纳米材料的制备技术及其特点

合集下载

纳米多孔材料的制备与表征

纳米多孔材料的制备与表征

纳米多孔材料的制备与表征纳米多孔材料是指孔径在1~100纳米之间,而孔道中的孔壁厚度在几十到几百纳米之间的纳米材料。

这类材料具有高比表面积、小孔径和可调控的结构等特点,因此在催化、吸附、分离、传感、电子器件等领域具有广泛的应用。

本文将着重介绍纳米多孔材料的制备和表征方法。

一、制备方法纳米多孔材料的制备方法多种多样,包括溶胶-凝胶法、水热法、氧化还原法、流体模板法等。

其中流体模板法是制备纳米多孔材料的主要方法之一。

该方法是利用模板的空间结构对材料的结构进行限位,在模板内进行化学反应或物理处理,最终去除模板得到纳米多孔材料。

流体模板法包括硬模板法和软模板法两种。

硬模板法通常采用高度有序的金属或无机盐晶体作为模板,借助纳米化学反应在模板孔道内生成纳米多孔材料,然后通过一定的方法去除模板。

而软模板法则是利用液相微乳体、液液微乳体、自组装等自组装体结构进行限位,制备纳米多孔材料。

二、表征方法纳米多孔材料具有多种原子或分子级别的结构特征,如晶体结构、孔道周期、孔径大小、孔壁结构、毛细结构等。

因此,为了全面地了解纳米多孔材料的结构信息,需要采用多种表征手段。

1.扫描电子显微镜(SEM)SEM是一种非常常见的表征手段,可以用于观察样品表面形貌、形状、大小、分散度等信息。

SEM可以发现由于孔结构的存在,纳米多孔材料的表面形貌会呈现不同的孔洞形状,如球形、棒状、多面体等,这种不同形状的孔洞将对材料的性能产生不同的影响。

2.透射电子显微镜(TEM)TEM是一种高分辨率的表征手段,可以直接观察材料的结构,揭示纳米多孔材料内部结构的微观特征,包括孔洞大小和分布、孔壁结构、晶体结构、化学成分等。

TEM的分辨率可达到1~2纳米,可以进行局部电子衍射和电子能谱分析等方法。

3.低角度X射线衍射(LA-XRD)LA-XRD是指使用较小角度的X射线来探测纳米多孔材料样品,从而描述它的晶体结构和孔洞周期等信息。

由于多孔材料更容易波束散射,因此控制X射线束体积和探测器的位置会对结果产生影响。

纳米粒子的制备方法及应用

纳米粒子的制备方法及应用

纳米粒子的制备方法及应用纳米粒子的制备方法分为物理方法和化学方法。

物理方法主要包括雾化法、机械合金法、燃烧法等,化学方法主要包括溶胀法、微乳液法、共沉淀法、水热法等。

以下是关于纳米粒子的常见制备方法及其应用的详细介绍。

1. 雾化法:将物质通过高温、高压的气体和固液混合物的喷雾,使其迅速冷却固化,形成纳米粒子。

这种方法的特点是造粒速度快、控制性好,应用广泛。

例如,铜纳米粒子制备后可以应用于导电涂料、导电油墨等领域。

2. 机械合金法:通过机械能强化作用,将材料在高能物理场中研磨、冲击或研磨脱臭,使其形成纳米粒子。

这种方法能够制备高纯度的纳米材料,并且可以控制纳米颗粒的形貌和粒度。

例如,铁-铁氧化物纳米复合粒子可以应用于催化剂、磁性材料等领域。

3. 燃烧法:通过在适当的氧气中燃烧金属颗粒或金属盐溶液,使其生成纳米颗粒。

这种方法具有操作简单、制备快速的优点。

例如,钛纳米颗粒可以应用于太阳能电池、生物材料等领域。

4. 溶胀法:利用高分子溶胀、凝胶与干燥法,通过控制溶胀度和架链密度,形成纳米颗粒。

这种方法制备的纳米粒子具有较大的比表面积和较高的孔隙度,适用于吸附、分离等领域。

5. 微乳液法:利用表面活性剂和油水体系,通过溶胶-凝胶转化或乳化反应制备纳米颗粒。

这种方法具有制备精密、单分散的纳米颗粒的优点,例如,二氧化钛纳米颗粒可以应用于催化剂、阳光防护剂等领域。

6. 共沉淀法:将溶液中的金属离子还原后,通过慢慢加热和搅拌,使其形成纳米颗粒。

这种方法的优点是制备过程简单、成本低廉,适用于大批量生产。

例如,氧化铁纳米颗粒可以应用于医学成像、磁性流体等领域。

7. 水热法:将溶液放入高温高压设备中,在水的超临界状态下进行溶解、析出和固化,形成纳米颗粒。

这种方法制备的纳米材料具有优异的结晶度和热稳定性,广泛应用于催化剂、电池材料等领域。

纳米粒子具有特殊的物理、化学和光学性质,因此在众多领域中有重要的应用。

以下是几个典型的应用领域:1. 生物医学:纳米粒子在生物医学领域中具有广泛的应用,如药物载体、分子成像、肿瘤治疗等。

纳米材料专业

纳米材料专业

纳米材料专业纳米材料是指至少在一个空间尺度上具有至少一种尺寸小于100纳米的材料。

由于其特殊的尺寸效应和表面效应,纳米材料在材料科学、物理学、化学、生物学等领域都有着广泛的应用前景。

本文将从纳米材料的特性、制备方法、应用领域等方面进行介绍。

首先,纳米材料具有许多特殊的物理化学性质。

由于其尺寸效应和表面效应,纳米材料的光学、电子、磁学、力学等性质都表现出与宏观材料不同的特性。

例如,纳米金属颗粒的等离子共振效应使得其具有优异的光学性能,纳米碳材料的量子效应使得其具有优异的电子传输性能。

这些特殊性质使得纳米材料在传感器、催化剂、电子器件等领域有着广泛的应用。

其次,纳米材料的制备方法多种多样。

目前,常见的纳米材料制备方法包括物理方法、化学方法、生物方法等。

物理方法主要包括惰性气体凝聚法、溅射法、机械合金化等;化学方法主要包括溶胶-凝胶法、水热法、溶剂热法等;生物方法主要包括生物合成法、生物模板法等。

不同的制备方法可以得到不同形貌和结构的纳米材料,从而满足不同领域的需求。

此外,纳米材料在许多领域都有着广泛的应用。

在材料科学领域,纳米材料被用于制备高性能复合材料、高强度纳米结构材料等;在能源领域,纳米材料被用于制备高效的太阳能电池、储能材料等;在生物医学领域,纳米材料被用于制备药物载体、生物成像材料等。

纳米材料的应用领域还在不断扩展,其在材料、能源、生物医学等领域的应用前景十分广阔。

总之,纳米材料作为一种新型材料,在材料科学、物理学、化学、生物学等领域都有着广泛的应用前景。

通过深入研究其特性、制备方法和应用领域,可以更好地发挥纳米材料的优异性能,推动其在各个领域的应用和发展。

希望本文的介绍可以对纳米材料专业的研究者和从业者有所帮助。

nmm工艺技术

nmm工艺技术

nmm工艺技术NMM工艺技术,全称为纳米微浆工艺技术,是一种纳米级材料的制备技术。

纳米级材料具有尺寸小、表面积大、比表面活性高等特点,因此在领域中有着广泛的应用前景和巨大的发展潜力。

NMM工艺技术的研究和应用,对于开发新材料、提高产品性能、改进现有工艺流程等方面都具有重要意义。

首先,NMM工艺技术可以用来制备纳米微粒。

通过化学合成、物理加工等方法,可以将原始材料制备为纳米级颗粒。

这些纳米微粒具有极小的尺寸和高比表面积,因此在催化、电子、光学、生物医学等领域具有广泛的应用,能够提高材料的性能和功能。

其次,NMM工艺技术可以用来合成纳米复合材料。

通过将纳米颗粒与基体材料进行复合,可以制备具有优良性能的纳米复合材料。

这些纳米复合材料在强度、硬度、导热性等方面具有明显的优势,能够应用于航空航天、汽车制造、建筑材料等领域,提高产品的性能和质量。

此外,NMM工艺技术还可以用于纳米涂层的制备。

通过将纳米颗粒与基本涂料进行混合,可以得到具有特殊功能和优异性能的纳米涂层。

这些纳米涂层在防腐、抗划伤、耐磨等方面表现出色,被广泛应用于汽车、电子、医疗器械等行业。

此外,NMM工艺技术还可用于生物医学领域。

通过将纳米颗粒与生物材料结合,可以制备出纳米生物传感器、纳米药物载体等。

这些纳米生物材料具有更高的生物相容性,能够用于疾病诊断、治疗等方面,对医疗领域具有重要意义。

而实施NMM工艺技术,有一些技术挑战需要克服。

首先,纳米材料的制备过程中需要控制严格的工艺参数,以保证产品质量和一致性。

其次,纳米材料在制备和应用过程中可能会出现不可预见的特性和效应,需要深入研究和探索。

此外,纳米材料对环境和人体的影响还需要更加全面和深入的评估。

总之,NMM工艺技术是一种有潜力和前景的技术,可以用来制备纳米级材料,改善产品性能和功能。

随着纳米科技的不断发展和应用,NMM工艺技术将在各个领域发挥重要作用,推动材料科学的发展和产品创新。

然而,需要加强研究与应用的结合,解决技术挑战和风险,促进相关领域的发展与应用。

纳米材料的制备方法

纳米材料的制备方法

纳米材料的制备方法一、前言纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。

早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。

纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。

当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。

自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。

纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。

应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。

使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。

纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。

因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。

由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。

利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。

纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。

高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。

二、纳米材料的制备方法(一)、机械法机械法有机械球磨法、机械粉碎法以及超重力技术。

纳米材料的制备与表征

纳米材料的制备与表征

纳米材料的制备与表征纳米材料是指颗粒尺寸在纳米尺度(1 nm = 10^-9 m)范围内的物质,具有独特的物理、化学和生物学性质。

纳米材料的制备与表征是纳米科学与技术的关键环节,它们决定了纳米材料的性能和应用。

一、纳米材料的制备技术纳米材料的制备技术包括物理法、化学法和生物法等多种方法。

物理法利用物理原理来制备纳米材料,如凝固法、气相法等。

凝固法通过快速凝固来制备纳米材料,其中最常见的方式是溶液凝胶法。

气相法则通过在高温条件下使气体变为固体来制备纳米材料。

化学法则是利用化学反应来制备纳米材料,如溶胶凝胶法和溶剂热法等。

溶胶凝胶法是将溶胶中的成分进行聚集形成凝胶,再通过热处理使凝胶形成纳米材料。

溶剂热法则是将溶剂中溶解的物质通过热分解或沉淀来制备纳米材料。

生物法是利用生物体或生物大分子来合成纳米材料,如生物合成法、基因工程法等。

生物合成法通过细菌、酵母、植物等生物体产生的代谢产物合成纳米材料,基因工程法则是通过基因技术改造生物合成纳米材料。

二、纳米材料的表征技术纳米材料的表征技术是研究纳米材料中结构、形态和物性的关键手段。

常用的纳米材料表征技术包括透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)和拉曼光谱等。

透射电子显微镜是一种观察纳米材料内部结构的高分辨率显微镜。

它利用电子束通过样品,可以观察到纳米尺度下的原子排布、晶体结构等信息。

扫描电子显微镜则是用来观察纳米材料表面形貌的显微镜,它通过扫描样品表面的电子束反射信号来形成显微图像。

X射线衍射则是一种用来研究纳米材料晶体结构的方法,通过测量材料对入射X射线进行衍射的角度和强度信息,可以得到材料的晶体结构和晶胞参数等信息。

拉曼光谱是一种分析纳米材料分子振动和晶格振动的方法,通过测量样品在激发光照射下产生的散射光谱,可以获得纳米材料的分子结构和晶格结构等信息。

三、纳米材料的应用纳米材料的独特性质使其在多个领域具有广泛的应用前景。

新型材料及其制备技术

新型材料及其制备技术

新型材料及其制备技术随着科技的不断发展,新型材料已成为了当今世界工业技术的推动力之一。

新型材料具有智能化、轻量化、高强度等特点,已广泛应用于航空、汽车制造、建筑等领域。

本文将简要介绍几种新型材料及其制备技术。

一、纳米材料纳米材料是尺寸在1至100纳米之间的材料,因其小尺寸效应而具有独特的物理、化学特性。

纳米材料在材料科学、生命科学等领域具有广泛应用前景。

纳米材料的制备包括气态、溶液相、固态等多种方法。

常用的制备方法有溶胶-凝胶法、气相反应法、电化学法等。

例如,利用气相法可以制备出具有高表面积、储氢能力、较小尺寸等特点的金属氧化物纳米材料。

纳米材料的制备技术已成为材料科学中的一个热点领域。

二、生物基材料生物基材料是指具有生物相容性、可生物降解性等特性的材料。

近年来,生物基材料已广泛应用于医疗、食品等领域。

例如,可生物降解的聚乳酸(PLA)材料已广泛应用于医疗器械、包装制品等。

制备生物基材料的方法主要包括聚合法、生物法、化学修饰等。

例如,利用自组装方法可以制备出具有生物相容性及微米尺度的细胞外基质(ECM)纤维。

生物基材料的发展不仅可以带动医疗、食品等相关产业的增长,还可以促进环境保护。

三、高性能陶瓷材料高性能陶瓷材料是指具有高强度、高温稳定性、抗腐蚀等特性的材料。

由于其超强的物理与化学性质,高性能陶瓷材料已广泛应用于航空、卫星制造、电子器件等领域。

高性能陶瓷材料的制备过程涉及各种高科技手段,如热等静压制备法、分子束外延法等。

例如,利用燃烧合成技术可以制备出陶瓷纳米材料,使纳米粒径从数个纳米到数百纳米不等。

高性能陶瓷材料已经展现出巨大的应用价值。

四、智能材料智能材料是指能根据外界刺激产生动态性质变化的材料。

智能材料的制备技术主要包括添加法、制备薄膜法、溶液晶体法等。

例如,利用多层复合技术可以制备出具有响应性、可控性等特点的智能材料。

智能材料在航空、军事、医疗等领域中具有广泛的应用前景。

例如,智能材料可以用于制造自适应背包、智能假肢等。

纳米材料的制备方法

纳米材料的制备方法

纳米材料的制备方法
纳米材料是一种具有纳米尺度特征的材料,其在材料科学领域具有重要的应用
价值。

制备纳米材料的方法多种多样,包括物理方法、化学方法、生物方法等。

下面将介绍几种常见的纳米材料制备方法。

首先,物理方法是一种常见的纳米材料制备方法。

其中,溅射法是一种常用的
物理方法。

通过在真空环境中,利用高能粒子轰击靶材,使靶材表面的原子或分子脱落,从而在基底上形成纳米薄膜。

此外,还有气溶胶法、机械合金化等物理方法也被广泛应用于纳米材料的制备过程中。

其次,化学方法也是一种常见的纳米材料制备方法。

溶胶-凝胶法是一种常用
的化学方法。

通过将溶胶中的溶质在溶剂中溶解,并在一定条件下使其成为凝胶,然后通过热处理或化学处理,形成纳米材料。

此外,还有水热法、溶剂热法等化学方法也被广泛应用于纳米材料的制备过程中。

另外,生物方法也是一种新兴的纳米材料制备方法。

生物合成法是一种常用的
生物方法。

通过利用微生物、植物或动物等生物体内的代谢活性,将金属离子还原成金属纳米颗粒,从而实现纳米材料的制备。

此外,还有基因工程法、生物矿化法等生物方法也被广泛应用于纳米材料的制备过程中。

总的来说,纳米材料的制备方法多种多样,每种方法都有其独特的优势和适用
范围。

在实际应用中,可以根据需要选择合适的制备方法,以获得所需的纳米材料。

随着纳米材料制备技术的不断发展和创新,相信纳米材料将在材料科学领域发挥越来越重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米材料的制备技术及其特点一纳米材料的性能广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。

当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。

从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。

通常材料的性能与其颗粒尺寸的关系极为密切。

当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。

此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。

研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。

而这些特性主要是由其表面效应、体积效应、久保效应等引起的。

由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。

二纳米材料的制备方法纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。

1 物理制备方法物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。

粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。

高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。

高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。

惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。

由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。

溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。

常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。

等离子体法的基本原理是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶化和蒸发,蒸汽达到周围的气体就会被冷凝或发生化学反应形成超微粒。

2 化学制备方法化学法是指通过适当的化学反应, 从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法[5][6]、化学气相冷凝法、溶胶-凝胶法、水热法、沉淀法、冷冻干燥法等。

化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。

该法具有均匀性好,可对整个基体进行沉积等优点。

其缺点是衬底温度高。

随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。

化学气相冷凝法(CVC)主要通过有机高分子热解获得纳米粉体,具体过程是先将反应室抽到10-4Pa 或更高真空度,然后注入惰性气体He,使气压达到几百帕斯卡,反应物和载气He从外部系统先进入前部分的热磁控溅射CVD装置由化学反应得到反应物产物的前驱体,然后通过对流达到后部分的转筒式骤冷器,用于冷却和收集合成的纳米微粒。

溶胶- 凝胶法是用易水解的金属化合物(无机盐或金属盐)在某种溶剂中与水发生反应,经过水解与缩聚过程逐渐凝胶化,再经干燥P 烧结等后处理得到所需的材料,其基本反应有水解反应和聚合反应,它可在低温下制备纯度高、粒径分布均匀、化学活性高的单、多组份混合物(分子级混合),并可制备传统方法不能或难以制备的产物。

该法又分为醇盐法和非醇盐法。

醇盐法是将醇盐制成溶胶,然后把溶剂、催化剂、配合剂等溶胶变成凝胶,最后将凝胶干燥、热处理后获得所需纳米材料。

我国清华大学曾庭英等人采用醇盐法制备纳米级微孔TiO2玻璃球,孔径为1.0~6.0nm。

水热法是通过高温高压在水溶液或蒸汽等流体中合成物质,再经分离和热处理得到纳米微粒。

水热条件下离子反应和水解反应可以得到加速和促进,使一些在常温下反应速度很慢的热力学反应,在水热条件下可以实现快速反应, 依据反应类型不同分为: 水热氧化、还原、沉淀、合成、水解、结晶等, 该法制得的纳米粒子纯度高、分散性好、晶形好且大小可控。

郭景坤等人采用高压水热处理,将化学制得的Zr(OH)4胶体置于高压釜中,控制合适的温度和压力,使氢氧化物进行相变,成功地得到了10~15nm 的形状规则的ZrO2超微粒。

化学沉淀法是在金属盐类的水溶液中控制适当的条件使沉淀剂与金属离子反应,产生水合氧化物或难溶化合物, 使溶液转化为沉淀,然后经分离、干燥或热分解而得到纳米级超微粒。

化学沉淀法可分为直接沉淀法、均匀沉淀法、共沉淀法和醇盐水解沉淀法。

直接沉淀法是指金属离子与沉淀剂直接作用形成沉淀。

均匀沉淀法是指通过预沉淀剂在溶液中的反应缓慢释放出沉淀剂,再与金属离子作用形成沉淀。

醇盐水解法是由金属醇盐遇水分解成醇和氧化物或其水合物沉淀。

共沉淀法是在混合的金属盐溶液中添加沉淀剂得到多种成份混合均匀的沉淀,然后进行热分解得到纳米微粒。

由于冷冻干燥过程冷冻液体并不进行收缩,因而生成的微粒表面积较大,可较好地消除粉料干燥过程中粉末团聚现象,目前该法已制备出MgO-ZrO2 及BaPb-xBixO3 超微粒子。

三纳米技术的应用展望纳米技术的应用可归纳如下几个方面:1 纳米材料在机械方面的应用纳米碳管是目前材料领域最引人关注的一种新型材料。

纳米碳管是由碳原子排列成六角网状的石墨薄片卷成具有螺旋周期的多层管状结构,直径1 ~30nm,长度为数微米左右的微小管状结晶。

科研人员在对纳米碳管的研究过程中发现,纳米碳管具有很高的扬氏模量、强韧性和高强度等力学性能。

因此将其用于金属表面复合镀层,可获得超强的耐磨性和自润滑性,其耐磨性要比轴承钢高100倍,摩擦系数为0.06 ~0. 1。

此外,纳米碳管材料复合镀层还具有高热稳定性和耐腐蚀性等优异性能。

利用纳米碳管的高耐磨性、耐腐蚀性和热稳定性,可用其制造刀具和模具等,不仅能够延长使用寿命,还可提高工件的加工精度,为机械工业带来巨大效益。

纳米碳管还具有高效吸收性能,可用其制造保鲜除臭产品。

利用纳米碳管吸取氢分子的性质,可将氢分子储存在纳米碳管内,制成十分安全的氢吸留容器,这对于研制氢动力燃料电池汽车具有极大的实用价值。

这种氢吸留容器可以储存相当于自重7% 的氢,汽车使用一个可乐瓶大小的氢吸留容器,就可以行驶500km。

2 纳米材料在电子方面的应用随着纳米技术研究的不断发展,人们已考虑运用纳米技术制造电子器件,以使电子产品体积进一步缩小,而其性能更加出类拔萃。

利用纳米碳管可自由变化的电器性质及“量子效应”现象,可将目前集成电路的元器件缩小100倍,研制出高速、微小、节能的新一代电脑。

目前的电视机和计算机显示器采用的电子显像管,是在真空中释放电子撞击荧光体后发光,由于发射电子的电子枪与荧光屏之间必须保持一定距离,显示器体积较大。

此外,加热电子枪要消耗大量电能。

而利用纳米碳管取向排列制成的场发射电子源具有较大的发射强度,可在低电压下释放电子,在荧光屏上激发出图像,为制造纯屏超薄节能大型显示器提供了新选择,且其性能大大优于液晶显示器。

运用复合纳米碳管材料制成光电转换薄膜,应用于太阳能电池,可使现有的太阳能电池的效率提高3倍;将纳米碳管应用于锂离子电池的负极材料,有望大大提高其贮锂量。

以色列科学家在硅片上覆盖惰性材料单分子膜,使用原子显微镜和电子针的“分子刻痕”技术激活膜层分子,通过电子化学反应控制分子级信息载体,存储文本、图像、音乐等数据信息。

这些信息可在原子显微镜下被复读,利用电子计算机解码还原,这项技术可用于开发更大储存量的纳米超级存储器。

将图书馆的全部数据储存在一块方糖大小的芯片上,是近期科研人员的主攻课题。

如果能够巧妙应用微机械技术和自组织方法,以一个原子或分子制成存储器,就可实现这一目标。

3 纳米技术在医学方面的应用对付癌症的“纳米生物导弹”。

专家们采用一种非常细小的磁性纳米微粒,把它运用到一种液体中,然后让病人喝下去,通过操纵,可使纳米微粒定向“射”向癌细胞,把它们“全歼”,并且不会破坏其他正常细胞。

治疗血管疾病的“纳米机器人”。

用特制超细纳米材料制成的机器人, 可注入人体血管内, 进行健康检查,疏通脑血管中的血栓,爆破肾结石,清除心脏动脉脂肪积淀物,完成医生不能完成的血管修补等“细活”。

运用纳米技术,还能对传统的名贵中草药进行超细开发,同样服用一剂药,经过纳米技术处理的中药,可让病人极大地吸收药效。

4 纳米技术在军事方面的应用“麻雀”卫星。

这种卫星比麻雀略大,重量不足10千克,具有可重组性和再生性,成本低,质量好,可靠性强。

“蚊子”导弹。

利用纳米技术制造的形如蚊子的微型导弹,可以起到神奇的战斗效能。

纳米导弹直接受电波遥控,可以神不知鬼不觉地潜入目标内部,其威力足以炸毁敌方火炮、坦克、飞机、指挥部和弹药库。

“苍蝇”飞机这是一种如同苍蝇大小的袖珍飞行器,可携带各种探测设备,具有信息处理、导航和通信能力。

其主要功能是秘密部署到敌方信息系统和武器系统的内部或附近,监视敌方情况。

这些纳米飞机可以悬停、飞行,敌方雷达根本发现不了它们。

“蚂蚁士兵”这是一种通过声波控制的微型机器人。

这些机器人比蚂蚁还要小,但具有惊人的破坏力。

它们可以通过各种途径钻进敌方武器装备中,长期潜伏下来。

一旦启用,这些“纳米士兵”就会各显神通:有的专门破坏敌方电子设备,使其短路、毁坏; 有的充当爆破手,用特种炸药引爆目标; 有的施放各种化学制剂,使敌方金属变脆、油料凝结或敌方人员神经麻痹、失去战斗力。

此外,还有被人称为“间谍草”或“沙粒坐探”的形形色色的微型战场传感器等纳米武器装备。

所有这些纳米武器组配起来, 就建成了一支独具一格的“微型军”。

纳米武器的出现和使用,将大大改变人们对战争力量对比的看法。

纳米技术还具有很高的电磁波吸收系数,将纳米材料加入飞机、坦克中,用以吸收雷达波,于是隐形飞机、隐形坦克问世了。

隐形武器在战场上神出鬼没,出现于战场的不同角落。

5 纳米技术在环保方面的应用随着纳米技术的悄然崛起,纳米环保也会迅速来临,拓展人类利用资源和保护环境的能力。

当物质被“粉碎”到纳米级细粒并制成“纳米材料”,不仅光、电、热、磁发生变化,而且具有辐射、吸收、催化、吸附等许多特性,给环境保护带来突破性变化。

相关文档
最新文档