七年级数学上册期末试卷易错题(Word版 含答案)

合集下载

七年级数学上册期末试卷易错题(Word版 含答案)

七年级数学上册期末试卷易错题(Word版 含答案)

七年级数学上册期末试卷易错题(Word 版 含答案)一、选择题1.如图,正方形硬纸片ABCD 的边长是8,点E 、F 分别是AB 、BC 的中点,若沿图中的虚线剪开,拼成如图的一座“小房子”,则图中阴影部分的面积是( )A .4B .8C .16D .322.据江苏省统计局统计:2018年三季度南通市GDP 总量为6172.89亿元,位于江苏省第4名,将这个数据用科学记数法表示为( ) A .36.1728910⨯亿元 B .261.728910⨯亿元 C .56.1728910⨯亿元D .46.1728910⨯亿元3.若关于x 的一元一次方程mx =6的解为x =-2,则m 的值为( ) A .-3B .3C .13D .164.将一副直角三角尺按如图所示摆放,图中锐角∠1的度数为( )A .58°B .59°C .60°D .61° 5.若a >b ,则下列不等式中成立的是( )A .a +2<b +2B .a ﹣2<b ﹣2C .2a <2bD .﹣2a <﹣2b6.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( ) A .﹣5x ﹣1 B .5x+1C .13x ﹣1D .6x 2+13x ﹣17.某数x 的43%比它的一半还少7,则列出的方程是( ) A .143%72x ⎛⎫-= ⎪⎝⎭B .1743%2x x -= C .143%72x x -= D .143%72x -= 8.每瓶A 种饮料比每瓶B 种饮料少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( ) A .()21313x x -+= B .()21313x x ++= C .()23113x x ++=D .()23113x x +-=9.下面四个图形中,∠1=∠2一定成立的是( ) A .B .C .D .10.如图,学校(记作A )在蕾蕾家(记作B )南偏西20︒的方向上.若90ABC ∠=︒,则超市(记作C )在蕾蕾家的( )A .北偏东20︒的方向上B .北偏东70︒的方向上C .南偏东20︒的方向上D .南偏东70︒的方向上11.画如图所示物体的主视图,正确的是( )A .B .C .D .12.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m 13.下列合并同类项正确的是( ) A .2x +3x =5x 2 B .3a +2b =6abC .5ac ﹣2ac =3D .x 2y ﹣yx 2=0 14.下列各题中,运算结果正确的是( )A .325a b ab +=B .22422x y xy xy -=C .222532y y y -=D .277a a a +=15.下列各图中,是四棱柱的侧面展开图的是( )A .B .C .D .二、填空题16.用边长为10 cm 的正方形,做了一套七巧板.拼成如图所示的一座“桥”,则“桥”中涂色部分的面积为______cm.17.若221x x -++= 4,则2247x x -+的值是________.18.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.19.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为 _______.20.若规定这样一种运算法则a ※b=a 2+2ab ,例如3※(-2) = 32+ 2× 3×(-2) =-3 ,则 (-2) ※3 的值为_______________.21.若∠1+∠2=90°,∠2+∠3=90°,则∠1=∠3.理由是______.22.如图,在三角形ABC 中,90B ∠=︒,6AB cm =,8BC cm =,点D 是AB 的中点,点P 从C 点出发,先以每秒2cm 的速度运动到B ,然后以每秒1cm 的速度从B 运动到A .当点P 运动时间t = _______秒时,三角形PCD 的面积为26cm .23.若代数式m 42a b 与2n 15a b +-是同类项,则n m =______.24.已知长方形周长为12,长为x ,则宽用含x 的代数式表示为______;25.如图为正方体的一种平面展开图,各面都标有数字,则数字为1的面所对的面上的数字是__________.三、解答题26.已知,22321A x xy x =+--,2+1B x xy =-+,且36A B +的值与x 的取值无关,求y 的值. 27.解方程(1)610129x x -=+;(2)21232x x x +--=-. 28.计算(1)48(2)(4)-+÷-⨯-(2)21513146326⎛⎫⎛⎫--+++- ⎪ ⎪⎝⎭⎝⎭29.计算: (1) 12(8)(7)15--+--;(2) ()241123522-+⨯--÷⨯30.如图,直线AB 与CD 相交于点O ,OE 是COB ∠的平分线,OE OF ⊥,. (1)图中∠BOE 的补角是(2)若∠COF =2∠COE ,求∠BOE 的度数;(3) 试判断OF 是否平分∠AOC ,并说明理由;请说明理由.31.计算:(1)()360.655---+-+ (2)()()202031113122⎛⎫---÷⨯-- ⎪⎝⎭32.先化简,再求值:()()22225343a b ababa b ---+,其中a=-2,b=12;33.小明同学在查阅大数学家高斯的资料时,知道了高斯如何求1+2+3+…+100.小明于是对从1开始连续奇数的和进行了研究,发现如下式子:第1个等式: 211=;第2个等式: 2132+=;第3个等式: 21353++= 探索以上等式的规律,解决下列问题: (1) 13549++++=…( 2); (2)完成第n 个等式的填空: 2135()n ++++=…;(3)利用上述结论,计算51+53+55+…+109 .四、压轴题34.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x的点与原点的距离,那么,如果数轴上两点P、Q表示的数为x1,x2时,点P与点Q之间的距离为PQ=|x1-x2|.根据上述材料,解决下列问题:如图,在数轴上,点A、B表示的数分别是-4, 8(A、B两点的距离用AB表示),点M、N是数轴上两个动点,分别表示数m、n.(1)AB=_____个单位长度;若点M在A、B之间,则|m+4|+|m-8|=______;(2)若|m+4|+|m-8|=20,求m的值;(3)若点M、点N既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______.35.如图一,点C在线段AB上,图中有三条线段AB、AC和BC,若其中一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”)(问题解决)和40,点C是线段AB的巧点,求(2)如图二,点A和B在数轴上表示的数分别是20点C在数轴上表示的数。

七年级上册数学 期末试卷易错题(Word版 含答案)

七年级上册数学 期末试卷易错题(Word版 含答案)

七年级上册数学 期末试卷易错题(Word 版 含答案)一、选择题1.下列运算正确的是( ) A .332(2)-=- B .22(3)3-=- C .323233-⨯=-⨯D .2332-=-2.下列运算中,结果正确的是( ) A .3a 2+4a 2=7a 4 B .4m 2n+2mn 2=6m 2n C .2x ﹣12x =32x D .2a 2﹣a 2=2 3.下面计算正确的是( ) A .2233x x -= B .235325a a a += C .10.2504ab ab -+=D .33x x +=4.2018年10月26日,南通市城市轨道交通2号线一期工程开工仪式在园林路站举行.南通市城市轨道交通2号线一期工程线路总长约为21000m ,将21000用科学记数法表示为( ) A .2.1×104B .2.1×105C .0.21×104D .0.21×1055.若关于x 的一元一次方程mx =6的解为x =-2,则m 的值为( ) A .-3B .3C .13D .166.下列运用等式性质进行变形:①如果a =b ,那么a ﹣c =b ﹣c ;②如果ac =bc ,那么a =b ;③由2x +3=4,得2x =4﹣3;④由7y =﹣8,得y =﹣,其中正确的有( ) A .1个 B .2个 C .3个 D .4个 7.下列几何体三视图相同的是( ) A .圆柱 B .圆锥C .三棱柱D .球体8.下列说法不正确的是( )A .对顶角相等B .两点确定一条直线C .一个角的补角一定大于这个角D .两点之间线段最短9.若x >y ,则下列式子错误的是( )A .x ﹣3>y ﹣3B .﹣3x >﹣3yC .x+3>y+3D .x y >3310.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A .B .4C .或4D .2或411.27-的倒数是( ) A .72 B .72-C .27D .27-12.3-的倒数是( ) A .3 B .13C .13-D .3-13.将方程21101136x x ++-=去分母,得( ) A .2(2x +1)﹣10x +1=6 B .2(2x +1)﹣10x ﹣1=1 C .2(2x +1)﹣(10x +1)=6 D .2(2x +1)﹣10x +1=1 14.下列单项式中,与2a b 是同类项的是( )A .22a bB .22a bC .2abD .3ab15.下列各数:-1,2π,4.112134,0,227,3.14,其中有理数有( )A .6个B .5个C .4个D .3个二、填空题16.若221x x -++= 4,则2247x x -+的值是________.17.已知关于 x 的一元一次方程 5x - 2a = 6 的解 x=1,则 a 的值是___________.18.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为 _______.19.如图,已知数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,且2AB =,如果原点O 的位置在线段AC 上,那么|1||1|b c -+-=______.20.如图,C 为线段AB 的中点,D 在线段CB 上,且8,6DA DB ==,则CD =__________.21.三味书屋推出售书优惠方案:(1)一次性购书不超过100元,不享受优惠;(2)一次性购书超过100元但不超过200元一律打九折;(3)一次性购书超过200元及以上一律打八折。

数学七年级上册 期末试卷易错题(Word版 含答案)

数学七年级上册 期末试卷易错题(Word版 含答案)

数学七年级上册期末试卷易错题(Word版含答案)一、选择题1.在有理数2,-1,0,-5中,最大的数是()A.2B.C.0D.2.如图,有一个正方体纸巾盒,它的平面展开图不可能的是()A.B.C.D.3.如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是()A.63 B.70 C.92 D.1054.A、B两地相距550千米,甲、乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t小时,两车相距50千米,则t的值为()A.2.5 B.2或10 C.2.5或3 D.35.如图①,一种长方形餐桌的四周可坐6人用餐,现把若千张这样的餐桌按如图②方式进行拼接.那么需要_________张餐桌拼在一起可坐78人用餐()A.13B.15C.17D.196.如图,数轴的单位长度为1,如果点A表示的数为-2,那么点B表示的数是()A .3B .2C .0D .-1 7.小明在某月的日历中圈出了三个数,算出它们的和是14,那么这三个数的位置可能是( )A .B .C .D .8.下列方程为一元一次方程的是( )A .12y y +=B .x+2=3yC .22x x =D .3y=29.下列平面图形不能够围成正方体的是( )A .B .C .D .10.下列算式中,运算结果为负数的是( )A .()3--B .()33--C .()23-D .3--11.3-的倒数是( )A .3B .13C .13- D .3-12.2019年12月15开始投入使用的盐城铁路综合客运枢纽,建筑总面积的为324000平方米,数据324000用科学记数法可表示为( )A .33.2410⨯B .43.2410⨯C .53.2410⨯D .63.2410⨯ 13.单项式24x y 3-的次数是( ) A .43- B .1 C .2 D .3 14.下列单项式中,与2a b 是同类项的是( )A .22a bB .22a bC .2abD .3ab 15.下列运用等式的性质,变形正确的是( ) A .若x=y ,则x ﹣5=y+5 B .若a=b ,则ac=bcC .若a b c c =,则2a=3bD .若x=y ,则x y a a= 二、填空题16.用边长为10 cm 的正方形,做了一套七巧板.拼成如图所示的一座“桥”,则“桥”中涂色部分的面积为______cm.17.若∠α=40° 15′,则∠α的余角等于________°.18.如图,若输入的x 的值为正整数,输出的结果为119,则满足条件的所有x 的值为_____.19.,,,A B C D 是长方形纸片的四个顶点,点E F H 、、分别是边AB BC AD 、、上的三点,连结EF FH 、.(1)将长方形纸片ABCD 按图①所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,点'B 在FC '上,则EFH ∠的度数为 ;(2)将长方形纸片ABCD 按图②所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、, 若''18∠=︒B FC , 求EFH ∠的度数;(3)将长方形纸片ABCD 按图③所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,若EFH m ∠=,求''B FC ∠的度数为 .20.单项式223x y π-的次数为_________________ 21.下午3点30分时,钟面上时针与分针所成的角等于_____°.22.2-的结果是_______.23.线段AB=10cm ,BC=5cm ,A 、B 、C 三点在同一条直线上,则AC=______.24.如图,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为_____.(用方位角来表示)25.如果1x =是方程240x k +-=的解,那么k 的值是_________三、解答题26.某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名?27.如图,已知线段AB ,延长AB 到C ,点D 是线段AB 的中点,点E 是线段BC 的中点.(1)若5BD =,4BC =,求线段EC 、AC 的长;(2)试说明:2AC DE =.28.在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A 、B 、C 均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D ,使CD ∥AB ,并画出直线CD ;②标出格点E ,使CE ⊥AB ,并画出直线CE .(2)计算△ABC 的面积.29.先化简,再求值:()()22224333a b ab ab a b ---+.其中 1a =-、 2b =-. 30.解方程:(1)5(x+8)=6(2x-7)+5(2)2x 13-=2x 16+-1 31.如图,点A 、点B 是数轴上原点O 两侧的两点,其中点A 在原点O 的左侧,且满足6AB =,2OB OA =.(1)点A 、B 在数轴上对应的数分别为______和______.(2)点A 、B 同时分别以每秒1个单位长度和每秒2个单位长度的速度向左运动. ①经过几秒后,3OA OB =;②点A 、B 在运动的同时,点P 以每秒1个单位长度的速度从原点向右运动,经过几秒后,点A 、B 、P 中的某一点成为其余两点所连线段的中点? 32.如图,直线l 上有A 、B 两点,线段AB =10cm .点C 在直线l 上,且满足BC =4cm ,点P 为线段AC 的中点,求线段BP 的长.33.计算:(1)35|3|44⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭(2)23151(32)21428⎛⎫---⨯-+ ⎪⎝⎭ 四、压轴题34.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由.35.如图一,点C 在线段AB 上,图中有三条线段AB 、AC 和BC ,若其中一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”) (问题解决)(2)如图二,点A 和B 在数轴上表示的数分别是20-和40,点C 是线段AB 的巧点,求点C 在数轴上表示的数。

数学七年级上册 期末试卷易错题(Word版 含答案)

数学七年级上册 期末试卷易错题(Word版 含答案)

数学七年级上册期末试卷易错题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.2.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.3.已知 (本题中的角均大于且小于 )(1)如图1,在内部作,若,求的度数;(2)如图2,在内部作,在内,在内,且,,,求的度数;(3)射线从的位置出发绕点顺时针以每秒的速度旋转,时间为秒( 且 ).射线平分,射线平分,射线平分 .若,则 ________秒.【答案】(1)解:∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴(2)解:,设,则,则,(3) s或15s或30s或45s【解析】【解答】(2)解:当OI在直线OA的上方时,有∠MON=∠MOI+∠NOI= (∠AOI+∠BOI))= ∠AOB= ×120°=60°,∠PON= ×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t= 或15;当OI在直线AO的下方时,∠MON═(360°-∠AOB)═ ×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°- )或180°-3t=3( -60°),解得t=30或45,综上所述,满足条件的t的值为 s或15s或30s或45s【分析】(1)利用角的和差进行计算便可;(2)设,则,,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON在不同情况下的定值,再根据角的和差确定t的不同方程进行解答便可.4.如图1,已知∠AOB=140°,∠AOC=30°,OE是∠AOB内部的一条射线,且OF平分∠AOE.(1)若∠EOB=30°,则∠COF=________;(2)若∠COF=20°,则∠EOB=________;(3)若∠COF=n°,则∠EOB=________(用含n的式子表示).(4)当射线OE绕点O逆时针旋转到如图2的位置时,请把图补充完整;此时,∠COF与∠EOB有怎样的数量关系?请说明理由.【答案】(1)20°(2)40°(3)80°-2n°(4)如图所示:∠EOB=80°+2∠COF.证明:设∠COF=n°,则∠AOF=∠AOC-∠COF=30°-n°,又∵OF平分∠AOE,∴∠AOE=2∠AOF=60°-2n°.∴∠EOB=∠AOB-∠AOE=140°-(60°-2n°)=(80+2n)°即∠EOB=80°+2∠COF.【解析】【解答】(1)∵∠AOB=140°,∠EOB=30°,∴∠AOE=∠AOB-∠EOB=140°-30°=110°,∵OF平分∠AOE,∴∠AOF= ∠AOE= ×110°=55°,∴∠COF=∠AOF-∠AOC,=55°-30°,=25°;故答案为:25°;(2)∵∠AOC=30°,∠COF=20°,∴∠AOF=∠AOC+∠COF=30°+20°=50°,∵OF平分∠AOE,∴∠AOE=2∠AOF=2×50°=100°,∴∠EOB=∠AOB-∠AOE=140°-100°=40°;故答案为:40°;(3)∵∠AOC=30°,∠COF=n°,∴∠AOF=∠AOC+∠COF=30°+n°,∵OF平分∠AOE,∴∠AOE=2∠AOF=2(30°+n°)=60°+2n°,∴∠EOB=∠AOB-∠AOE=140°-(60°+2n°)=80°-2n°;故答案为:80°-2n°;【分析】(1)根据∠AOE=∠AOB-∠EOB先求出∠AOE,再根据角平分线的定义求出∠AOF,最后根据∠COF=∠AOF-∠AOC解答即可;(2)根据∠AOF=∠AOC+∠COF先求出∠AOF,再根据角平分线的定义求出∠AOE,最后根据∠EOB=∠AOB-∠AOE解答即可;(3)与(2)的思路相同求解即可;(4)设∠COF=n°,先表示出∠AOF,再根据角平分线的定义求出∠AOE,最后根据∠EOB=∠AOB-∠AOE解答即可.5.如图,已知∠AOB=120°,OC⊥OB,按下列要求利用量角器过点O作出射线OD、OE;(1)在图①中作出射线OD满足∠COD=50°,并直接写出∠AOD的度数是________;(2)在图②中作出射线OD、OE,使得OD平分∠AOC,OE平分∠BOD,并求∠COE的度数;(3)如图③,若射线OD从OA出发以每秒10°的速度绕点O顺时针方向旋转,同时射线OE从OC出发以每秒5°的速度绕点O顺时针方向旋转,设旋转的时间为t秒,在旋转过程中,当OB第一次恰好平分∠DOE时,求出t的值,并作出此时OD、OE的大概位置. 【答案】(1)20°或80°(2)解:如图,∵CO⊥BO ∴∠COB=90°∵∠AOB=120°∴∠AOC=120°-90°=30°∵OD平分∠AOC ∴∠COD= ∠AOC=15°∴∠BOD=90°+15°=105°, ∵OE是∠BOD的平分线∴∠EOD= ∠BOD=52.5°∴∠COE=52.5°-15°=37.5°.(3)解:如图,根据题意有:30°+5t+(90°-5t)×2=10t 解得:t=14.【解析】【解答】解:(1)有两种情况分别是:①当OD在∠AOB内部时,如图,∵CO⊥BO∴∠COB=90°∵∠AOB=120°∴∠AOC=120°-90°=30°∵∠COD=50°,∴∠AOD=50°+30°=80°;.②当OD在∠AOB外部时,如图,∵CO⊥BO∴∠COB=90°∵∠AOB=120°∴∠AOC=120°-90°=30°∵∠COD=50°,∴∠AOD=50°-30°=20°【分析】(1)有两种情况分别是:①当OD在∠AOB内部时,如图,根据垂直的定义及角的和差,由∠AOC=∠AOB-∠BOC即可算出∠AOC的度数,最后根据∠AOD=∠AOC+∠COD即可算出答案;②当OD在∠AOB外部时,如图,根据垂直的定义及角的和差,由∠AOC=∠AOB-∠BOC即可算出∠AOC的度数,最后根据∠AOD=∠COD-∠COA即可算出答案;(2)根据垂直的定义及角的和差,由∠AOC=∠AOB-∠BOC即可算出∠AOC的度数,根据角平分线的定义得出∠COD= ∠AOC算出∠COD的度数,根据角的和差,由∠BOD=∠COD+∠BOC算出∠BOD的度数,再根据角平分线的定义得出∠EOD= ∠BOD得出∠EOD的度数,最后根据∠COE=∠EOD- ∠COD算出答案;(3)根据题意∠AOD=10t,∠COE=5t,根据角的和差得出∠BOD=∠AOD-∠AOB=10t-120°,∠BOE=∠COB-∠COE=90°-5t,然后根据角平分线的定义得出∠BOD=∠BOE,从而列出方程,求解即可。

七年级上册数学 期末试卷易错题(Word版 含答案)

七年级上册数学 期末试卷易错题(Word版 含答案)

七年级上册数学期末试卷易错题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.3.如图,直线EF、CD相交于点O,OA⊥OB,OC平分∠AOF.(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=30°,请直接写出∠BOD的度数;(3)观察(1)(2)的结果,猜想∠AOE和∠BOD的数量关系,并说明理由.【答案】(1)∵∠AOE+∠AOF=180°,∠AOE=40°,∴∠AOF=140°;又∵OC平分∠AOF,∴∠FOC= ∠AOF=70°,∴∠EOD=∠FOC=70°;∵OA⊥OB, ∴∠AOB=90°∵∠BOE=∠AOB-∠AOE=50°,∴∠BOD=∠EOD-∠BOE=20°;(2)∵∠AOE+∠AOF=180°,∠AOE=30°,∴∠AOF=150°;又∵OC平分∠AOF,∴∠FOC= ∠AOF=75°,∴∠EOD=∠FOC=75°;∵∠BOE=∠AOB-∠AOE=60°,∴∠BOD=∠EOD-∠BOE=15°;(3)从(1)(2)的结果中能看出∠BOD= ∠AOE,理由如下:∵∠AOE+∠AOF=180°,∴∠AOF=180°-∠AOE;又∵OC平分∠AOF,∴∠FOC= ∠AOF=90°- ∠AOE,∴∠EOD=∠FOC=90°- ∠AOE;∵OA⊥OB, ∴∠AOB=90°∵∠BOE=∠AOB-∠AOE=90°-∠AOE,∴∠BOD=∠EOD-∠BOE=(90°- ∠AOE)-(90°-∠AOE)= ∠AOE;∴∠BOD= ∠AOE;【解析】【分析】(1)根据平角的定义得出∠AOF=140°,根据角平分线的定义得出∠FOC= ∠AOF=70°,根据对顶角相等得出∠EOD=∠FOC=70°,根据垂直的定义得出∠AOB=90°,然后根据角的和差,由∠BOE=∠AOB-∠AOE ,∠BOD=∠EOD-∠BOE 即可算出答案;(2)根据平角的定义得出∠AOF=150°,根据角平分线的定义得出∠FOC= ∠AOF=75°,根据对顶角相等得出∠EOD=∠FOC=75°,然后根据角的和差,由∠BOE=∠AOB-∠AOE ,∠BOD=∠EOD-∠BOE 即可算出答案;(3)从(1)(2)的结果中能看出∠BOD= ∠AOE,理由如下:根据平角的定义得出∠AOF=180°-∠AOE;根据角平分线的定义得出∠FOC= ∠AOF=90°- ∠AOE,根据对顶角相等得出∠EOD=∠FOC=90°- ∠AOE;然后根据角的和差,由∠BOE=∠AOB-∠AOE=90°-∠AOE,∠BOD=∠EOD-∠BOE=(90°- ∠AOE)-(90°-∠AOE)= ∠AOE得出结论。

数学七年级上册 期末试卷易错题(Word版 含答案)

数学七年级上册 期末试卷易错题(Word版 含答案)

数学七年级上册 期末试卷易错题(Word 版 含答案)一、选择题1.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒ 2.如图,C 是线段AB 上一点, AC=4,BC=6,点M 、N 分别是线段AC 、BC 的中点,则线段MN 的长是( )A .5B .92C .4D .33.2019年12月15日开始投入使用的盐城铁路综合客运枢纽,建筑总面积约为324 000平方米.数据324 000用科学记数法可表示为( )A .324×103B .32.4×104C .3.24×105D .0.324×1064.下列运用等式性质进行变形:①如果a =b ,那么a ﹣c =b ﹣c ;②如果ac =bc ,那么a =b ;③由2x +3=4,得2x =4﹣3;④由7y =﹣8,得y =﹣,其中正确的有( ) A .1个 B .2个 C .3个 D .4个5.下列各数是无理数的是( )A .﹣2B .227C .0.010010001D .π6.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a7.如图正方体纸盒,展开后可以得到( )A .B .C .D .8.画如图所示物体的主视图,正确的是( )A .B .C .D .9.下列运算正确的是( )A .332(2)-=-B .22(3)3-=-C .323233-⨯=-⨯D .2332-=-10.实数,a b 在数轴上的位置如图所示,给出如下结论:①0a b +>;②0b a ->;③a b ->;④a b >-;⑤0a b >>.其中正确的结论是( )A .①②③B .②③④C .②③⑤D .②④⑤11.数轴上标出若干个点,每相邻两点相距一个单位长度,点A 、B ,C ,D 分别表示整数a ,b ,c ,d ,且a +b +c +d =6,则点D 表示的数为( )A .﹣2B .0C .3D .512.如图是一个正方体的展开图,折好以后与“学”相对面上的字是( )A .祝B .同C .快D .乐13.-5的相反数是( )A .15B .±5C .5D .-1514.下列说法正确的是( )A .两点之间的距离是两点间的线段B .与同一条直线垂直的两条直线也垂直C .同一平面内,过一点有且只有一条直线与已知直线平行D .同一平面内,过一点有且只有一条直线与已知直线垂直15.下列各图中,可以是一个正方体的平面展开图的是( )A .B .C .D .二、填空题16.如图,已知∠AOB=75°,∠COD=35°,∠COD 在∠AOB 的内部绕着点O 旋转(OC 与OA 不重合,OD 与OB 不重合),若OE 为∠AOC 的角平分线.则2∠BOE -∠BOD 的值为______.17.在0,1,π,227-这些数中,无理数是___________ . 18.若3a b -=,则代数式221b a -+的值等于________. 19.若2|3|(2)0x y ++-=,则2x y +的值为___________.20.如图,若开始输入的x 的值为正整数,最后输出的结果为144,则满足条件的x 的值为_______.21.单项式23x y -的系数是____. 22.在数轴上,点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,若a b -=2019,且AO =2BO ,则a +b 的值为_________23.如图,一根绳子对折以后用线段AB 表示,在线段AB 的三等分点处将绳子剪短,若所得三段绳长的 最大长度为 8cm ,则这根绳子原长为________cm .24.若∠1+∠2=90°,∠2+∠3=90°,则∠1=∠3.理由是______.25.比较大小:-12____23-(填“>”,“<”或“=”) 三、解答题26.如图,已知点A,B 是数轴上原点O 两侧的两点,其中点A 在负半轴上,点B 在正半轴上,AO=2, OB=10.动点P 从点A 出发以每秒2个单位长度的速度向右运动,到达点B 后立即返回,速度不变;动点Q 从点O 出发以每秒1个单位长度的速度向右运动,当点Q 到达点B 时,动点P ,Q 停止运动.设P ,Q 两点同时出发,运动时间为t 秒.(1)当点P 从点A 向点B 运动时,点P 在数轴上对应的数为 当点P 从点B 返回向点O 运动时,点P 在数轴上对应的数为 (用含t 的代数式表示)(2)当t 为何值时,点P ,Q 第一次重合?(3)当t 为何值时,点P ,Q 之间的距离为3个单位?27.计算:(1)25)(277+-()-(-)-; (2)315(2)()3-⨯÷-. 28.化简:(1)-3x +2y +5x -7y ;(2)2(x 2-2x )-(2x 2+3x ).29.如图,直线AB,CD 交于点O ,OE 平分COB ∠,OF 是EOD ∠的角平分线.(1)说明: 2AOD COE ∠=∠;(2)若50AOC ∠=︒,求EOF ∠的度数;(3)若15BOF =︒∠,求AOC ∠的度数.30.解方程(1)()3226x x +-=;(2)212134x x +--= 31.解方程: (1)-5x +3=-3x -5;(2)4x -3(1-x )=11.32.在平面内,将一副直角三角板按如图所示的方式摆放,其中三角形ABC 为含60°角的直角三角板,三角形BDE 为含45°角的直角三角板.(1)如图1,若点D 在AB 上,则∠EBC 的度数为 ;(2)如图2,若∠EBC =170°,则∠α的度数为 ;(3)如图3,若∠EBC =118°,求∠α的度数;(4)如图3,若0°<∠α<60°,求∠ABE -∠DBC 的度数.33.根据要求完成下列题目(1)图中有______块小正方体;(2)请在下面方格纸中分别画出它的主视图、左视图和俯视图;(3)用小正方体搭一几何体,使得它的俯视图和主视图与你在上图方格中所画的图一致,若这样的几何体最少要个a 小正方体,最多要b 个小正方体,则+a b 的值为___________.四、压轴题34.一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”. 35.已知线段AB =m (m 为常数),点C 为直线AB 上一点,点P 、Q 分别在线段BC 、AC 上,且满足CQ =2AQ ,CP =2BP .(1)如图,若AB =6,当点C 恰好在线段AB 中点时,则PQ = ;(2)若点C 为直线AB 上任一点,则PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ ﹣2PQ 与1的大小关系,并说明理由.36.尺规作图是指用无刻度的直尺和圆规作图。

七年级数学上册期末试卷易错题(Word版 含答案)

七年级数学上册期末试卷易错题(Word版 含答案)

七年级数学上册期末试卷易错题(Word 版 含答案)一、选择题1.如图,点A 、O 、D 在一条直线上,此图中大于0︒且小于180︒的角的个数是( )A .3个B .4个C .5个D .6个2.-5的相反数是( ) A .15B .±5C .5D .-153.下列各式中与a b c --的值不相等的是( ) A .()a b c -+ B .()a b c --C .()()a b c -+-D .()()c b a ---4.在55⨯方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是( )(1)(2)A .先向下移动1格,再向左移动1格;B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格:D .先向下移动2格,再向左移动2格 5.下列合并同类项结果正确的是( ) A .2a 2+3a 2=6a 2 B .2a 2+3a 2=5a 2C .2xy -xy =1D .2x 3+3x 3=5x 66.已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A .相等B .互余C .互补D .不确定7.如图由5个小正方形组成,只要再添加1个小正方形,拼接后就能使得整个图形能折叠成正方体纸盒,这种拼接的方式有( )A.2种B.3种C.4种D.5种8.某商店以90元相同的售价卖出2件不同的衬衫,其中一件盈利25%,另一件亏损25%.商店卖出这两件衬衫的盈亏情况是()A.赚了B.亏了C.不赚也不亏D.无法确定9.下列关于0的说法正确的是()A.0是正数B.0是负数C.0是有理数D.0是无理数10.下列各数中,比-4小的数是()A. 2.5-B.5-C.0D.211.下列语句错误的是()A.两点确定一条直线B.同角的余角相等C.两点之间线段最短D.两点之间的距离是指连接这两点的线段12.如图所示的几何体的左视图是()A.B.C.D.13.3-的绝对值是()A.3-B.13-C.3D.3±14.2-的相反数是()A.2-B.2 C.12D.12-15.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为()A.B.C .D .二、填空题16.如图,已知数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,且2AB =,如果原点O 的位置在线段AC 上,那么|1||1|b c -+-=______.17.2-的结果是_______.18.正方体切去一块,可得到如图几何体,这个几何体有______条棱.19.如图,直线AB ,CD 相交于点O ,∠EOC=70°,OA 平分∠EOC,则∠BOD=________.20.多项式234ab ab -的次数是______. 21.比较大小: -0.4________12-. 22.如图,135AOD ∠=︒,75COD ∠=︒,OB 平分AOC ∠,则BOC ∠=________度.23.若∠α=70°,则它的补角是 .24.如图,已知直线AB 和CD 相交于点O ,射线OE 在COB ∠内部,OE OC ⊥,OF 平分AOE ∠,若40BOD ∠=,则COF ∠=__________度.25.一个角的余角比这个角的补角15的大10°,则这个角的大小为_____.三、解答题26.在平面内,将一副直角三角板按如图所示的方式摆放,其中三角形ABC为含60°角的直角三角板,三角形BDE为含45°角的直角三角板.(1)如图1,若点D在AB上,则∠EBC的度数为;(2)如图2,若∠EBC=170°,则∠α的度数为;(3)如图3,若∠EBC=118°,求∠α的度数;(4)如图3,若0°<∠α<60°,求∠ABE-∠DBC的度数.27.由几个相同的棱长为1的小立方块搭成的几何体的俯视图如图所示,方格中的数字表示该位置的小立方块的个数.(1)在下面方格纸中画出这个几何体的1主视图与左视图;(2)求该几何体的表面积28.如图,点C在PAQ内.(1)过点C 画直线//CB AQ ,交AP 于点B ; (2)过点C 画直线//CD AP ,交AQ 于点D ;(3)连接AC ,并过点C 画AP 的垂线CE ,垂足为E .在线段AC 、BC 、EC 中,哪条线段最短,并说明理由.29.计算:(1)243()(3)3-⨯-+-; (2)62112(3)522-+⨯--÷⨯.30.如图,直线AB,CD 交于点O ,OE 平分COB ∠,OF 是EOD ∠的角平分线.(1)说明: 2AOD COE ∠=∠;(2)若50AOC ∠=︒,求EOF ∠的度数; (3)若15BOF =︒∠,求AOC ∠的度数.31.如图,直线l 上有A 、B 两点,线段AB =10cm .点C 在直线l 上,且满足BC =4cm ,点P 为线段AC 的中点,求线段BP 的长.32.甲、乙两车都从A 地出发,在路程为360千米的同一道路上驶向B 地.甲车先出发匀速驶向B 地.10分钟后乙车出发,乙车匀速行驶3小时后在途中的配货站装货耗时20分钟.由于满载货物,乙车速度较之前减少了40千米/时.乙车在整个途中共耗时133小时,结果与甲车同时到达B 地. (1)甲车的速度为 千米/时; (2)求乙车装货后行驶的速度;(3)乙车出发 小时与甲车相距10千米? 33.解方程:(1)2(2)6x-=(2)11123 x x +--=四、压轴题34.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n与层数n之间满足关系式a n=n²−32n+247,1⩽n<16,n为整数。

七年级数学上册 期末试卷易错题(Word版 含答案)

七年级数学上册 期末试卷易错题(Word版 含答案)

七年级数学上册期末试卷易错题(Word版含答案)一、选择题1.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为15cm,则四边形ABFD的周长等于()A.17cm B.18cm C.19cm D.20cm2.如图,AB∥CD,∠BAP=60°-α,∠APC=50°+2α,∠PCD=30°-α.则α为()A.10°B.15°C.20°D.30°3.下列说法错误的是( )A.2的相反数是2-B.3的倒数是1 3C.3-的绝对值是3 D.11-,0,4这三个数中最小的数是0 4.己知x=2是关于x 的一元一次方程ax-6+a=0 的解,则a的值为( )A.2 B.2-C.1 D.05.2020的相反数是()A.2020 B.﹣2020 C.12020D.﹣120206.如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是()A.秦B.淮C.源D.头7.下列立体图形中,俯视图是三角形的是()A .B .C .D .8.-5的相反数是( ) A .-5B .±5C .15 D .59.2020的绝对值等于( ) A .2020B .-2020C .12020D .12020-10.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A 地到B 地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( ) A .①② B .①③C .②④D .③④11.下列运算中,结果正确的是( )A .3a 2+4a 2=7a 4B .4m 2n+2mn 2=6m 2nC .2x ﹣12x =32x D .2a 2﹣a 2=212.下列图形中1∠和2∠互为余角的是( ) A .B .C .D .13.未来三年,国家将投入8 500亿元用于缓解群众“看病难,看病贵”问题.将8 500亿元用科学记数法表示为( ) A .0.85×104亿元B .8.5×103亿元C .8.5×104亿元D .85×102亿元14.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )A .B .C .D .15.下列运用等式的性质,变形正确的是( ) A .若x=y ,则x ﹣5=y+5 B .若a=b ,则ac=bc C .若a bc c =,则2a=3b D .若x=y ,则x y a a= 二、填空题16.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______.17.若221x x -+的值是4,则2245x x --的值是_________.18.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册期末试卷易错题(Word 版 含答案)一、选择题1.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>26”为一次程序操作,如果程序操作进行了2次后停止,那么满足条件的所有整数....x 的和为( )A .30B .35C .42D .392.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养 3.如果a +b +c =0,且|a |>|b |>|c |,则下列式子可能成立的是( )A .c >0,a <0B .c <0,b >0C .c >0,b <0D .b =0 4.如图是我市十二月份某一天的天气预报,该天的温差是( )A .3℃B .7℃C .2℃D .5℃5.如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是()A .63B .70C .92D .105 6.下列关于0的说法正确的是( )A .0是正数B .0是负数C .0是有理数D .0是无理数 7.在一列数:123n a a a a ,,,中,12=7=1a a ,, 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这个数中的第2018个数是()A .1B .3C .7D .9 8.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作. ①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是( )A .13B .12C .23D .19.27-的倒数是( ) A .72 B .72- C .27 D .27- 10.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+ =100 C .()31001003x x --= D .10031003x x --= 11.小明同学用手中一副三角尺想摆成α∠与β∠互余,下面摆放方式中符合要求的是( ).A .B .C .D .12.画如图所示物体的主视图,正确的是( )A .B .C .D .13.下列运算正确的是( )A .332(2)-=-B .22(3)3-=-C .323233-⨯=-⨯D .2332-=-14.下列单项式中,与2a b 是同类项的是( ) A .22a b B .22a bC .2abD .3ab 15.下列各图中,可以是一个正方体的平面展开图的是( )A .B .C .D .二、填空题16.在-4,0,π,1.010010001,-227,1.3•这6个数中,无理数有______个. 17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.18.点A 在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B ,则点B 表示的数是_____.19.在数轴上到-3的距离为4个单位长度的点表示的数是___. 20.比较大小: -0.4________12-. 21.在 -2 、-3 、4、5 中选取2个数相除,则商的最小值是________.22.计算:3-|-5|=____________.23.有下列三个生活、生产现象:①用两个钉子就可以把木条固定在干墙上;②把弯曲的公路改直能缩短路程;③植树时只要定出两颗树的位置,就能确定同一行所在的直线.其中可用“两点之间,线段最短”来解释的现象有_____(填序号).24.216x -的系数是________ 25.32-的相反数是_________; 三、解答题26.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,是当时世界上最简练有效的应用数学.书中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问人数是多少?27.如图,在方格纸中,点A 、B 、C 是三个格点(网格线的交点叫做格点)(1)画线段BC ,画射线AB ,过点A 画BC 的平行线AM ;(2)过点C 画直线AB 的垂线,垂足为点D ,则点C 到AB 的距离是线段______的长度;(3)线段CD ______线段CB (填“>”或“<”),理由是______.28.解方程:(1)5236x x +=+(2)4320.20.5x x +--= 29.如图,直线 l 上有 A 、B 两点,AB=12cm ,点 O 是线段 AB 上的一点,OA=2OB .(1)OA=_______cm ,OB=________cm ;(2)若点 C 是线段AB 的中点,求线段 CO 的长;(3)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为2 厘米/秒,点Q 的速度为1厘米/秒,设运动时间为x 秒,当 x=_____秒时,PQ=4cm ;(4)有两条射线 OC 、OD 均从射线 OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC 与OD 第一次重合时,OC 、OD 同时停止旋转,设旋转时间为 t 秒,当t 为何值时,射线OC ⊥OD30.如图,A ,O ,B 三点在同一直线上,∠BOD 与∠BOC 互补.(1)∠AOC 与∠BOD 的度数相等吗,为什么?(2)已知OM 平分∠AOC ,若射线ON 在∠COD 的内部,且满足∠AOC 与∠MON 互余; ①∠AOC =32°,求∠MON 的度数;②试探究∠AON 与∠DON 之间有怎样的数量关系,请写出结论并说明理由.31.已知高铁的速度比动车的速度快50 km /h ,小路同学从苏州去北京游玩,本打算乘坐动车,需要6h 才能到达;由于得知开通了高铁,决定乘坐高铁,她发现乘坐高铁比乘坐动车节约72 min .求高铁的速度和苏州与北京之间的距离.32.小明同学在查阅大数学家高斯的资料时,知道了高斯如何求1+2+3+…+100.小明于是对从1开始连续奇数的和进行了研究,发现如下式子:第1个等式: 211=;第2个等式: 2132+=;第3个等式: 21353++=探索以上等式的规律,解决下列问题:(1) 13549++++=…( 2);(2)完成第n 个等式的填空: 2135()n ++++=…; (3)利用上述结论,计算51+53+55+…+109 .33.解方程(1)5x ﹣1=3(x +1)(2)2151136x x +--= 四、压轴题34.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”);()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.35.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.36.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.37.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.38.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC .①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).39.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.40.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此时,AC =11;情况②当点C 在点B 的左侧时, 如图2此时,AC =5.仿照上面的解题思路,完成下列问题:问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且BC =2AB ,则点C 表示的数是.问题(2): 若2x =,3y =求x y +的值.问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).41.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.42.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.43.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P 表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意可知第一次所得的结果≤26,第二次所得的结果>26,列不等式组并解除不等式组得解后再计算满足条件的所有整数的和即可.【详解】由题意得31263(31)126xx-≤⎧⎨--⎩①>②,解不等式①得,x≤9,解不等式②得,x>103,∴x的取值范围是103<x≤9,∴满足条件的所有整数x的和为4+5+6+7+8+9=39.故答案选D.【点睛】本题考查一元一次不等式组的应用,解题的关键是正确理解程序所表示的意义,能根据题意列出不等式组.2.D解析:D【解析】【分析】根据正方体的展开图即可得出答案.【详解】根据正方体的展开图可知:“数”的对面的字是“养”“学”的对面的字是“核”“心”的对面的字是“素”故选:D .【点睛】本题主要考查正方体的展开图,掌握正方体展开图的特点是解题的关键.3.A解析:A【解析】【分析】根据题意分类讨论,综合情况解出即可.【详解】1.假设a 为负数,那么b+c 为正数;(1)b 、c 都为正数;(2)一正一负,因为|b|>|c|,只能b 为正数,c 为负数;2.假设a 为正数,那么b+c 为负数,b 、c 都为负数;(1)若b 为正数,因为|b|>|c|,所以b+c 为正数,则a+b+c=0不成立;(2)若b 为负数,c 为正数,因为|b|>|c|,则|b+c|<|b|<|a|,则a+b+c=0不成立. 故选A.【点睛】本题考查绝对值的性质,关键在于分类讨论正负性.4.B解析:B【解析】【分析】用最高气温减去最低气温列出算式,然后再依据有理数的减法法则计算即可.【详解】解:该天的温差为()()52527--=+=℃,故选:B.【点睛】本题主要考查的是有理数的减法,掌握减法法则是解题的关键.5.C解析:C【解析】【分析】设“H”型框中的正中间的数为x,则其他6个数分别为x-8,x-6,x+-1,x+1,x+6,x+8,表示出这7个数之和,然后分别列出方程解答即可.【详解】解:设“H”型框中的正中间的数为x,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,这7个数之和为:x-8+x-6+x-1+x+1+x+x+6+x+8=7x.由题意得A、7x=63,解得:x=9,能求得这7个数;B、7x=70,解得:x=10,能求得这7个数;C、7x=92,解得:x=927,x须为正整数,∴不能求得这7个数;D、7x=105,解得:x=15,能求得这7个数.故选:C【点睛】此题考查一元一次方程的实际运用,掌握“H”型框中的7个数的数字的排列规律是解决问题的关键.6.C解析:C【解析】【分析】直接利用有理数、无理数、正负数的定义分析得出答案.【详解】0既不是正数也不是负数,0是有理数.故选C【点睛】此题主要考查了实数,正确把握实数有关定义是解题关键.7.A解析:A【解析】【详解】a1=7,a2=1,a3=7,a4=7,a5=9,a6=3,a7=7,a8=1,a9=7,…不难发现此组数据为6个一循环,2018÷6=336…2,所以第2018个数是1.【点睛】 本题考查了规律型——数字的变化类,此类问题关键在于找出数据循环的规律. 8.A 解析:A 【解析】 【分析】 设大三角形的面积为1,先求原算式3倍的值,将其值转化为三角形的面积和,利用面积求解.【详解】解:设大三角形的面积为1,则第一次操作后每个小三角形的面积为14,第二次操作后每个小三角形的面积为214,第三次操作后每个小三角形面积为314⎛⎫ ⎪⎝⎭,第四次操作后每个小三角形面积为414,……第2020次操作后每个小三角形面积为202014,算式23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭相当于图1中的阴影部分面积和.将这个算式扩大3倍,得232020111133334444⎛⎫⎛⎫⎛⎫⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,此时该算式相当于图2中阴影部分面积和,这个和等于大三角形面积减去1个剩余空白小三角形面积,即2020114,则原算式的值为202011113343. 所以23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近13.故选:A.本题考查借助图形来计算的方法就是数形结合的运用,观察算式特征和图形的关系,将算式值转化为面积值是解答此题的关键.9.B解析:B【解析】【分析】根据倒数的定义即可求解.【详解】27-的倒数是72- 故选B.【点睛】此题主要考查倒数,解题的关键是熟知倒数的定义.10.B解析:B【解析】【分析】设大和尚有x 人,则小和尚有(100﹣x )人,根据3×大和尚人数+小和尚人数÷3=100,即可得出关于x 的一元一次方程,此题得解.【详解】设大和尚有x 人,则小和尚有(100﹣x )人,根据题意得:3x 1003x -+=100. 故选B .【点睛】 本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.11.A解析:A【解析】试题解析:A 、∠α+∠β=180°-90°=90°,则∠α与∠β互余,选项正确;B 、∠α与∠β不互余,故本选项错误;C 、∠α与∠β不互余,故本选项错误;D 、∠α和∠β互补,故本选项错误.故选A .12.A解析:A【解析】直接利用三视图解题即可【详解】解:从正面看得到的图形是A .故选:A .【点睛】本题考查三视图,基础知识扎实是解题关键13.A解析:A【解析】【分析】根据幂的乘法运算法则判断即可.【详解】A. 332(2)-=-=-8,选项正确;B. 22(3)9,39-=-=-,选项错误;C. 323224,3327,-⨯=--⨯=-选项错误;D. 2339,28,-=--=-选项错误;故选A.【点睛】本题考查幂的乘方运算法则,关键在于熟练掌握运算方法.14.A解析:A【解析】试题分析:含有相同字母,并且相同字母的指数相同的单项式为同类项,故选A . 考点:同类项的概念.15.C解析:C【解析】【分析】根据正方体的展开图特征逐一判断即可.【详解】A 不是正方体的展开图,故不符合题意;B 不是正方体的展开图, 故不符合题意;C 是正方体的展开图,故符合题意;D 不是正方体的展开图,故不符合题意;故选C .【点睛】此题考查的是正方体的展开图的判断,掌握正方体的展开图特征是解决此题的关键.二、填空题16.1【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【详解】解:解析:1【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【详解】解:π,是无理数,共1个故答案为:1.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.17.1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为1解析:1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为118.1或5【解析】【分析】此题借助数轴用数形结合的方法求解.由于点A与原点0的距离为2,那么A应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A向右移动3个单位长解析:1或5【解析】【分析】此题借助数轴用数形结合的方法求解.由于点A与原点0的距离为2,那么A应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A向右移动3个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【详解】点A在数轴上距离原点2个单位长度,当点A在原点左边时,点A表示的数是-2,将A向右移动3个单位长度,此时点A表示的数是-2+3=1;当点A在原点右边时,点A表示的数是2,将A向右移动3个单位,得2+3=5.故答案为1或5.【点睛】此题考查数轴问题,根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.19.1或【解析】【分析】数轴上到−3的距离为4个单位长度的点表示的数有2个:−3−4,−3+4,据此求解即可.【详解】解:∵−3−4=−7,−3+4=1,∴数轴上到−3的距离为4个单解析:1或7【解析】【分析】数轴上到−3的距离为4个单位长度的点表示的数有2个:−3−4,−3+4,据此求解即可.【详解】解:∵−3−4=−7,−3+4=1,∴数轴上到−3的距离为4个单位长度的点表示数是1和−7.故答案为1和−7.【点睛】本题主要考查了数轴的特征和应用,以及分类讨论思想的应用,要熟练掌握.20.>【解析】【分析】根据负数的比较大小方法:绝对值大的反而小,即可判断.【详解】解:∵,,∴故答案为:>.【点睛】此题考查的是有理数的比较大小,掌握负数的比较大小方法:绝对值大的反而 解析:>【解析】【分析】根据负数的比较大小方法:绝对值大的反而小,即可判断.【详解】 解:∵0.40.4-=,10.52-=,0.40.5< ∴10.42->- 故答案为:>.【点睛】此题考查的是有理数的比较大小,掌握负数的比较大小方法:绝对值大的反而小是解决此题的关键.21.【解析】【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值.【详解】解:∵ ,, ,,,, ,,∴商的最小值为.故答案为:.本题考解析:5 2 -【解析】【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值.【详解】解:∵1242,422,2255,5522,3344,4433,3355,5533,∴商的最小值为5 2 -.故答案为:5 2 -.【点睛】本题考查有理数的除法,掌握除法法则是解答此题的关键. 22.-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得. 【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法解析:-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法运算,熟练掌握相关的运算法则是解题的关键.23.②.【解析】【分析】本题分别根据两点确定一条直线;两点之间,线段最短进行解答即可.【详解】解:①用两个钉子就可以把木条固定在干墙上,根据两点确定一条直线;②把弯曲的公路改直能缩短路程,解析:②.【解析】【分析】本题分别根据两点确定一条直线;两点之间,线段最短进行解答即可.【详解】解:①用两个钉子就可以把木条固定在干墙上,根据两点确定一条直线;②把弯曲的公路改直能缩短路程,根据两点之间,线段最短;③植树时只要定出两颗树的位置,就能确定同一行所在的直线根据两点确定一条直线;故答案为②.考点:线段的性质:两点之间线段最短.24.【解析】【分析】根据单项式的系数的定义即可求解.【详解】解:的系数是.故答案为:.【点睛】本题考查单项式的系数.单项式中的数字因数叫做单项式的系数.解析:1 6【解析】【分析】根据单项式的系数的定义即可求解.【详解】解:216x -的系数是16-. 故答案为:16-. 【点睛】本题考查单项式的系数.单项式中的数字因数叫做单项式的系数.25..【解析】【分析】利用相反数的概念,可得的相反数等于.【详解】的相反数是.故答案为:.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负 解析:32. 【解析】【分析】 利用相反数的概念,可得32-的相反数等于32. 【详解】 32-的相反数是32. 故答案为:32. 【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 三、解答题26.人数有7人.【解析】【分析】根据题意列出方程解出即可.【详解】解:设人数为x ,则可列方程为:8x -3=7x +4解得:x =7答:人数有7人.【点睛】本题考查一元一次方程的应用,关键在于理解题意列出方程.27.(1)见详解;(2)CD ;(3)<,垂线段最短.【解析】【分析】(1)连接B 、C 两个端点即可;以A 为端点,过点B 画射线即可;利用方格特点可过点A 画BC 的平行线AM ;(2)根据题意作图,依据点到线的距离即为垂线段的长可得结论;(3)依据直线外一点与直线上各点连接的所有线段中垂线段最短可得线段CD 与CB 的长短.【详解】解:(1)如图,线段BC ,射线AB ,平行线AM 即为所求(2)如图由点到直线的距离即为垂线段的长可知点C 到AB 的距离是线段CD 的长.(3)线段CD 是点C 到直线AB 的垂线段,所以线段CD <线段CB ,理由是垂线段最短.【点睛】本题考查了在网格中作线段、射线、平行线、垂线,同时涉及了点到直线的距离、垂线段的性质,灵活利用网格的特点进行作图是解题的关键.28.(1)2x =;(2)8x =-;【解析】【分析】(1)方程移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【详解】解:(1)移项合并得:2x=4,解得:x=2;(2)方程变形得:104010302 25x x+--=变形得:5x+20−2x+6=2,移项合并得:3x=−24,解得:x=−8.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解,熟悉一元一次方程的求解步骤是解题关键.29.(1)8;4;(2)OC=2cm;(3)83或163;(4)当t=22.5秒或t=67.5秒时,射线OC⊥OD.【解析】【分析】(1)由OA=2OB结合AB=OA+OB=12即可求出OA、OB的长度;(2)由点C是线段AB的中点,可求得BC的长,再根据OC=BC-OB求得OC的长;(3)AP=4x,AQ=12+x,根据题意可列出方程:12+x-4x=4或4x-(12+x)=4,解方程求得x 的值即可;(4)当射线OC⊥OD,根据题意可列出方程6t-2t=90或270,进而得出t的值.【详解】(1)∵AB=12cm,OA=2OB,∴OA+OB=3OB=AB=12cm,解得:OB=4cm,OA=2OB=8cm.故答案为:8;4;(2)如图,∵AB=12cm,C 是线段AB的中点,∴BC=12AB=6cm,∴OC=BC-OB=6-4=2cm;(3)AP=4x,AQ=12+x,由题意,得12+x-4x=4或4x-(12+x)=4,解得x=83或x=163,故答案为:83或163;(4)当OC与OD第一次重合时,OC、OD同时停止旋转,OC与OD第一次重合时所用的时间:3604=90秒,在这期间,当射线OC⊥OD,则有6t-2t=90或270,解得t=22.5秒或t=67.5秒,∴当t=22.5秒或t=67.5秒时,射线OC⊥OD.【点睛】本题考查一元一次方程的应用,线段和差的计算,找出等量关系列出方程是解决问题的关键.解题时注意分类讨论.30.(1)∠AOC=∠BOD,理由详见解析;(2)① 58°;②∠AON=∠DON,理由详见解析.【解析】【分析】(1)根据补角的性质即可求解;(2)①根据余角的定义解答即可;②根据角平分线的定义以及补角与余角的定义,分别用∠AOM的代数式表示出∠AON与∠DON即可解答.【详解】解:(1)∠AOC=∠BOD,∵∠BOD与∠BOC互补,∴∠BOD+∠BOC=180°,∵∠AOC+∠BOC=180°,∴∠AOC=∠BOD;(2)①∵∠AOC与∠MON互余,∴∠MON=90°﹣∠AOC=58°;②∠AON=∠DON,理由如下:∵OM平分∠AOC,∴∠AOC=2∠AOM,∠COM=∠AOM,∵∠AOC与∠MON互余,∴∠AOC+∠MON=90°,∴∠AON =90°﹣∠AOM ,∴∠CON =90°﹣3∠AOM ,∵∠BOD 与∠BOC 互补,∴∠BOD +∠BOC =180°,∴∠CON +∠DON +2∠BOD =180°,又∵∠BOD =∠AOC =2∠AOM ,∴∠DON =180°﹣∠CON ﹣2∠BOD=180°﹣(90°﹣3∠AOM )﹣4∠AOM=90°﹣∠AOM .∴∠AON =∠DON .【点睛】本题主要考查角平分线的定义,补角、余角的求法和角的和与差,掌握角平分线的定义,补角余角的求法,找准角之间的关系是解题的关键.31.250千米/时,1200千米【解析】【分析】先统一单位,设高铁的速度为xkm/h ,则动车的速度为(x -50)km/h ,根据作高铁和动车行驶的路程相等列方程即可求出结论.【详解】解:72 min =1.2h设高铁的速度为xkm/h ,则动车的速度为(x -50)km/h根据题意可得(6-1.2)x=6(x -50)解得:x=250∴苏州与北京之间的距离为250×(6-1.2)=1200千米答:高铁的速度为250千米/时,苏州与北京之间的距离为1200千米.【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键. 32.(1)25;(2)2n -1;(3)2400.【解析】【分析】(1)根据题目中的规律,写出答案即可.(2)根据题目中的规律,反推答案即可.(3)利用规律通式,代入计算即可.【详解】(1) 由题意规律可以得,连续奇数的和为中间相的平方,所以13549++++=…22149252+⎛⎫= ⎪⎝⎭. (2)设最后一项为x ,由题意可推出: 12x n +=,x =2n-1.。

相关文档
最新文档