二次函数顶点式的妙用_图像_性质

合集下载

二次函数的图像与性质

二次函数的图像与性质

二次函数的图像与性质二次函数(quadratic function)是数学中的一类函数,其表达式为y = ax^2 + bx + c,其中a、b、c为实数且a≠0。

这种函数的图像是一条抛物线,其特点是拥有许多有趣的性质和图像的变化规律。

本文将对二次函数的图像与性质进行详细说明。

一、基本形式二次函数的基本形式为y = ax^2,其中a为二次函数的系数,决定了抛物线的开口方向和形状。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

二、顶点二次函数的顶点(vertex)是抛物线的最高点(若开口向下)或最低点(若开口向上)。

顶点可通过求导数或利用抛物线的对称性求得。

顶点的横坐标为x = -b/2a,纵坐标为y = f(x),其中f(x)为二次函数的表达式。

三、对称轴二次函数图像的对称轴(axis of symmetry)是通过抛物线的顶点,并且与抛物线相互对称的一条直线。

对称轴的方程可以通过对抛物线的表达式进行简单计算得到。

四、焦点和准线焦点(focus)和准线(directrix)是二次函数图像的两个重要元素。

焦点是指在平面上向外弯曲的抛物线上的一个特定点。

焦点的横纵坐标可通过复杂的求解方法得到,这里不再详述。

准线是通过焦点以及与对称轴垂直的直线上的特定点构成的直线段。

准线的方程也可通过复杂的计算得到。

五、零点二次函数的零点(zeros)是函数表达式等于零的横坐标。

其求取方法可以通过方程ax^2 + bx + c = 0来求解。

根据求根公式,可得有两个根、一个根或者无实根。

六、图像的变化规律通过改变二次函数的参数a、b、c的数值,可以使得二次函数的图像发生各种变化。

以下是几种常见的变化规律:1. 改变a的值,a越大,抛物线越“扁平”,开口越朝上或者朝下。

2. 改变b的值,b为线性项的系数,可以使抛物线左右平移。

3. 改变c的值,c为常数项的系数,可以使抛物线上下平移。

七、应用二次函数的图像与性质在实际生活中有广泛的应用。

二次函数中像的顶点性质和性质

二次函数中像的顶点性质和性质

二次函数中像的顶点性质和性质二次函数中顶点的性质和性质一直是数学学习中的重要内容之一。

顶点是二次函数的关键特征之一,它不仅能帮助我们了解函数的形状和性质,还可以在解决实际问题中发挥重要作用。

本文将对二次函数中顶点的性质和性质进行探讨。

一、顶点的定义顶点是二次函数图像的最高点或最低点,也是函数曲线的转折点。

在一般形式的二次函数y=yy^2+yy+y中,顶点的横坐标为y=−y/2y,纵坐标为y=y(−y/2y)。

二、顶点的性质1. 函数的最值:顶点是二次函数图像的最高点或最低点,因此具有最值性质。

当二次函数开口朝上时,顶点为最低点,函数的最小值就是顶点的纵坐标;当二次函数开口朝下时,顶点为最高点,函数的最大值就是顶点的纵坐标。

2. 对称性:二次函数的图像关于顶点对称。

以顶点为中心,x轴是对称轴,即顶点的左右两侧图像相同。

这一性质在解题和绘制函数图像时非常有用。

3. 奇偶性:二次函数的奇偶性与a的正负相关。

当y为偶数时,函数的图像关于y轴对称,即具有偶对称性;当y为奇数时,函数的图像关于顶点对称,即具有奇对称性。

三、顶点的应用1. 最优化问题:顶点性质在最优化问题的解决中有重要作用。

例如,若要在给定边界条件下求解二次函数的最大或最小值,可以通过分析顶点来得到最优解。

2. 函数图像绘制:顶点性质使得绘制二次函数的图像更加简单。

我们只需计算出顶点的坐标,再确定其他点的位置,就能很好地绘制出函数的图像。

3. 方程求解:通过顶点的坐标,我们可以得到二次函数的标准或一般形式。

从而能够更容易地求解二次函数的解、根、交点等问题。

综上所述,二次函数中顶点的性质和应用非常重要并且广泛。

掌握了顶点的定义和性质,我们能更好地理解二次函数的图像、方程和应用,更加灵活地解决相关问题。

在数学学习中,我们应该深入研究和探索顶点的性质,并灵活运用到实际问题中。

这样,我们才能全面提高自己的数学素养和解决问题的能力。

二次函数图像与性质完整归纳

二次函数图像与性质完整归纳

二次函数图像与性质完整归纳二次函数的图像与性质二次函数是高中数学中的重要内容之一,掌握其图像与性质是必不可少的。

二次函数的基本形式是y=ax^2,其中a表示开口方向和抛物线开口大小,x^2表示自变量的平方。

根据a的正负,抛物线的开口方向和顶点的坐标可以得到不同的性质。

当a>0时,抛物线开口向上,顶点坐标为(0,0),对称轴为y轴;当a<0时,抛物线开口向下,顶点坐标为(0,0),对称轴为y轴。

在y=ax^2的基础上,加上常数项c可以得到y=ax^2+c的形式,其中c表示抛物线在y轴上的截距。

根据a和c的正负,抛物线的开口方向、顶点坐标和对称轴可以得到不同的性质。

当a>0,c>0时,抛物线开口向上,顶点坐标为(0,c),对称轴为y轴;当a>0,c0时,抛物线开口向下,顶点坐标为(0,c),对称轴为y轴;当a<0,c<0时,抛物线开口向下,顶点坐标为(0,c),对称轴为y轴。

除了基本形式和加上常数项的形式,二次函数还有一种顶点式的形式y=a(x-h)^2+k,其中(h,k)表示顶点坐标。

根据a的正负,抛物线的开口方向和顶点坐标可以得到不同的性质。

当a>0时,抛物线开口向上,顶点坐标为(h,k),对称轴为直线x=h;当a<0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h。

在顶点式的基础上,加上常数项k可以得到y=a(x-h)^2+k的形式。

根据a和k的正负,抛物线的开口方向、顶点坐标和对称轴可以得到不同的性质。

当a>0,k>0时,抛物线开口向上,顶点坐标为(h,k),对称轴为直线x=h;当a>0,k0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h;当a<0,k<0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h。

二次函数图象的平移二次函数的图像可以通过平移来得到新的图像。

平移的步骤是先确定顶点坐标,然后根据顶点坐标的变化来确定平移方向和距离。

二次函数的图像及性质

二次函数的图像及性质

与对数函数的比较
值域:二次函数值域为全体实 数,而对数函数值域为实数加 一个常数
图像:二次函数图像为抛物线, 而对数函数图像为单调递增或 递减的曲线
定义域:二次函数定义域为全 体实数,而对数函数定义域为 正实数
性质:二次函数具有对称性, 而对数函数具有反函数性质
汇报人:
性质:二次函数有最小 值或最大值,反比例函 数在x>0时单调递减, 在x<0时单调递增。
应用:二次函数在数学、 物理等领域有广泛应用, 反比例函数在解决一些 实际问题时也很有用。
与指数函数的比较
开口方向:二次函数开口向上或向下,指数函数开口向右 顶点:二次函数有顶点,指数函数无顶点 函数值:二次函数有最大值或最小值,指数函数无最大值或最小值 图像:二次函数图像是抛物线,指数函数图像是指数曲线
开口变化规律
二次函数的开口方向由系数a决定,a>0时开口向上,a<0时开口向下。
二次函数的开口大小由系数a和b共同决定,a的绝对值越大,开口越小;b的绝对值越大,开口 越大。
二次函数的对称轴为x=-b/2a,对于开口向上的函数,对称轴左侧函数值随x的增大而减小;对 于开口向下的函数,对称轴左侧函数值随x的增大而增大。
图像的对称性
二次函数的对称中心是(k,0)
二次函数的顶点坐标是(h,k)
二次函数的对称轴是x=h
二次函数的开口方向由a决定, a>0向上开口,a<0向下开口
与一次函数的比较
函数表达式:二次函数的一般形式 为y=ax^2+bx+c,一次函数的一 般形式为y=kx+b
开口方向:二次函数的开口方向由 a的符号决定,一次函数的图像是 一条直线,没有开口方向

二次函数图像与性质ppt课件

二次函数图像与性质ppt课件

D.f(1)>25
答案:A
三基能力强化
2.若函数f(x)=ax2+bx+c满足 f(4)=f(1),那么( )
A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 答案:C
三基能力强化
3.已知函数y=x2-2x+3在闭区
间[0,m]上有最大值3,最小值2,则
课堂互动讲练
【思路点拨】 (1)待定系数法.(2) 二次函数的单调性.
【解】 (1)依题意,方程f(x)=ax2 +bx=x有等根,
则有Δ=(b-1)2=0,∴b=1. 2分 又f(-x+5)=f(x-3), 故f(x)的图象关于直线x=1对称, ∴-2ba=1,解得 a=-12,
∴f(x)=-21x2+x. 5 分
基础知识梳理
2.二次函数的图象及其性质
基础知识梳理
基础知识梳理
基础知识梳理
二次函数可以为奇函数吗? 【思考·提示】 不会为奇 函数.
三基能力强化
1.已知函数f(x)=4x2-mx+5在
区间[-2,+∞)上是增函数,则f(1)的
范围是( )
A.f(1)≥25
B.f(1)=25
C.f(1)≤2+2=(x+a)2+2 -a2的对称轴为x=-a,
∵f(x)在[-5,5]上是单调函数, ∴-a≤-5,或-a≥5, 解得a≤-5,或a≥5. 10分
规律方法总结
1.二次函数f(x)=ax2+bx+c(a >0)在区间[m,n]上的最值.
当-2ba<m 时,函数在区间[m, n]上单调递增,最小值为 f(m),最大 值为 f(n);
基础知识梳理
1.二次函数的解析式有三种常用表 达形式

二次函数顶点坐标公式及其应用

二次函数顶点坐标公式及其应用

二次函数顶点坐标公式及其应用二次函数是指形如y=ax^2+bx+c的函数,其中a、b和c都是实数,且a≠0。

它的图像是抛物线。

顶点坐标公式:二次函数的顶点坐标可以用以下公式求得:x=-b/2ay=f(x)=a(x-h)^2+k其中,(h,k)表示顶点的坐标。

通过这个公式,我们可以很方便地求得二次函数的顶点坐标。

应用一:求解最优问题二次函数的顶点坐标在数学上具有重要的意义,它可以用来求解很多最优问题。

例如,我们想要在一个矩形内部,离一条边的距离最远,那么这个问题可以转化为求解顶点坐标的问题。

我们可以通过求解二次函数的极值来找到这个最优解。

应用二:描述物体运动的轨迹二次函数也可以用来描述物体的运动轨迹。

例如,一个物体从离地面一定高度开始自由下落,那么它的运动轨迹可以用二次函数来描述。

我们可以通过求解二次函数的顶点坐标,来确定物体的最高点、落地点和运动轨迹等信息。

应用三:经济学中的边际分析在经济学中,边际分析是一种重要的工具,而二次函数的顶点坐标可以用来分析边际效应。

边际效应是指增加或减少一个单位的其中一种输入所产生的效益变化。

通过求解二次函数的顶点坐标,我们可以找到产生边际效应最大或最小的输入水平,从而指导经济决策。

应用四:求解几何问题在几何学中,二次函数的顶点坐标也有广泛的应用。

例如,在平面几何中,已知一个抛物线和一条直线,我们想要找到抛物线上离直线最近和最远的点,就可以通过求解二次函数的顶点坐标来解决这个问题。

应用五:拟合实验数据二次函数的顶点坐标还可以用来拟合实验数据。

当我们通过实验或观察得到一些数据点时,可以通过求解二次函数的顶点坐标,来得到一个最佳的二次函数模型,以便与观察数据相拟合。

总结:二次函数的顶点坐标公式是一个简单且实用的工具,它在数学和应用领域都有着广泛的应用。

它可以用来解决最优问题、描述物体运动的轨迹、经济学中的边际分析、求解几何问题以及拟合实验数据等。

通过掌握二次函数的顶点坐标公式,我们可以更好地理解和应用这个函数模型。

二次函数的顶点式的图像及性质

二次函数的顶点式的图像及性质

顶点式的图像特点
顶点式的图像特点包括:对称性(关于顶点对称)、顶点的坐标与图像的位 置、抛物线的开口方向和形状。
顶点式与二次函数的关系
顶点式是一种方程形式,通过顶点和开口方向表达了二次函数的图像特点, 能够帮助我们更好地理解和分析二次函数。
顶点式与平移变换的关系
顶点式可以通过改变顶点的坐标实现平移变换,从而在坐标平面上移动和调整抛物线的位置。
顶点式的性质
顶点式具有区间可见性、单调性、最值、极值点的性质等,这些性质帮助我 们更好地理解和分析二次函数的图像特点。
顶点式的应用示例
顶点式在物理学、经济学等领域有广泛的应用。例如,通过顶点式可以研究抛物线的最小值、最大值以及最优 解等问题。
二次函数的顶点式的图像 及性质
本节介绍二次函数的顶点式,包括定义、一般形式和性质。我们将展示顶点 式的图像特点,并说明与二次函数、平移变换的关系,最后提Байду номын сангаас应用示例。
顶点式的含义
顶点式是用来表示二次函数的一种方程形式。它通过给出顶点的坐标和抛物 线的开口方向来描述二次函数的图像。
顶点式的一般形式
二次函数的顶点式一般形式为:y = a(x - h)^2 + k,其中(h, k)表示顶点的坐标,a表示抛物线的开口方向和形状 (正值为开口向上,负值为开口向下)。

二次函数的图像及其性质

二次函数的图像及其性质

单调性
二次函数的开口 方向由系数a决 定,a>0时开口 向上,a<0时开 口向下
二次函数的对称 轴为x=-b/a
二次函数的最值 在对称轴上取得, 即x=-b/2a时的 函数值y=cb^2/4a
二次函数在区间 (-∞,-b/2a)和(b/2a,+∞)上单 调性相反
最值点
二次函数的最值点为顶点 顶点的坐标为(-b/2a, f(-b/2a)) 当a>0时,函数在顶点处取得最小值 当a<0时,函数在顶点处取得最大值
开口大小与一次项 系数和常数项无关
开口变化趋势
二次函数的开口方向由二次项系数a决定,a>0时向上开口,a<0时向下开口。 二次函数的开口大小由二次项系数a和一次项系数b共同决定,a的绝对值越大,开口越小。 二次函数的对称轴为x=-b/2a,当a>0时,对称轴为x=-b/2a;当a<0时,对称轴为x=-b/2a。 二次函数的最值点为顶点,顶点的坐标为(-b/2a, c-b^2/4a)。
在物理领域的应用
二次函数在抛物线运动中的应用 二次函数在弹簧振荡中的应用 二次函数在单摆运动中的应用 二次函数在简谐振动中的应用
在其他领域的应用
二次函数在经济学中的应用, 例如计算成本、收益、利润等。
二次函数在生物学中的应用, 例如种群增长、药物疗效等。
二次函数在物理学中的应用, 例如弹簧振动、单摆运动等。
二次函数的应用
解决实际问题
二次函数在物理学中的应用,例如计算抛物线的运动轨迹 二次函数在经济学中的应用,例如计算商品价格与销售量的关系
二次函数在日常生活中的应用,例如计算最优化问题,如最小费用、最大效率等
二次函数在科学实验中的应用,例如模拟实验数据,预测实验结果
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
平移方法2:
1 1 2 向左平移 1 2 2 向下平移 y ( x 1 ) 1 y x y ( x 1) 2 2 1个单位 2 1个单位
• 抛物线y=2(x+2)² +3的对称轴为 直线x=-2 , 顶点坐标为 (-2,3) , 可看作由抛物线y=2x² 先向 上 平移 3 个单位,再向 左 平移 2 个单位而得到的.或先向 左 平移 2 个单位, 上 3 再向 平移 个单位而得到的 .
-5 -4 -3 -2 -1 o 1 2 3 4 5 -1 1 2 -2 y ( x 1 ) 1 平移方法1: 2 -3 -4 1 2向下平移 1 2 y x y x 1 -5 2 1个单位 2 -6 -7 向左平移 y 1 ( x 1) 2 1 -8 2 1个单位 -9 -10
y=ax² + c
a>0,向 上 a<0,向 下
X=0
(0,c)
X=0
(0,c)
y=a(xh)²
a>0,向 上
X=h
(h,0)
a<0,向 下
X=h
(h,0)
当x=h时,y 有最大值0
x<h时, y随x的增大而增 大; x>h时, y随x的增大而 减小.
说出平移方式
c>0 上移 y=ax2 c<0 下移 h<0 左移 y=ax2 h>0 右移 简记为“上加下减,左加右 减”. y=a(x-h)2 y=ax2+c
画图
解: 先列表
x … -4 -3 -2 -1 0 1 2 …
1 y ( x 1) 2 1 … 2
-5.5 -3 -1.5 -1 -1.5 -3 -5.5 … 直线x=-1
1
再描点、连线
1 (1)抛物线 y ( x 1) 2 1 2
y
的开口方向、对称轴、顶点? 1 2 y ( x 1 ) 1 抛物线 2 的开口向下, 对称轴是直线x=-1,
二次函数顶点式的妙用 y=a(x-h)2+k 的图象和性质
金晶学校
王志伟
1 说出下列函数图象的开口方向,对称轴,顶点, 最值和增减变化情况:
1)y=ax2
2)y=ax2+c
3)y=a(x-h)2
抛物线 y=ax²
开口方 向 a>0,向 上
对称轴 X=0
顶点 (0,0)
最值 当x=0时,y 有最小值0
几 种 形 式 的 二 次 函 数 的 关 系 左 右 平 移
y = a( x - h ) 2 + k
上 下 平 移
y = ax2 + k
上下平移
y = a(x - h )2
左右平移
y=
ax2
观后感: 我今天学到了什么?
结束寄语
•探索是数学的生命线
二、自主探究:
1 2 y ( x 1 ) 1的图象.指出它的开口 例3.画出函数 2
方向、顶点与对称轴.
解: 先列表
x … -4 -3 -2 -1 0 1 2 …
1 y ( x 1) 2 1 … 2
-5.5 -3 -1.5 -1 -1.5 -3 -5.5 …
再描点画图.
顶点是(-1, -1).
-5 -4 -3 -2 -1 o 1 2 3 4 5 x -1 -2 -3 -4 -5 -6 -7 -8 1 y ( x 1) 2 1 -9 2 -10
(2)抛物线
y
1 2 x 和 2
1 y ( x 1) 2 1 2
x=-1 y
1
有什么关系?
增减情况 x<0时, y随x的增大而减 小; x>0时,y随x的增大而 增大
a<0,向 下
X=0
(0,0)
当x=0时,y 有最大值0
当x=0时,y 有最小值c 当x=0时,y 有最大值c 当x=h时,y 有最小值0
x<0时, y随x的增大而增 大; x>0时, y随x的增大而 减小.
x<0时, y随x的增大而减 小; x>0时,y随x的增大而 增大 x<0时, y随x的增大而增 大; x>0时, y随x的增大而 减小. x<0时, y随x的增大而减 小; x>0时,y随x的增大而 增大
一般地,抛物线y=a(x-h)2+k与 y=ax2形状 相同 _____ ,位置 不同 _____ .把抛物线 y=ax2向上(下)向右(左)平移,可以得到 抛物线y=a(x-h)2+k.平移的方向、距 、k 离要根据 h ____ _ 的值来决定.
平移方法: y=ax2向左(右)平移 y=a(x-h)2 向上(下)平y=a(x-h)2+k |h|个单位 移|k|个单位 y=ax2 向上(下)平 y=ax2+k 向左(右)平 y=a(x-h)2+k 移|h|个单位 移|k|个单位
C(3,0) x 3
思考
• 除了上面建立坐标系的方法外还有没有其 他的方法?
五、课堂小结
本节课主要运用了数形结合的思想方法,通过对函 2 y a ( x h ) k 的性质: 数图象的讨论,分析归纳出 (1)a的符号决定抛物线的开口方向;
(2)对称轴是直线x=h; (3)顶点坐标是(h,k).
则a=
3 4

4、抛物线y=3x2向右平移3个单位再向下平移2 -2 。 个单位得到的抛物线是 y=3(x-3)² 5、抛物线y=2(x+m)2+n的顶点是 (-m,n) 。
例4.要修建一个圆形喷水池,在池中 心竖直安装一根水管.在水管的顶端 安装一个喷水头,使喷出的抛物线形 水柱在与池中心的水平距离为1m处 达到最高,高度为3m,水柱落地处离 池中心3m,水管应多长? 解:如图建立直角坐标系, 点(1,3) y B(1,3) 是图中这段抛物线的顶点.因此可 3 设这段抛物线对应的函数是 A 2 y=a(x-1)2+3 (0≤x≤3) ∵这段抛物线经过点(3,0) 3 1 2 a= - ∴ 0=a(3-1) +3 解得: 4 因此抛物线的解析式为: 2 1 3 O -4 y= (x-1)2+3 (0≤x≤3) 当x=0时,y=2.25 答:水管长应为2.25m.
y = 4(x-3)2+7
开口方向
向上
对称轴
顶点坐标
直线x=-3 (-3, 5 ) 直线x=1 (1 ,-2 )
向下
向上 向下
直线x=3 ( 3 , 7 )
直线x=2 ( 2,-6 )
y=-5(2-x)2-6
2.请回答抛物线y = 4(x-3)2+7由抛物线y=4x2怎 样平移得到?
Hale Waihona Puke 3、抛物线y=a(x+2)2-3经过点(0,0),
抛物线y=a(x-h)2+k有如下特点: (1)当a>0时, 开口向上 ; ———— 当a<0时,开口 向下 ———— ;
(2)对称轴是 直线 x=h ; ————————
(3)顶点是 (h,k) . ————
顶点式
三、课堂反馈:
1.完成下列表格:
二次函数 y=2(x+3)2+5 y=-3(x-1)2-2
相关文档
最新文档