MATLAB对QPSK通信系统的仿真
QPSK通信系统性能分析与MATLAB仿真讲解

QPSK通信系统性能分析与MATLAB仿真讲解QPSK(Quadrature Phase Shift Keying)是一种调制方式,常用于数字通信中的短波通信和卫星通信等场景。
在QPSK通信系统中,将每个二进制位编码为相位不同的信号,通常使用正交载波来实现。
为了分析和评估QPSK通信系统的性能,可以使用MATLAB进行仿真。
下面将具体讲解如何进行QPSK通信系统性能分析和MATLAB仿真。
首先,我们需要定义一些基本参数。
QPSK调制是基于二进制编码的,因此将要发送的数据转换为二进制比特流。
可以使用MATLAB中的函数来生成二进制比特流,如`randi([0,1],1,N)`,其中N是比特流的长度。
在这里,可以自行选择比特流的长度。
接下来,需要将二进制比特流分组为2比特一组,以便编码为相位信息。
可以使用MATLAB中的函数来进行分组,如`reshape(bit_stream,2,length(bit_stream)/2)'`,其中bit_stream是二进制比特流。
这里的重点是要确保二进制比特流的长度为2的倍数。
然后,将每组2比特编码为相位信息。
QPSK调制使用4个相位点来表示4种可能的组合,通常用0、π/2、π和3π/2来表示这些相位点。
可以使用MATLAB中的函数生成这些相位信息,如`phase_data =[0,pi/2,pi,3*pi/2]`。
接下来,通过幅度和相位信息生成QPSK信号。
可以使用MATLAB中的函数来生成QPSK信号,如`qpsk_signal = cos(2*pi*f*t+phase)`,其中f是载波频率,t是时间,phase是相位信息。
然后,添加噪声到QPSK信号中以模拟实际通信环境。
可以使用MATLAB中的函数来添加噪声,如`noisy_signal =awgn(qpsk_signal,SNR)`,其中SNR是信噪比。
最后,解调接收到的信号以恢复原始数据。
可以使用MATLAB中的函数来解调信号,如`received_bits = reshape(received_signal,[],2) > 0`。
MATLAB对QPSK通信系统的仿真

QPSK通信系统的性能分析与matlab仿真1 绪论在当今高度信息化的社会,信息和通信已成为现代社会的“命脉”。
信息作为一种资源,只有通过广泛地传播与交流,才能促进社会成员之间的合作,推动生产力的发展,创造出巨大的经济效益。
在新技术革命的高速推动和信息高速公路的建设,全球网络化发展浪潮的推动下,通信技术得到迅猛的发展,载波通信、卫星通信和移动通信技术正在向数字化、智能化、宽带化发展。
Simulink具有适应面广、结构和流程清晰及仿真精细、效率高、贴近实际、等优点,基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
同时有大量的第三方软件和硬件应用于Simulink。
本文设计出一个QPSK仿真模型,以分析QPSK在高斯信道中的性能,通过此次课程设计,更好地了解QPSK系统的工作原理,传输比特错误率和符号错误率的计算。
1.1 研究背景与研究意义1.1.1 研究背景在当今高度信息化的社会,信息和通信已成为现代社会的“命脉”。
信息作为一种资源,只有通过广泛地传播与交流,才能促进社会成员之间的合作,推动生产力的发展,创造出巨大的经济效益。
信息的数字转换处理技术走向成熟,为大规模、多领域的信息产品制造和信息服务创造了条件。
高新技术层出不穷。
随着通信技术的发展,通信系统方面的设计也会越来越复杂,利用计算机软件的仿真,可以大大地降低通信过程中的实验成本。
Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中只要通过简单的鼠标操作,就可以构造出复杂的系统。
Simulink提供了一个建立模型方块图的图形用户接口,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。
1.1.2研究意义通过完成实验的设计内容,加深对通信原理理论的理解,熟悉通信系统的基本概念,复习正交相位偏移键控(QPSK)调制解调的基本原理和误比特率的计算方法,了解调制解调方式中最基础的方法。
基于 MATLAB 的QPSK系统仿真设计与实现

通信系统仿真设计实训报告1.课题名称:基于MATLAB 的QPSK系统仿真设计与实现学生学号:学生:所在班级:任课教师:2016年10月25日目录1.1QPSK系统的应用背景简介 (3)1.2 QPSK实验仿真的意义 (3)1.3 实验平台和实验容 (3)1.3.1实验平台 (3)1.3.2实验容 (3)二、系统实现框图和分析 (4)2.1、QPSK调制部分, (4)2.2、QPSK解调部分 (5)三、实验结果及分析 (6)3.1、理想信道下的仿真 (6)3.2、高斯信道下的仿真 (7)3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8)总结: (10)参考文献: (11)附录 (12)1.1QPSK系统的应用背景简介QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
在19世纪80年代初期,人们选用恒定包络数字调制。
这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。
19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
1.2 QPSK实验仿真的意义通过完成设计容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。
了解QPSK的实现方法及数学原理。
并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。
同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。
理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。
基于MATLAB的QPSK系统仿真设计实现分析范文

通信系统仿真设计实训报告1.课题名称:基于MATLAB 的QPSK系统仿真设计与实现学生学号:学生姓名:所在班级:任课教师:2016年10月25日目录1.1QPSK系统的应用背景简介 (3)1.2 QPSK实验仿真的意义 (3)1.3 实验平台和实验内容 (3)1.3.1实验平台 (3)1.3.2实验内容 (3)二、系统实现框图和分析 (4)2.1、QPSK调制部分, (4)2.2、QPSK解调部分 (5)三、实验结果及分析 (6)3.1、理想信道下的仿真 (6)3.2、高斯信道下的仿真 (7)3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8)总结: (10)参考文献: (11)附录 (12)1.1QPSK系统的应用背景简介QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
在19世纪80年代初期,人们选用恒定包络数字调制。
这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。
19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
1.2 QPSK实验仿真的意义通过完成设计内容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。
了解QPSK的实现方法及数学原理。
并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。
同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。
理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。
基于MATLAB的QPSK通信系统仿真设计重要

基于MATLAB的QPSK通信系统仿真设计重要QPSK (Quadrature Phase Shift Keying) 是一种常用的数字调制技术,广泛应用于无线通信系统中。
在QPSK通信系统中,数字信号通过将两个正交调制的载波相位进行相应的转换来进行传输。
MATLAB作为一种强大的科学编程语言和工具包,可以用来进行QPSK通信系统的仿真设计。
本文将介绍基于MATLAB的QPSK通信系统仿真设计的重要性,并详细解释如何进行设计。
首先,基于MATLAB的QPSK通信系统仿真设计可以帮助我们更好地理解和研究QPSK调制技术。
通过仿真设计,我们可以模拟整个通信系统,包括信号生成、调制、传输、接收和解调等各个环节。
通过控制各个参数,我们可以分析不同参数对系统性能的影响,如调制误差、信噪比、误码率等。
这有助于我们深入理解QPSK调制技术的原理和特性,并为系统性能的优化提供依据。
其次,基于MATLAB的QPSK通信系统仿真设计可以用来评估系统的性能。
在通信系统中,误码率是一个重要的性能指标,用来评估系统的抗干扰能力。
通过仿真设计,我们可以计算得到不同信噪比下的误码率曲线,从而评估系统的性能。
同时,还可以通过仿真设计研究并优化接收机的设计,如信道均衡、时钟恢复等,以提高系统的性能。
再次,基于MATLAB的QPSK通信系统仿真设计可以用来进行系统参数的选择和优化。
在设计通信系统时,很多参数需要进行选择和优化,如载波频率、采样率、均衡器参数等等。
通过仿真设计,我们可以对这些参数进行优化,并选择最佳的参数组合。
这有助于提高系统的性能和效率,实现更好的通信质量和可靠性。
最后,基于MATLAB的QPSK通信系统仿真设计可以用来进行系统的性能对比和验证。
我们可以采用不同的调制技术和设计方案进行仿真,比较系统的性能差异,从而选择最佳的方案。
同时,还可以将仿真结果与理论计算结果进行对比,验证仿真设计的准确性和有效性。
总之,基于MATLAB的QPSK通信系统仿真设计在研究、设计和优化通信系统中扮演着重要的角色。
qpsk 信号 matlab仿真代码

1. 介绍QPSK信号QPSK (Quadrature Phase Shift Keying) 是一种数字调制技术,常用于无线通信和数字通信系统中。
它是通过改变相位来传输数字信息的一种调制方式,相较于单相位调制方式,QPSK可以提高信号传输效率和频谱利用率。
2. QPSK信号的生成原理QPSK信号的产生可以通过正交调制的方式完成,即将数据流分为两个独立的流并分别与正弦和余弦信号相乘,经过合并后即可生成QPSK信号。
具体过程如下:(1) 将二进制数据流分为实部和虚部,分别代表I信号和Q信号;(2) 分别对I信号和Q信号进行调制,得到两路调制信号;(3) 将两路调制信号通过信号合并器得到QPSK信号。
3. QPSK信号的Matlab仿真代码在Matlab中,可以通过编程实现QPSK信号的生成和仿真。
以下是一个简单的QPSK信号Matlab仿真代码示例:```Matlab设置QPSK调制参数M = 4; 调制阶数msg = randi([0 M-1],10000,1); 随机生成10000个0到M-1的整数,模拟二进制信息流txSig = qammod(msg,M); QAM调制绘制星座图scatterplot(txSig) 绘制QPSK星座图添加高斯噪声rxSig = awgn(txSig, 10); 添加信道噪声,信噪比为10dB解调rxMsg = qamdemod(rxSig,M); QPSK解调[numErrors,ber] = biterr(msg,rxMsg); 计算比特错误率disp(['比特错误率为:',num2str(ber)])```4. QPSK信号仿真结果分析通过上述Matlab代码,我们可以得到QPSK信号的仿真结果。
通过绘制星座图可以直观地观察到QPSK信号在复平面上的分布情况。
随后,我们可以添加高斯噪声,模拟信道中的干扰,然后进行解调并计算比特错误率。
5. 结论通过以上QPSK信号的Matlab仿真代码,我们可以成功生成和仿真QPSK信号,并得到比特错误率等性能指标。
qpsk、bpsk蒙特卡洛仿真matlab代码

qpsk、bpsk的蒙特卡洛仿真是一种用于测试和验证通信系统性能的重要工具。
通过模拟大量的随机输入数据,并对系统进行多次仿真运算,可以对系统的性能进行全面评估,包括误码率、信噪比要求等。
在matlab中,我们可以通过编写相应的仿真代码来实现qpsk、bpsk 的蒙特卡洛仿真。
下面将分别介绍qpsk和bpsk的蒙特卡洛仿真matlab代码。
一、qpsk的蒙特卡洛仿真matlab代码1. 生成随机的qpsk调制信号我们需要生成一组随机的qpsk调制信号,可以使用randi函数生成随机整数序列,然后将其映射到qpsk符号点上。
2. 添加高斯白噪声在信号传输过程中,会受到各种干扰,其中最主要的干扰之一就是高斯白噪声。
我们可以使用randn函数生成高斯白噪声序列,然后与调制信号相加,模拟信号在传输过程中受到的噪声干扰。
3. 解调和判决接收端需要进行解调和判决操作,将接收到的信号重新映射到qpsk符号点上,并判断接收到的符号与发送的符号是否一致,从而判断是否发生误码。
4. 统计误码率通过多次仿真运算,记录错误判决的次数,从而可以计算出系统的误码率。
二、bpsk的蒙特卡洛仿真matlab代码1. 生成随机的bpsk调制信号与qpsk相似,我们需要先生成一组随机的bpsk调制信号,然后模拟信号传输过程中的噪声干扰。
2. 添加高斯白噪声同样使用randn函数生成高斯白噪声序列,与bpsk调制信号相加。
3. 解调和判决接收端对接收到的信号进行解调和判决,判断接收到的符号是否与发送的符号一致。
4. 统计误码率通过多次仿真运算,记录错误判决的次数,计算系统的误码率。
需要注意的是,在编写matlab代码时,要考虑到信号的长度、仿真次数、信噪比的范围等参数的选择,以及仿真结果的统计分析和可视化呈现。
qpsk、bpsk的蒙特卡洛仿真matlab代码可以通过以上步骤实现。
通过对系统性能进行全面评估,可以帮助工程师优化通信系统设计,提高系统的可靠性和稳定性。
基于Matlab的QPSK通信系统建模与仿真综述

•
•
D_sam=conv(D_s_sam,BB);
• 3.相偏的预测 Discriminator_Out(pos_timing)=(sign(D_timing(pos_timin g))*(Q_timing(pos_timing))sign(Q_timing(pos_timing))*D_timing(pos_timing))/(sqrt( 2)*abs(D_timing(pos_timing)+1j*Q_timing(pos_timing)));
QPSK中文全称是“正交相移键控”。从名字可以看出属于“相位” 调制。 QPSK四相移键控是目前最常用的一种卫星数字信号调制方式。 优点:(1)频谱效率比较高,(2)误码率小(抗干扰能力强),(3)电路 实现简单。
二.QPSK调制解调基本原理
• 2.1QPSK调制
• 说明: 基带信号A(t)是单极性不归零双极性码元,串/并转换之后 变成并行码元a和b。这两路码元分别用两路正交的载波相 乘。相加之后即可得到QPSK信号。 • 原因: QPSK信号可以看成是两路BPSK信号相加的结果。上面 的每一路其实是一个BPSK调制。
• 5.3 误比特率曲线 • 5.3.1 信噪比SNR与比特能量比/噪声功率谱密度的转换 • QPSK通信系统不存在频偏时,为了得到统一的误比特率曲 线,我们用Eb/No作为我们的自变量。关于Eb/No与SNR的 关系有以下说明:EbNo就是Eb/No。 Eb表示单位比特的能 量,单位是焦耳(Joules)。No表示功率谱密度,单位是瓦 特/赫兹(Watts/Hz)。SNR就是S/R。S表示信号功率,单 位是瓦特(Watts)。N表示噪声功率,单位是瓦特 (Watts)。显然SNR单位是无量纲的。EbNo的单位是 Joules·Hz/ Watts,其实也是无量纲的。因为Watts表示是焦 耳/秒(Joules /s),而1 Hz=1/s。EbNo与SNR关系转换:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
QPSK通信系统的性能分析与matlab仿真1 绪论在当今高度信息化的社会,信息和通信已成为现代社会的“命脉”。
信息作为一种资源,只有通过广泛地传播与交流,才能促进社会成员之间的合作,推动生产力的发展,创造出巨大的经济效益。
在新技术革命的高速推动和信息高速公路的建设,全球网络化发展浪潮的推动下,通信技术得到迅猛的发展,载波通信、卫星通信和移动通信技术正在向数字化、智能化、宽带化发展。
Simulink具有适应面广、结构和流程清晰及仿真精细、效率高、贴近实际、等优点,基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
同时有大量的第三方软件和硬件应用于Simulink。
本文设计出一个QPSK仿真模型,以分析QPSK在高斯信道中的性能,通过此次课程设计,更好地了解QPSK系统的工作原理,传输比特错误率和符号错误率的计算。
1.1 研究背景与研究意义1.1.1 研究背景在当今高度信息化的社会,信息和通信已成为现代社会的“命脉”。
信息作为一种资源,只有通过广泛地传播与交流,才能促进社会成员之间的合作,推动生产力的发展,创造出巨大的经济效益。
信息的数字转换处理技术走向成熟,为大规模、多领域的信息产品制造和信息服务创造了条件。
高新技术层出不穷。
随着通信技术的发展,通信系统方面的设计也会越来越复杂,利用计算机软件的仿真,可以大大地降低通信过程中的实验成本。
Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中只要通过简单的鼠标操作,就可以构造出复杂的系统。
Simulink提供了一个建立模型方块图的图形用户接口,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。
1.1.2研究意义通过完成实验的设计内容,加深对通信原理理论的理解,熟悉通信系统的基本概念,复习正交相位偏移键控(QPSK)调制解调的基本原理和误比特率的计算方法,了解调制解调方式中最基础的方法。
包括模拟调制中的幅度调制(AM)如双边带幅度调制(DSB)、单边带幅度调制(SSB)、常规幅度调制;角度调制中的相位调制(FM)和频率调制(PM)。
以及数字调制中的幅度调制,相位调制,频率调制等方式,了解QPSK的实现方法及数学原理,掌握通信系统Simulink仿真建模方法。
数字通信之所以取得迅速的发展不是偶然的现象, 有其理论上、技术上和客观需求上的基础从理论分析开始, 人们早就认识到数字通信在理论上比模拟通信具有一系列优点。
除上述各点外, 在频带和功率的有效利用方面也更为有利计算技术和微电子学的进展为通信的数字化提供了坚实的技术基础人们在社会生活中对多种功能综合服务的需要是数字通信发展的强大动力。
1.2 课程设计的目的和任务1.2.1 课程设计的目的本次课程设计是根据“通信工程专业培养计划”要求而制定的。
通信系统的计算机仿真设计课程设计是通信工程专业的学生在学完通信工程专业基础课、通信工程专业主干课及科学计算与仿真专业课后进行的综合性课程设计。
其目的在于使学生在课程设计过程中能够理论联系实际,在实践中充分利用所学理论知识分析和研究设计过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位进行设计打下一定的基础。
1.2.2课程设计的任务(1)掌握一般通信系统设计的过程、步骤、要求、工作内容及设计方法;掌握用计算机仿真通信系统的方法。
(2)训练学生网络设计能力。
(3)训练学生综合运用专业知识的能力,提高学生进行通信工程设计的能力。
1.3 可行性分析而四相绝对移相键控(QPSK)技术具有抗干扰能力好、误码率低、频谱利用效率高等一系列优点。
现正广泛地应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信和有线电视系统之中。
数字通信的主要优点在于用数字信号传送信息易于再生, 可减小传输中的失真易于用脉冲数字电路来实现, 设备可做到体积小、重量轻可以引入计算技术, 应用微处理器及单片微机, 发挥各种数字信号处理及智能化控制功能数字信号易于加密便于采用纠错编码和扩频技术, 提高抗干扰能力。
2 QPSK通信系统偏移四相相移键控信号简称“O-QPSK”。
全称为offset QPSK,也就是相对移相方式OQPSK。
它具有一系列独特的优点,已经广泛应用于无线通信中,成为现代通信中一种十分重要的调制解调方式。
在数字信号的调制方式中QPSK四相移键控是最常用的一种卫星数字信号调制方式,它具有较高的频谱利用率、较强的抗干扰性、在电路上实现也较为简单。
随着通信技术的发展,通信系统方面的设计也会越来越复杂,利用计算机软件的仿真,可以大大地降低通信过程中的实验成本。
本文设计出一个QPSK仿真模型,以分析QPSK在高斯信道中的性能,通过此次实验,可以更好地了解QPSK 系统的工作原理。
正交相移键控,是一种数字调制方式。
数字通信现已广泛应用于各个频段和各种通信方式中, 成为当今通信发展的一种必然趋势。
所谓数字通信即用数字信号传送信息进行通信, 也可以说通信的数字化。
2.1 QPSK通信系统基本模型及各个模块2.1.1 通信系统的各个模块(1)信号源:模拟的正弦波语音信号4KHz。
(2)SAMPLE:抽样器,对模拟信号进行抽样,抽样频率8KHz。
(3)A-LAW:量化器,A-LAW十三折线法。
(4)PCM:编码器,将量化后的信号进行PCM编码,变成1个传输速率为64Kbit/s的数字信号。
(5)信道编码:可以选择分组码、卷积码、RS码等。
(6)调制:从QPSK、2PSK中选择一种调制方式。
(7)信道:信号经过调制以后,通过信道。
信道可以选择高斯加性白噪声信道、二进制对称信道、多径瑞利(Rayleigh)衰落信道、莱斯(Rician)衰落信道等。
设置不同的信道信噪比,对系统进行仿真,分析不同信噪比情况下的系统性能。
(8)解调:根据调制方式,选择对应的解调方式。
(9)译码:根据信道编码方式,选择对应的信道解码方式。
2.1.2 QPSK通信系统的基本模型通信系统就是传递信息所需要的一切技术设备和传输媒质的总和,包括信息源、发送设备、信道、接收设备和信宿(受信者) ,它的一般模型如图2.1所示。
图1 通信系统一般模型2.2 QPSK通信系统的性能指标2.2.1 有效性指标数字通信系统的有效性指标用用传输速率和频带利用率来表征。
(1)传输速率有两种表示方法:码元传输速率RB和信息传输速率Rb。
在N 进制下,设信息速率为Rb(bit/s),码元速率为RBN(Baud)。
(2)频带利用率η在比较不同的通信系统有效性时,但看他们的传输速率是不够的,还应看在这样的传输速率下占有信道的频带宽度。
频带利用率有两种不同的表示方式:码元频带利用率和信息频带利用率。
码元频带利用率是指单位频带内的码元传输速率,即η=RB/B(Baud/HZ)。
信息频带利用率是指每秒钟在单位频带上传输的信息量,即η=Rb/B bit/(s.HZ)2.2.2可靠性指标数字通信系统的可靠性指标用差错率来衡量。
差错率越小,可靠性越高。
差错率也有两种表达方式误码率与误信率。
(1)误码率:指接收到的错误码元数和总的传输码元个数之比,即在传输中出接收的错误码元数现错误码元的概率,记为Pe=传输总码元数(2)误信率:又叫误比特率,是指接收到的错误比特数和总的传输比特数之比,接收的错误比特数即在传输中出现的错误信息量的概率,记为Pb=传输的总比特数性能分析:信号经过调制、信道、解调过程。
在接收端,将得到的数与原始信号源数据比较,得到在特定信噪比下的误码率。
改变系统信噪比,从而得到系统的误码率曲线图,并给出各关健点信号图及星座图。
3 MATLAB关于QPSK通信系统的设计3.1 QPSK工作原理四相绝对移相调制是利用载波的4种不同相位来表征数字信息。
每一种载波相位代表两个比特的信息。
例如,若输入一进制数字信息,序列为10011100…….则应该先将其进行分组,每两个比特编为一组。
可将它们分成10,00,01,11等,然后分别用四种不同的相位来表示。
故每个四进制码元又被称为双比特码元,把组成双比特码元的前一个信息比特用a表示,后一个信息比特用b表示。
双比特码元的两个信息比特ab通常按照格雷码排列。
载波相位用θk表示。
θk取0到2π等间隔值中的四种可能。
如表所示为QPSK的信号编码.表1 QPSK的信号编码a b θk a b θk方式A0o 0o90o 1o 1o 270o0o 1o 0o 1o 0o 180o 方式B0o 0o 225o 1o 1o 45o0o 1o 315o 1o 0o 135o图2 A 方式 B 方式3.2 基带信号处理数字基带信号的传输模型如图所示,输入信号一般认为是单极性二进制矩形脉冲序列;{dn}经过码型变换以后一般变形为双极性码型(归零或不归零)。
在波形形成时,通常先对{an}进行理想抽样,变成二进制冲激脉冲序列d(t),然后送入发送滤波器以形成所需的波形,即d(t)=∑∞-∞=-n nTs t an )(δ−−→−}{dn −−→−}{an ↑δs(t)码型变换 相乘器−−→−)(t d → → −−→−)(t y −−→−}{an↑n(t)图3 基带传输系统模型3.3 调制/解调3.3.1 QPSK 通信系统的调制QPSK 的调制有两种产生方法相乘电路法和选择法。
此次课程设计涉及了相乘法。
(1)相乘法输入信号是二进制不归零的双极性码元,它通过“串并变换”电路变成了两路码元。
变成并行码元后,每个码元的持续时间是输入码元的两倍。
用两路正交 载波去调制并行码元。
图4选择法QPSK 的调制中,QPSK 信号可以看成是两个载波正交的2PSK 信号调制器构成。
发送滤波器 信道C(ω) 接收滤波器 抽样判决 反码 变换原理分析如下:基本原理和系统结构QPSK 与二进制PSK 一样,传输信号包含的信息都存在于相位中。
个别的载波相位取四个等间隔值之一,如л/4、3л/4、 5л/4、7л/4。
相应的,可将发射信号定义为: ⎪⎩⎪⎨⎧≤≤-+=其他,00],4)12(2cos[/2)(b t T t i ft t E t S ππ其中,i =1,2,3,4;E 是发射信号的每个符号的能量,T 为符号的持续时间,载波频率f 等于nc/T ,nc 为固定整数。
每一个可能的相位值对应于一个特 定的二位组。
下面介绍QPSK 信号的产生和检测。
如图为典型的QPSK 发射机框图。
输入的二进制数据序列首先被不归零(NRZ)电平编码转换器转换为极性形式,即负号1和0分别用b E 和-b E 表示。
该二进制波形被分接器分成两个分别由输入序列的奇数位偶数位组成的彼此独立的二进制波形,这两个二进制波形分别用 a1(t)和a2(t)表示。