分子间作用力范德华力和氢键33页PPT

合集下载

范德华力与氢键高中化学课件(2019选择性必修1)

范德华力与氢键高中化学课件(2019选择性必修1)

基础题组
(2)①H2O分子内的O—H键、分子间的范德华力和氢键从强到弱依次

O—H键>氢键>范德华力

的沸点比
的沸点低,
前者形成的是分子内的氢键,而 后者可形成分子间的氢键,
原因是 分子间氢键使分子间的作用力增大

能力题组 D
能力题组
(2)NH3溶于水时,大部分NH3与H2O通过氢键结合形成NH3·H2O分子。 根据氨水的性质可推知NH3·H2O的结构式为 B 。
周期
沸点/℃
六、氢键对物质性质的影响 2.氢键可影响物质的溶解度。 不同种分子之间不仅同种分子之间可以存在氢键,某些不同种分子之 间也可能形成氢键。溶剂和溶质之间的氢键作用力越大,溶解性越好。
例如 NH3与H2O之间,所以这就导致了氨气在水中的惊人溶解度: 1体积水中可溶解700体积氨气; 乙醇和水能以任意比例互溶等。
观察思考 例2.结构相似的分子,观察图表,回答以下问题。
单质 F2 Cl2 Br2 I2
熔点/℃ -219.6 -101
-7.2 113.5
沸点/℃ -188.1 -34.6
58.78 184.4
怎样解释卤素单质从F2~I2的熔、沸点越来越高?
Cl2、Br2、I2的相对分 子质量依次增大
范德华力 依次增大
熔、沸点 依次增大
观察思考 例3.相对分子质量相同的分子观察图表,回答以下问题。
分子 相对分子质量
沸点/℃
正戊烷 72 36.1
异戊烷 72 25
新戊烷 72 9
互为同分异构体,他们的沸点有什么变化规律?
相对分子质量相同, 支链越多
范德华力 越小
熔、沸点 依次减小

范德华力和氢键、溶解性【上课用】PPT课件

范德华力和氢键、溶解性【上课用】PPT课件

2021
41
练习:共价键、离子键、范德华力和氢键是形成
晶体的粒子之间的四种作用力。下列晶体:
①Na2O2 ②固体氨 ③NaCl ④SiO2 ⑤冰 ⑥干冰,其中含有三种作用力的是( )
A.①②③
B.①②⑥
C.②⑤
D.⑤⑥
2021
42
练习:氨在水中的溶解度在常见气体中最大,下
列因素与氨的水溶性没有关系的是( )
思考:NH3为什么极易溶于水?NH3溶于水是形成N-
H…O还是形成O-H…N?
溶质与溶剂分子之间的氢键作用,使溶质溶 解度增大,氢键作用力越大,溶解性越好。
NH3溶于水形成氢 键示意图如右,正
是这样,NH3溶于
水溶液呈碱性
2021
14
3.氢键的键能一般小于40kJ/mol,强 度介于化学键和范德华力之间.因此氢
邻羟基苯甲醛(熔点:-7℃)
对羟基苯甲醛
(熔点:115-117℃)
分子间氢键使物质熔点升高
分子内氢键使物质熔点降低
2021
16
(1)分子间氢键
氢键普遍存在于已经与N、O、F形成共价
键的氢原子与另外的N、O、F原子之间。
如:HF、H2O、NH3 相互之间
C2H5OH、CH3COOH、H2O相互之间 (2)分子内氢键
量与Y原子的孤对电子方
向一致,即以H原子为
中心三个原子尽可能在
一条直线上。这样可使X
与Y的距离最远,斥力最
小,形成的氢键强。
2021
19
讨论:我们在学习化学的过程中还有什么地方能 用氢键的知识来解释的? (1)水的特殊物理性质 (2)蛋白质结构中存在氢键 (3)核酸DNA中也存在氢键 (4)甲醇易溶于水 (5)乙醇与水互溶

氢键课件ppt

氢键课件ppt
第三节 分子的性质
分子间作用力
分子间存在着将分子聚集在一起的作 用力,这种作用力称为分子间作用力.常见 的为范德华力和氢键
二、范德华力及其对物质性质的影响 范德华力的特点
(1)广泛存在(由分子构成的物质) (2)作用力弱、是短程力 (3)主要影响物质的物理性质(熔沸点)
由分子构成的
化学键与范德华力的比较
21.14 431.8
23.11 366
26.00 298.7
范德华力很弱,约比化学键能小1-2数量级
二、范德华力及其对物质性质的影响
(2) 范德华力与相对分子质量的关系
分子
HCl HBr
HI
相对分子 质量
范德华力 (kJ/mol)
36.5 21.14
81 23.11
128 26.00
结构相似,相对分子质量越大,范德 华力越大
六、无机含氧酸分子的酸性
含氧酸的强度取决于中心原子的电 负性、原子半径、氧化数。
当中心原子的电负性大、原子半径 小、氧化数高时,使O-H键减弱,酸 性增强。
无机含氧酸强度的变化规律
同周期的含氧酸,自左至右,随 中心原子原子序数增大 ,酸性增强。
同一族的含氧酸,自上而下,随 中心原子原子序数增大 ,酸性减弱。
2.表示: X—H…Y (X、Y为N、O、F)
F
F
H
H
H
H
F
F
3.氢键的形成条件: (1)在X—H…Y表示的氢键中,H原子位于X、Y间 (2)X、Y所属元素具有很强的电负性,很小的原子半
径,如N、O、F等。 4.键参数:键长指X和Y的距离
键能指X—H…Y分解为X—H 和Y所需要的能量
为什么冰会浮 在水面上呢?

范德华力和氢键及其对物质性质的影响 PPT课件

范德华力和氢键及其对物质性质的影响  PPT课件
HF: F—H…F
H2O: O—H…O
NH3:
N—H…N
NH3和H2O: O—H…N
3.氢键的特点 (1).饱和性和方向性
a.由于 H 的体积小,1 个 H 只能形成一个氢键;
b.由于 H 的两侧电负性极大的两原子的负电排斥, 使(A — H ···B —)中A和B两个原子一般在H原子 两侧且呈直线排列。除非其它外力有较大影响时, 才改变方向。
Waals,1837~1923年)。荷兰科学家, 1910年获得诺贝尔物理奖。1837年6 月1日,生于莱顿。1873年,他获得 莱顿大学的博士学位,在论文中他 首次证明了分子体积以及分子间作 用力的存在。这种把分子聚集在一 起的作用力,叫做分子间作用力即
范德华力。
一、范德华力
1.使分子聚集在一起的作用力,其实质是电性引力。
范德华力和氢键及其对物 质性质的影响
夯实基础:
范德
华力 一、范德华力
和氢
键及
其对
物质
性质 的
二、氢键
影响
思考与交流
1、降温加压气体为什么会液化? 2、降温时液体为什么会凝固?
—— 分子间存在一种使其聚集在一起的 作用力!
这种把分子聚集在一起的作用力,叫做 分子间作用力也称为范德华力。
资 料
范德瓦尔斯(J.D.van der
有分子内氢键 沸点: 44 - 45 ℃
(2).溶解度
若溶质与溶剂之间能形成氢键,物质的溶解度 较大。例如:NH3极易溶于水。
(3).物质的硬度
若分子之间存在氢键,物质的硬度增大!
(4).物质的密度——使物质密度反常!
例如:水的固体(冰)密度小于液体!
Why:冰的密度小于水的密度?

分子间作用力(范德华力、氢键) 高二化学课件(人教版2019选择性必修2)

分子间作用力(范德华力、氢键) 高二化学课件(人教版2019选择性必修2)

O—H … N O—H … F N—H … O
F—H … O
4、特点: ①氢键具有方向性和饱和性
方向性:A—H…B—总是尽可能在同一直线上。 饱和性:每个裸露的氢原子核只能形成一个氢键
每个孤电子对也只能形成一个氢键。
②氢键比化学键的键能小1~2个数量级,不属于化学键,也是一
种分子间的作用力。以冰晶体为例:共价键>氢键 >范德华力
因氢键而相互缔合,形成所谓的缔合分子。
课堂练习3:下列有关水的叙述中,不能用氢键的知识来解释的是( D)
A、 0℃时,水的密度比冰大
B、水的熔沸点比硫化氢的高
C、测得H2O的相对分子质量大于18
D、水比硫化氢气体稳定
③氢键对溶解度的影响
与水分子间能形成氢键的物质在水中的溶解度增大
氨气极易溶于水、乙醇、乙醛、乙酸与水互溶而乙烷不溶于水
共价键的键能(KJ•mol-1) 范德华力(KJ•mol-1) 氢键(KJ•mol-1)
467
11
18.8
5、类别: ① 分子间氢键 分子间氢键存在于如HF、H2O、NH3 、C2H5OH、
CH3COOH 等同种分子之间,也存在于它们相互之间
② 分子内氢键
对羟基苯甲醛不能形
成分子内氢键
邻羟基苯甲醛
降温加压时气体会液化,降温时液体会凝固,这些事实表明,分子之间 存在着相互作用力 ——分子间作用力(包括范德华力和氢键)
一、 范德华力
1、概念:
把分子聚集在一起的作用力,称为范德华力
实质: 分子间的一种静电作用
2、特点:
①范德华力很弱,比化学键的键能小1~2数量级
分子
HCl HBr HI
范德华力(kJ/mol) 21.14 23.11 26.00

2.3.2《 范德华力和氢键》PPT课件-人教版高二化学选修3

2.3.2《 范德华力和氢键》PPT课件-人教版高二化学选修3

【答案】C【解析】氢键属于分子间作用力,其大小介 于范德华力和化学键之间,不属于化学键,分子间氢键的 存在,加强了分子间作用力,使物质的熔、沸点升高,A 项错误,C项正确;在冰和水中都存在氢键,而H2O的稳定 性主要是由分子内的O—H的键能决定,B、D项错误。
(人教版选修3) 第 二章《分子结构与性质》

(人教版选修3) 第 二章《分子结构与性质》
【问题探究3】(3)在第ⅤA、ⅥA、ⅦA族元素的氢化物 中,为什么NH3、H2O、HF三者的相对分子质量分别小于 同主族其他元素的氢化物,但熔、沸点却比其他元素的氢 化物高?
因为NH3、H2O、HF三者的分子间能形成氢 键,同主族其他元素的氢化物不能形成氢键,所以它们的 熔点和沸点高于同主族其他元素的氢化物。
(人教版选修3) 第 二章《分子结构与性质》
【归纳小结】范德华力对物质性质的影响有哪些?
(1)范德华力越大,物质的熔、沸点越高。 ①组成和结构相似的分子,相对分子质量越大,范德华力越大, 物质的熔、沸点越高。如熔、沸点I2>Br2>Cl2>F2,HCl<HBr<HI。② 组成相似、相对分子质量相近的物质,分子的极性越大,物质的熔、 沸点越高。如熔、沸点CO>N2(CO为极性分子);又如有机物的同分异 构体中,通常支链越多,分子对称性越好,分子极性越小,物质的 熔、沸点越低(沸点:正戊烷>异戊烷>新戊烷)。(2)溶质分子与溶 剂分子间的范德华力越大,则溶质分子的溶解度越大。如CH4和HCl 在水中的溶解情况,由于CH4与H2O分子间的作用力很小,故CH4几乎 不溶于水,而HCl与H2O分子间的作用力较大,故HCl极易溶于水;同 理,Br2、I2与苯分子间的作用力较大,故Br2、I2易溶于苯中,而 H2O与苯分子间的作用力很小,故H2O很难溶于苯中。

范德华力和氢键及其对物质性质的影响 PPT课件

范德华力和氢键及其对物质性质的影响  PPT课件

在273K、101kpa时,O2在水中的溶解度 比N2大,因为O2与水分子的作用力比N2与水 分子的作用力大。
在273K、101kpa时,CO在水中的溶解度
比N2大,因为CO与水分子的作用力比N2与水
分子的作用力大。


你能从下图中得到什么信息?如何用 分子间作用力解释曲线形状?
一些氢化物的沸点
结论:
O2N
OH
例7、氨气溶于水时,大部分NH3与H2O 以氢键(用“…”表示)结合形成NH3·H2O 分子。根据氨水的性质可推知NH3·H2O的
结构式为( B )
例5、下列现象与化学键有关的是( C )
A.F2、Cl2、Br2、I2单质的熔点依次升高 B.H2O的沸点远高于H2S的沸点 C.H2O在高温下也难分解 D.干冰气化
B.H2O的沸点比HF的高,可能与氢键有关;
C.氨水中有分子间氢键;
D.氢键X—H…Y的三个原子总在一条直线 上。
例15、卤素单质从F2到I2在常温常压 下的聚集状态由气态、液态到固态的
原因是( B )
A.原子间的化学键键能逐渐减小
B.范德华力逐渐增大
C.原子半径逐渐增大
D.氧化性逐渐减弱
例16、罗马大学Fulvio Cacace等人获得了极 具图N键理所吸论示收研(与1究6白7意磷k义JP热4的相量N似,4分)生。子成已,知1Nm断4分o裂l子N1≡结mN构o键l 如N放—右 出 942 kJ 热量。由此判断下列说法正确的是
无方向性 无饱和性
有方向性 有饱和性
有方向性 有饱和性
范德华力
氢键
共价键
强度比较
共价键>氢键>范德华力
①分子极性和相对 分子质量等

2-3-2范德华力、氢键及其对物质性质的影响与溶解性 59张 PPT课件

2-3-2范德华力、氢键及其对物质性质的影响与溶解性  59张 PPT课件

氢键。
第二章 分子结构与性质
3.氢键的表示方法
氢键通常用X—H……Y—表示,其中X、Y为N、O、F,
“—”表示共价键,“……”表示形成的氢键。例如,水中的 人

氢键表示为:O—H……O—。
版 化

第二章 分子结构与性质
说明:
①氢键中电负性强的原子可以是同种原子,也可以是
不同种原子。


② 氢 键 的 键 长 定 义 为 X—H…Y 的 长 度 , 而 不 定 义 为
2.范德华力的影响因素
影响范德华力的主要因素有分子的相对分子质量、分
子的极性等。


(1)组成和结构相似的物质,相对分子质量越大,范德
版 化

华力越大,如
分子 Ar
范德华
力 /kJ·mo
8.50
l-1
CO HI 8.75 26.00
HBr 23.11
HCl 21.14
第二章 分子结构与性质
(2)分子的极性越强,范德华力越大。 (3)温度升高,范德华力减小。
人 教 版 化 学
第二章 分子结构与性质
3.范德华力对物质性质的影响
(1)对物质熔、沸点的影响
一般来说,分子晶体中范德华力越大,物质的熔、沸 人

点越高。具体如下:
版 化

①组成和结构相似的物质,随着相对分子质量的增大,
分子间的范德华力逐渐增大,它们的熔、沸点逐渐升高。
如下图中的曲线所示:
第二章 分子结构与性质
版 化

第二章 分子结构与性质
若不断地升高温度,实现“雪花→水→水蒸气→氧气
和氢气”的变化。在变化的各阶段被破坏的粒子间的主要
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档