其材料成分和形貌来实现对光的调控,从而提高照明系统的效率和性能。

第二部分将重点讨论纳米光学材料在提高光效率方面的应用。

纳米光学材料可以有效地增加光的折射率和透射率,减少光的反射和折射损耗,提高光的利用率。

通过将纳米光学材料应用在LED等光源的封装材料中,可以实现照明系统的光效率的显著提升。

第三部分将探讨纳米光学材料在色彩温度调控方面的应用。

纳米光学材料的结构和成分可以影响其对光的吸收和发射特性,通过合理设计纳米光学材料的结构和组分,可以实现照明系统中光的色彩温度的调控。

这对于满足不同场景下的照明需求,提高照明系统的色彩还原性具有重要意义。

第四部分将讨论纳米光学材料在提升光学性能方面的应用。

纳米光学材料可以通过光学透镜、衍射光栅等形式,改变光的传播路径和光学效果,提升照明系统的光学性能。

利用纳米光学材料设计新型的光学器件,可以实现对光的聚光、散射、色散等特性的调控,进而实现照明系统的功能拓展和性能提升。

在研究完纳米光学材料在照明系统中的应用后,我们可以看到纳米光学材料在提高光效率、色彩温度调控、提升光学性能等方面的巨大潜力。

随着纳米技术的不断进步和纳米光学材料的发展,相信纳米光学材料在照明系统中的应用将会有更为广泛的发展和应用前景。

纳米材料的光学性质研究

纳米材料的光学性质研究

纳米材料的光学性质研究纳米材料的光学性质一直以来都是材料科学研究的热点之一。

随着纳米技术的迅速发展,人们对纳米材料的光学性质有了更深入的认识,并且发现其在光电器件和传感器等领域具有巨大的应用潜力。

本文将探讨纳米材料的光学性质及其研究进展。

一、纳米材料的定义与分类纳米材料是一种具有尺寸在纳米尺度范围内的物质,通常包括纳米粒子、纳米线、纳米片以及纳米结构的复合材料等。

根据其形貌和组成可分为金属纳米材料、半导体纳米材料和纳米复合材料等多种类型。

二、纳米材料的光学性质纳米材料具有与其尺寸有关的独特的光学性质,与宏观材料相比,纳米材料在吸收、散射、发射和透明度等方面表现出截然不同的特点。

1. 吸收性能纳米材料的吸收性能与其尺寸密切相关。

当材料的特征尺寸接近光波的波长时,会出现明显的吸收峰。

纳米材料所特有的局域表面等离子体共振效应(localized surface plasmon resonance, LSPR)是其吸收性能的重要因素之一。

2. 散射性能纳米材料的散射性能主要受到材料的折射率、尺寸和形状等因素的影响。

纳米材料的小尺寸和高表面积使其具有较大的散射截面,能够散射入射光的较大部分能量。

3. 发射性能纳米材料的发射性能体现了其荧光、磷光和拉曼散射等特性。

纳米材料的尺寸和表面修饰可以调控其发射性能,使其在不同波段呈现出不同的发射光谱。

4. 透明度纳米材料通常具有高透明度,并且可以通过调节纳米结构的尺寸和形貌,实现对不同波长的光的选择性透过。

三、纳米材料光学性质的研究方法研究纳米材料光学性质的方法主要包括吸收光谱、散射光谱、荧光光谱、表面增强拉曼光谱等。

1. 吸收光谱通过测量样品在不同波长下的吸收光谱,可以确定纳米材料的吸收能力以及吸收峰的位置和强度等。

吸收光谱是研究纳米材料光学性质的常用手段之一。

2. 散射光谱散射光谱可以通过测量样品对入射光的散射光进行分析,获得材料的散射特性。

根据散射的类型和强度等信息,可以了解纳米材料的形貌、尺寸和结构等信息。

纳米材料的性能及其应用研究进展

纳米材料的性能及其应用研究进展

纳米材料的性能及其应用研究进展近年来,纳米科技发展迅速,纳米材料被广泛应用于生物医学、环保、新能源、信息技术等领域,得到了研究人员的广泛关注。

本文将从纳米材料的性能入手,阐述其应用研究进展。

一、纳米材料的性能纳米材料指尺寸小于100纳米的物质,由于纳米尺度下的量子大小效应、表面效应等物理、化学特性,与宏观物质相比,其性能具有明显的差异。

1、物理性能纳米材料的光学、磁学、电学等物理性质迥异于宏观材料。

例如,金属纳米颗粒在可见光范围内具有显著的表面等离子共振吸收现象,与尺寸和形状有关,可应用于传感器、光学器件等领域;磁性纳米粒子在外加磁场下表现出不同的磁性,可应用于医学成像、存储介质等领域;碳纳米管的导电性和导热性特别好,在新能源领域有广泛应用。

2、化学性质纳米材料的表面积相比宏观物质大幅提高,其表面能、化学活性、滞留作用都具有显著特点。

例如,银纳米颗粒的表面具有广谱抗菌性,可应用于医疗用品、水处理等领域;纳米氧化锌的表面具有光催化降解有机污染物的作用,可应用于水处理、空气净化等领域。

3、机械性能纳米材料比宏观物质的强度、硬度、塑性等力学性能更具优越性。

例如,纳米硬度大于单晶体硬度的1/3,石墨烯比钢的强度高200倍,且弹性模量高,可应用于强度要求高的工业领域。

二、纳米材料的应用研究进展1、生物医学领域纳米材料在生物医学领域有广泛应用,包括药物送递、分子诊断、组织工程、生物成像、抗菌等方面。

例如,通过化学修饰,纳米材料可选择性地靶向癌细胞,并释放药物;同时,纳米颗粒的表面还可与生物分子相互作用,形成生物传感器,应用于分子诊断和成像。

2、环保领域纳米材料在环保领域的应用包括空气净化、水处理和废物处理等方面。

例如,纳米TiO2、纳米铁等材料具有光催化降解作用,可应用于水处理和空气净化;纳米材料与污染物结合后可通过热解、燃烧等方式进行处理。

3、新能源领域纳米材料在新能源领域的应用主要集中在太阳能电池、储能材料和催化剂等方面。

纳米材料的优缺点

纳米材料的优缺点

纳米材料的优缺点纳米材料是指在纳米尺度下制备的材料,尺寸通常小于100纳米。

纳米材料具有许多独特的优点,但也存在一些缺点。

首先,纳米材料具有较大的比表面积。

由于其粒径较小,纳米材料的比表面积较大,使其具有较高的反应活性。

这使得纳米材料在催化、吸附、传感等领域表现出优越的性能,极大地提高了其应用的效率和效果。

其次,纳米材料具有良好的力学性能和改性能。

纳米材料具有高强度、高硬度和优良的韧性等特点,这些特性使得纳米材料能够满足各种科学和工程领域的需求。

此外,通过改变纳米材料的成分、形状和结构等,还可以进一步调控其性能,实现对材料的定制化设计和功能化。

第三,纳米材料具有独特的光学和电学性能。

由于纳米材料的尺寸接近可见光和电磁波的波长,其在光学和电学领域表现出非常特殊且优异的性能。

例如,纳米材料可以表现出色散、反射、透射等光学效应,还可以实现透明导电、量子效应等电学特性,因此在光电子器件、光催化等领域有着广泛的应用前景。

然而,纳米材料也存在一些缺点。

首先,纳米材料的制备和加工技术相对较为复杂。

由于纳米材料的尺寸和形状具有极高的要求,因此需要使用一系列精密的制备和加工技术。

这不仅增加了纳米材料的制备成本,还限制了其规模化生产的难度。

其次,纳米材料的生态和安全性问题亟待解决。

由于纳米材料具有较强的反应活性和可溶性,一些纳米材料可能对环境和人体产生一定的风险和危害。

因此,纳米材料的环境和安全性评估需要加强,制定相关的标准和规范以确保其安全应用。

总结起来,纳米材料具有许多优点,如较大的比表面积、良好的力学性能和改性能,以及独特的光学和电学性能。

然而,纳米材料的制备和加工技术复杂,生态和安全性问题仍然需要关注和解决。

随着科学技术的不断进步,纳米材料的应用前景仍然十分广阔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米材料的光学性能

期: 2016.9.29
主要内容
1.基本概念
2.纳米材料的光吸收特性
3.纳米材料的光发射特性 4.纳米材料的非线性光学效应
5.纳米光学材料的应用
1.基本概念
(1)波矢 k
波矢是波的矢量表示方法。波矢是一个 矢量,其方向表示波传播的方向,其大 小表示 k 2
h hk p k 2
(2)金属纳米颗粒的光吸收
实际上,金属超微粒对光的反射率很低,一般低 于1%。大约几nm厚度的微粒即可消光,显示为黑色, 尺寸越小,色彩越黑。
如:银白色的铂(白金)变为铂黑,铬变为铬黑等。
2.纳米材料的光吸收特性
(3)半导体纳米颗粒的光吸收
由于量子尺寸效应导致能隙增大, 半导体纳米 材料的吸收光谱向高能方向移动, 即吸收蓝移。
3.纳米材料的光发射特性
(1)纳米微粒的发光机制
选择定则不适用:
纳米结构材料中由于平移周期性被破坏, 选择定则对纳米材料很可能不适用。在光激发
下纳米态所产生的发光带是常规材料中受选择
定则限制而不可能出现的发光。
3.纳米材料的光发射特性
半导体纳米微粒受光激 发后产生电子-空穴对,电子 与空穴复合发光的途径有三 种情况: a.电子和空穴直接复合, 产生激子态发光。 b.通过表面缺陷态间接 复合发光。 c.通过杂质能级复合发 光 上述三种情况相互竞争。
磷光:在激发停止后还继续发射一定时间 的光。
3.纳米材料的光发射特性
从物理机制来分析,电子跃迁可分为两类:非辐射跃迁 和辐射跃迁。 当能级间距很小时, 电子跃迁可通过非 辐射性级联过程发 射声子,在这种情 况下不发光;只有 当能级间距较大时, 才有可能发射光子, 实现辐射跃迁,产 生发光现象。 图5 激发和衰变过程示意图
(h )2 B(h Eg )
式中hν为光子能量,α为吸收系数,Eg为带隙,B为 材料特征常数。
2.纳米材料的光吸收特性
(3)半导体纳米颗粒的光吸收
与块体TiO2不同的是, TiO2微粒在室温下,由380~ 510nm波长的光激发下可产生 540nm附近的宽带发射峰,且 随粒子尺寸减小而出现吸收 的红移。 另一方面,实验观测到 TiO2纳米薄膜随着温度的降 低,薄膜吸收边位置又向短 波方向移动,即发生了蓝移, 如图所示。 Nhomakorabea图4
TiO2纳米薄膜光吸收曲线
主要内容
1.基本概念
2.纳米材料的光吸收特性
3.纳米材料的光发射特性 4.纳米材料的非线性光学效应
5.纳米光学材料的应用
3.纳米材料的光发射特性
光致发光:指在一定波长光照射下被激发 到高能级激发态的电子重新跃入低能级被空穴 捕获而发光的微观过程。
荧光:仅在激发过程中发射的光。
如果强度为I0的入射光,通过固体内位移x后其强 度将衰减为
I I0 exp( x)
其中α为吸收系数,它表示光在固体中传播的指数 衰减规律。
2.纳米材料的光吸收特性
(1)固体中的光吸收
某物质的相对介电常数和折射率的复数形式:
r 1 i 2
N n i
其中ε1和ε2 分别为相对介电常数εr的实部和虚部;复 数折射率N的虚部κ叫消光系数,实部 n 就是通常所说 的折射率。 由于折射率与介电常数的关系 N r ,因此有:
LSPR激发光谱 经抗生蛋白链菌素修饰后, 蓝移因素 红移因素 银传感器的吸收峰发生了红 移。

光吸收带蓝移
光吸收带红移

主要内容
1.基本概念
2.纳米材料的光吸收特性
3.纳米材料的光发射特性
4.纳米材料的非线性光学效应 5.纳米光学材料的应用
2.纳米材料的光吸收特性
(1)固体中的光吸收
光在固体中传播时,其强度一般要发生衰减,出 现光的吸收现象。光的吸收与光强有关。
2.纳米材料的光吸收特性
(2)金属纳米颗粒的光吸收
大块金属具有不同颜色的光泽,表明它们对可见
光范围各种波长光的反射和吸收能力不同。如:金、
银、铜等。
但是,小粒子对可见光具有低反射率、强吸收率。
如:当金(Au)粒子尺寸小于光波波长时,会失去原有 的光泽而呈现黑色。金纳米粒子的反射率小于10%。
2.纳米材料的光吸收特性
n 2 2 1 , 2n 2
人们通常用 n 和κ这对光学常数来表征固体的光学性质。
2.纳米材料的光吸收特性
(1)固体中的光吸收
消光系数κ也表示物质的吸收,它与吸收系数α的 关系为: 2 / c 4 / 0
λ0为真空中光的波长,ω为入射光的频率,c为光速。 吸收系数α的倒数叫作光在固体中的穿透深度: 0 1 d 4 消光系数k大的介质,其光的穿透深度浅,表明物质 的吸收强,而长波光比短波光的穿透深度大。
同时,由于电子和空穴的运动受限, 他们之间 的波函数重叠增大, 激子态振子强度增大, 导 致激子吸收增强,因此很容易观察到激子吸收 峰, 导致吸收光谱结构化。
2.纳米材料的光吸收特性
(3)半导体纳米颗粒的光吸收
例:常规块体TiO2是一种过渡金属氧化物,带隙宽度 为3.2eV,为间接允许跃迁带隙,在低温下可由杂质 或束缚态发光。 但是用硬脂酸包敷TiO2超微粒可均匀分散到甲苯 相中,直到2400nm仍有很强的光吸收,其吸收谱满足 直接跃迁半导体小粒子的Urbach关系:
1.基本概念
(2)激子
通过库仑作用束缚的电子-空穴对叫做 激子。电子和空穴复合时便发光,以光子 的形式释放能量。 根据电子与空穴相互作用的强弱,激子分为: 万尼尔(Wannier)激子(松束缚); 弗仑克尔(Frenkel)激子(紧束缚)。 格点上原子或分子的激发 束缚半径远大于原子半 态,库仑相互作用较强 图1 半导体激子及发光示意图 径,库仑相互作用较弱
图6
CdS纳米微粒的可能发光机制
3.纳米材料的光发射特性
(2)纳米发光材料举例
有些原来不发光的材料,当其粒子小到纳米尺 寸后出现发光现象。 a.硅纳米材料的发光 1990年,日本佳能公司的Tabagi首次在室温观 b.银纳米微粒的发光 察到硅颗粒( 6nm)在800nm波长附近有强的发光带。 2000年,北京大学报道了埋藏于 BaO介质中的 随着粒径减小到 4nm,发光强度增大,短波侧已延伸 Ag纳米微粒在可见光波段光致荧光增强现象。作 到可见光范围。因此,硅纳米材料可能成为有重要 为比较,Ag薄膜和Ag-BaO薄膜中的Ag含量相同, 应用前景的光电子材料。 两种薄膜中的Ag微粒平均直径都是20nm,在室温 下采用紫外光激发。
1.基本概念
(3)光谱线及移动
1.基本概念
(3)光谱线及移动 与体材料相比,纳米微粒的吸收带普遍存在 向短波方向移动,即蓝移现象。
激子峰
微粒尺寸变小后: 吸收峰蓝移
图2 不同尺寸CdS的可见光-紫外吸收光谱
1.基本概念
(3)光谱线及移动
在有些情况下,粒径减小至纳米级时可以观 察到光吸收带相对粗晶材料向长波方向移动, 这种现象被称为红移。 纳米材料的每个光吸收带的峰位由蓝移和红 图3 抗生蛋白链菌素修饰前1 移因素共同作用而确定 。 和修饰后2银纳米生物传感器的
相关文档
最新文档