数字图像处理实验报告4

合集下载

matlab 数字图像处理实验报告(五份)

matlab 数字图像处理实验报告(五份)

《数字图像处理实验报告》实验一图像的增强一.实验目的1.熟悉图像在MATLAB下的读写、输出;2.熟悉直方图;3.熟悉图像的线性指数等;4.熟悉图像的算术运算和几何变换。

二.实验仪器计算机、MATLAB软件三.实验原理图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。

从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像。

其基本原理是:对一幅图像的灰度直方图,经过一定的变换之后,使其成为均匀或基本均匀的,即使得分布在每一个灰度等级上的像素个数.f=H等或基本相等。

此方法是典刑的图像空间域技术处理,但是由于灰度直方图只是近似的概率密度函数,因此,当用离散的灰度等级做变换时,很难得到完全平坦均匀的结果。

频率域增强技术频率域增强是首先将图像从空间与变换到频域,然后进行各种各样的处理,再将所得到的结果进行反变换,从而达到图像处理的目的。

常用的变换方法有傅里叶变换、DCT变换、沃尔什-哈达玛变换、小波变换等。

假定原图像为f(x,y),经傅立叶变换为F(u,v)。

频率域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分进行处理,然后经逆傅立叶变换得到增强的图像。

四.实验内容及步骤1.图像在MATLAB下的读写、输出;实验过程:>> I = imread('F:\image\624baf9dbcc4910a.jpg');figure;imshow(I);title('Original Image');text(size(I,2),size(I,1)+15, ...'IMG_20170929_130307.jpg', ...'FontSize',7,'HorizontalAlignment','right');Warning: Image is too big to fit on screen; displaying at 25% > In imuitools\private\initSize at 86In imshow at 196Original Image2.给定函数的累积直方图。

数字图像处理四个实验报告,带有源程序

数字图像处理四个实验报告,带有源程序

数字图像处理实验指导书学院:通信与电子工程学院专业:电子信息工程班级:学号:姓名:XX理工大学实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。

2.熟练掌握在MATLAB中如何读取图像。

3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。

4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。

5.图像间如何转化。

二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。

灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。

例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。

因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。

图像关于x和y坐标以及振幅连续。

要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。

将坐标值数字化成为取样;将振幅数字化成为量化。

采样和量化的过程如图1所示。

因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。

作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。

图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类:亮度图像(Intensity images)二值图像(Binary images)索引图像(Indexed images)RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。

若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。

若图像是double类,则像素取值就是浮点数。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告1. 引言数字图像处理是使用计算机来处理和优化图像的一种技术。

在本实验中,我们将探索几种常见的数字图像处理方法,并使用Python编程语言和相关库来实现。

2. 实验目的本实验的主要目的是:1.了解图像的基本特性和数字图像处理的基本原理;2.熟悉Python编程语言和相关图像处理库的使用;3.实现常见的图像处理算法并进行实验验证。

3. 实验方法在本实验中,我们使用Python编程语言和以下相关库来实现图像处理算法:•OpenCV:用于图像读取、显示和保存等基本操作;•Numpy:用于图像数据的处理和算术运算;•Matplotlib:用于图像的可视化和结果展示。

以下是实验涉及到的图像处理方法和步骤:1.图像读取和显示:使用OpenCV库读取图像,使用Matplotlib库显示图像;2.图像的灰度化:将彩色图像转换为灰度图像;3.图像的二值化:将灰度图像转换为黑白二值图像;4.图像的平滑处理:使用平滑滤波器对图像进行平滑处理,如均值滤波和高斯滤波;5.图像的边缘检测:使用边缘检测算法对图像进行边缘检测,如Sobel算子和Canny算子;6.图像的直方图均衡化:对灰度图像进行直方图均衡化,增强图像的对比度。

4. 实验过程和结果4.1 图像读取和显示首先,我们使用OpenCV库读取一张图像,并使用Matplotlib库显示该图像:import cv2import matplotlib.pyplot as plt# 读取图像img = cv2.imread('image.jpg')# 显示图像plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.axis('off')plt.show()4.2 图像的灰度化接下来,我们将彩色图像转换为灰度图像:# 灰度化图像gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 显示灰度图像plt.imshow(gray_img, cmap='gray')plt.axis('off')plt.show()4.3 图像的二值化然后,我们将灰度图像转换为黑白二值图像:# 二值化图像_, binary_img = cv2.threshold(gray_img, 128, 255, cv2.THRESH_BINARY)# 显示二值图像plt.imshow(binary_img, cmap='gray')plt.axis('off')plt.show()4.4 图像的平滑处理接下来,我们使用平滑滤波器对图像进行平滑处理,例如使用5x5的均值滤波器和高斯滤波器:# 均值滤波mean_img = cv2.blur(img, (5, 5))# 高斯滤波gaussian_img = cv2.GaussianBlur(img, (5, 5), 0) # 显示平滑处理后的图像plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(cv2.cvtColor(mean_img, cv2.COLOR_BGR2R GB))plt.title('Mean Filter')plt.axis('off')plt.subplot(122)plt.imshow(cv2.cvtColor(gaussian_img, cv2.COLOR_B GR2RGB))plt.title('Gaussian Filter')plt.axis('off')plt.show()4.5 图像的边缘检测然后,我们使用边缘检测算法对图像进行边缘检测,例如使用Sobel算子和Canny算子:# 边缘检测sobel_img = cv2.Sobel(gray_img, cv2.CV_8U, 1, 1, ksize=3)canny_img = cv2.Canny(gray_img, 50, 150)# 显示边缘检测结果plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(sobel_img, cmap='gray')plt.title('Sobel Operator')plt.axis('off')plt.subplot(122)plt.imshow(canny_img, cmap='gray')plt.title('Canny Operator')plt.axis('off')plt.show()4.6 图像的直方图均衡化最后,我们对灰度图像进行直方图均衡化,以增强图像的对比度:# 直方图均衡化equalized_img = cv2.equalizeHist(gray_img)# 显示直方图均衡化结果plt.imshow(equalized_img, cmap='gray')plt.axis('off')plt.show()5. 实验总结通过本实验,我们熟悉了数字图像处理的基本方法和步骤,并使用Python编程语言和相关库实现了图像的读取、显示、灰度化、二值化、平滑处理、边缘检测和直方图均衡化等操作。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告(一)实验目的1.理解数字图像处理的基本概念与原理。

2.掌握数字图像处理的基本方法。

3.掌握常用数字滤波器的性质和使用方法。

4.熟练应用数字图像处理软件进行图像处理。

实验器材计算机、MATLAB软件实验内容1.图像的读写与显示首先,我们需要在MATLAB中读入一幅图像,并进行显示。

% 导入图像文件I = imread('myimage.jpg');% 显示图像imshow(I);2.图像的分辨率与色彩空间转换数字图像处理中的一个重要概念是图像的分辨率,通常用像素数量表示。

图像的分辨率越高,代表着图像包含更多的像素,从而更具细节和清晰度。

在数字图像处理中,常常需要将一幅图像从一种色彩空间转换为另一种色彩空间。

RGB色彩空间是最常见的图像色彩空间之一,并且常常作为其他色彩空间的基础。

% 转换图像色彩空间J = rgb2gray(I);% 显示转换后的图像imshow(J);3.图像的增强与滤波图像的增强通常指的是对图像的对比度、亮度和清晰度等方面进行调整,以改善图像的质量和可读性。

数字图像处理中的滤波是一种常用的图像增强方法。

滤波器是一个能够对图像进行局部操作的矩阵,它能够提取或抑制特定的图像特征。

% 对图像进行平滑滤波K = imgaussfilt(J, 1);% 显示滤波后的图像imshow(K);4.数字图像处理在实际应用中的例子数字图像处理在很多实际应用中被广泛应用。

这些应用包括医疗成像、计算机视觉、人脸识别、安防监控等。

下面是数字图像处理在人脸识别应用中的一个简单例子。

% 导入图像文件I = imread('face.jpg');% 进行人脸检测faceDetector = vision.CascadeObjectDetector;bbox = step(faceDetector, I);% 在图像上标记人脸位置IFaces = insertObjectAnnotation(I, 'rectangle', bbox, 'Face');imshow(IFaces);实验结论通过本次实验,我已经能够理解数字图像处理的基本概念与原理,掌握数字图像处理的基本方法,熟练应用数字图像处理软件进行图像处理。

《数字图像处理》实验报告

《数字图像处理》实验报告

《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。

在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。

首先,我们进行了图像的读取和显示实验。

通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。

这为我们后续的实验奠定了基础。

同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。

这使我们能够更好地理解后续实验中的算法和操作。

接下来,我们进行了图像的灰度化实验。

灰度化是将彩色图像转换为灰度图像的过程。

在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。

通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。

随后,我们进行了图像的直方图均衡化实验。

直方图均衡化是一种用于增强图像对比度的方法。

在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。

通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。

在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。

滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。

在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。

通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。

此外,我们还进行了图像的边缘检测实验。

边缘检测是一种用于提取图像边缘信息的方法。

在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。

通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。

最后,我们进行了图像的压缩实验。

图像压缩是一种将图像数据进行压缩以减小文件大小的方法。

数字图像处理实验报告4

数字图像处理实验报告4

数字图像处理与分析实验报告学院:班级:姓名:学号:实验四图像复原一、实验目的1. 了解图象退化的几种原因2. 掌握对相应退化原因的复原方法二、实验内容1. 使用函数fspecial( )和imfilter( )模拟产生退化图象2. 使用平滑滤波器和维纳滤波器复原图象三、实验步骤1. 加性噪声退化图象(1)先用imnoise( )函数给图象加噪声,如对图象增加高斯白噪声x=imread(‘cameraman.tif’);x=imnoi se(x,’gaussian’)得到图像:(2)使用平滑滤波器对其进行滤波h=fspecial(‘average’)y=imfilter(x,h);得到图像:(3)使用维纳滤波器进行处理w=wiener2(x) %注意:维纳滤波要求为灰度图像!得到图像:2. 使用演示程序比较各种滤波器的效果:nrfiltdemo3.运动退化图像(1)使用fspecial( )和imfilter( )模拟产生运动退化图象相应的程序如下:I = imread('C:\Documents and Settings\Administrator\桌面\1.BMP');figure;imshow(I);title('Original Image');LEN = 31;THETA = 15;PSF = fspecial('motion',LEN,THETA); % create PSFBlurred = imfilter(I,PSF,'circular','conv'); % blur the imagefigure;imshow(Blurred);title('Blurred Image');得到图像:(2)使用维纳滤波器进行处理wnr1=deconvwnr(Blurred,PSF);figure;imshow(wnr1);title('Restored, True PS');四、实验总结本次实验的目的就是了解图像退化的几种原因,比如性噪声,通过对图像添加高斯噪声对图像进行退化,在图像退化以后再对图像进行恢复。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告目录1.数字图像处理简介2.实验目的3.实验内容4.实验结果及代码展示5.算法综述6.M atlab优势7.总结8.存在问题一、数字图像处理简介图像处理,是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。

图像处理是信号处理在图像域上的一个应用。

目前大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。

此外,基于光学理论的处理方法依然占有重要的地位。

图像处理是信号处理的子类,另外与计算机科学、人工智能等领域也有密切的关系。

传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。

然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。

二、实验目的巩固所学知识,提高所学能力三、实验内容利用matlab的GUI程序设计一个简单的图像处理程序,并含有如下基本功能:1. 读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题2. 对给定图像进行旋转3.对给定的图像添加噪声(椒盐噪声、高斯噪声)四、实验结果及代码展示1.软件设计界面2.各模块功能展示以及程序代码(1)读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题效果展示:代码:a = imread('C:\Documents and Settings\Administrator\桌面\数字图像\舞美.JPG');i = rgb2gray(a);I = im2bw(a,0.5);subplot(3,1,1);imshow(a);title('源图像')subplot(3,1,2);imshow(i);title('灰度图像')subplot(3,1,3);imshow(I);title('二值图像')(2)图像旋转原图效果展示:代码:clc;clear all;close all;Img=imread('D:\My Documents\My Pictures\5.JPG'); Img=double(Img);[h w]=size(Img);alpha=pi/4;wnew=w*cos(alpha)+h*sin(alpha);hnew=w*sin(alpha)+h*cos(alpha);wnew=ceil(wnew);hnew=ceil(hnew); u0=w*sin(alpha);T=[cos(alpha),sin(alpha);-sin(alpha),cos(alpha)]; Imgnew2=zeros(hnew,wnew);Imgnew1=zeros(hnew,wnew); for u=1:hnewfor v=1:wnewtem=T*([u;v]-[u0;0]);x=tem(1);y=tem(2);if x>=1&&x<=h&&y>=1&&y<=wx_low=floor(x);x_up=ceil(x);y_low=floor(y);y_up=ceil(y);if (x-x_low)<=(x_up-x)x=x_low;elsex=x_up;endif (y-y_low)<=(y_up-y)y=y_low;elsey=y_up;endp1=Img(x_low,y_low);p2=Img(x_up,y_low);p3=Img(x_low,y_low);p4=Img(x_up,y_up);s=x-x_low;t=y-y_low;Imgnew1(u,v)=Img(x,y);Imgnew2(u,v)=(1-s)*(1-t)*p1+(1-s)*t*p3+(1-t)*s*p2+s*t*p4;endendendfigure;imshow(Imgnew2,[]);B=imrotate(Img,alpha/pi*180);figure;imshow(B,[]);(3)对给定的图像添加噪声(斑点噪声、高斯噪声)效果展示:代码:I= imread('D:\My Documents\My Pictures\5.JPG');figure,subplot(211);imshow(I);title('原图');J1=imnoise(I,'gaussian',0,0.02);subplot(223);imshow(J);title('添加高斯噪声');J=imnoise(I,'speckle',0.04);subplot(224);imshow(J);title('添加斑点噪声');五、算法综述灰度图像:一幅完整的图像,是由红色、绿色、蓝色三个通道组成的。

数字图像处理实验——实验四

数字图像处理实验——实验四

报告内容:(目的和要求、原理、步骤、数据、计算、小结等)图像处理综合性实验报告实验四综合实验一、实验目的1、掌握matlab编程语言进行编程。

2、用matlab及运用各种数字图像处理方法实现对图像的变换。

二、实验设备计算机、Matlab软件三、实验原理图像预处理是相对于图像识别、图像理解而言的一种前期处理。

不论采用何种装置,输入的图像往往不能令人满意。

例如,从美学的角度会感到图像中物体的轮廓过于鲜明而显得不协调;按检测对象物大小和形状的要求看,图像的边缘过于模糊;在相当满意的一幅图像上会发现多了一些不知来源的黑点或白点;图像的失真、变形等等。

总之,输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为“质量”问题。

尽管由于目的、观点、爱好等的不同,图像质量很难有同意的定义和标准,但是,根据应用要改善图像质量却是一个共同的愿望。

改善图像质量的处理称为图像预处理,主要是指按需要对图像进行适当的变换突出某些游泳的信息,去除或削弱无用的信息,如改变图像对比度,去除噪声或强调边缘的处理等。

四、实验步骤1.对图像灰度非线性变换2.对某个图像进行直方图均衡化3.对图像进行直方图规定化4.对图像进行空间域低通滤波5.对图片进行低通滤波处理6.对图像进行空域高通滤波法7.通过各种频域低通滤波器方法对图像进行处理五、源程序清单、测试数据、结果1、灰度非线性变换图像灰度变换是图像增强的一种手段。

其中灰度非线性变换能使图像灰度的分布均匀,与人的视觉特性相匹配。

MATLAB语言编写的例程和图像运行结果如下:%GRAY TRANSFORMclc;I=imread('21.jpg');imshow(I);J=imadjust(I,[0.3 0.7],[0 1],1);%transfroms the values in the intensity image I to%values in J by linealy mapping values between %0.3 and 0.7 to values between 0 and 1figure;imshow(J);J=imadjust(I,[0.3 0.7],[0 1],1);%If GAMMA is less than 1,the mapping%is weighted toward higher (brighter)output values.figure;imshow(J);J=imadjust(I,[0.3 0.7],[0 1],1.5);% If GAMMA is greater than 1,the % mapping is weighted toward lower (darker)output values.figure;imshow(J);J=imadjust(I,[0.3 0.7],[0 1],1);% If TOP < BOTTOM,the output image % is reversed,as in a photogrphic negative.figure;imshow(J);2、对tire图像进行直方图均衡化图示:直方图均衡化是通过变换函数将原图的直方图调整为平坦的直方图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西华大学实验报告(理工类)
开课学院及实验室: 实验时间 : 年 月 日
一、实验目的
(1) 熟悉MATLAB 图像处理工具箱的使用方法。

(2) 了解数学形态学的基本思想和方法。

(3) 掌握二值形态学图像处理算法。

二、实验原理
(1) 形态学开、闭运算被作为最基本的形态滤波运算,能够滤除形状小于结构元素的暗噪声,它们
互为对偶操作。

(2) 骨架抽取是把一个平面域化成图的一种结构形状表示法。

寻找二值图像的细化结构是图像处理的
一个基本问题,在图像识别或数据压缩时经常要用到。

而骨架便是这样的一种细化结构,它是目标的重要拓扑结构,具有非常广泛的应用。

三、实验设备、仪器及材料
(1) 微型计算机:Intel Pentium 及更高
(2) MATLAB(安装了图像处理工具箱,即Image Processing Toolbox) (3) 自己的灰色图像文件
四、实验步骤(按照实际操作过程)
设计matlab 程序,完成以下操作: 读入图像,
分别用imopen()、imclose()、bwmorph()函数进行处理, 用subplot 语句作图 分析结果。

分别用两种不同大小的结构元素重复上述过程,比较结果。

五、实验过程记录(数据、图表、计算等)
>> A=imread('D:\yuelijun\ylj.jpg'); >> B=rgb2gray(A); >> h=im2bw(B);
>> C=strel('square',5); >> D=imopen(h,C); >> E=imclose(h,C);
>> F=bwmorph(h,'thin',inf);
>> imshow(F);
>> figure
>> subplot(2,2,1),imshow(B),title('原图灰度图');
>> subplot(2,2,2),imshow(h),title('二值化后的图像'); >> subplot(2,2,3),imshow(D),title('开运算后的图形'); >> subplot(2,2,4),imshow(E),title('闭运算后的图形');
>> A=imread('D:\yuelijun\ylj.jpg');
>> B=rgb2gray(A);
>> h=im2bw(B);
>> C=strel('square',15);
>> D=imopen(h,C);
>> E=imclose(h,C);
>> F=bwmorph(h,'thin',inf);
>> imshow(F);
>> figure
>> subplot(2,2,1),imshow(B),title('原图灰度图'); >> subplot(2,2,2),imshow(h),title('二值化后的图像'); >> subplot(2,2,3),imshow(D),title('开运算后的图形'); >> subplot(2,2,4),imshow(E),title('闭运算后的图形');
六、实验结果分析及问题讨论
(1)思考题:数学形态学基本运算之间有什么联系?各有什么特点?。

相关文档
最新文档