高三二轮复习立体几何专题

合集下载

备战2023年新高考数学二轮专题复习课件立体几何

备战2023年新高考数学二轮专题复习课件立体几何

第三讲立体几何——大题备考【命题规律】立体几何大题一般为两问:第一问通常是线、面关系的证明;第二问通常跟角有关,一般是求线面角或二面角,有时与距离、几何体的体积有关.微专题1线面角保分题[2022·辽宁沈阳二模]如图,在四棱锥P-ABCD中,底面ABCD是正方形,P A⊥平面ABCD,P A=2AB=4,点M是P A的中点.(1)求证:BD⊥CM;(2)求直线PC与平面MCD所成角的正弦值.提分题例1 [2022·全国乙卷]如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E 为AC的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.听课笔记:【技法领悟】利用空间向量求线面角的答题模板巩固训练1[2022·山东泰安一模]如图,在四棱锥P-ABCD中,底面ABCD是矩形,AB=2AD=2,P A⊥平面ABCD,E为PD中点.(1)若P A=1,求证:AE⊥平面PCD;(2)当直线PC与平面ACE所成角最大时,求三棱锥E-ABC的体积.微专题2二面角保分题[2022·山东临沂二模]如图,AB是圆柱底面圆O的直径,AA1、CC1为圆柱的母线,四边形ABCD是底面圆O的内接等腰梯形,且AB=AA1=2BC=2CD,E、F分别为A1D、C1C的中点.(1)证明:EF∥平面ABCD;(2)求平面OEF与平面BCC1夹角的余弦值.提分题例2 [2022·湖南岳阳三模]如图,在四棱锥P-ABCD中,底面ABCD是菱形,F是PD 的中点.(1)证明:PB∥平面AFC;(2)若直线P A⊥平面ABCD,AC=AP=2,且P A与平面AFC所成的角正弦值为√21,求7锐二面角F-AC-D的余弦值.听课笔记:AD,现例3 [2022·山东日照二模]如图,等腰梯形ABCD中,AD∥BC,AB=BC=CD=12以AC为折痕把△ABC折起,使点B到达点P的位置,且P A⊥CD.(1)证明:平面APC⊥平面ADC;(2)若M为PD上一点,且三棱锥D-ACM的体积是三棱锥P-ACM体积的2倍,求二面角P-AC-M的余弦值.听课笔记:【技法领悟】利用空间向量求二面角的答题模板巩固训练21.[2022·广东韶关二模]如图,在四棱锥P-ABCD中,底面ABCD为矩形,点S是边AB 的中点.AB=2,AD=4,P A=PD=2√2.(1)若O是侧棱PC的中点,求证:SO∥平面P AD;(2)若二面角P-AD-B的大小为2π,求直线PD与平面PBC所成角的正弦值.32.[2022·河北保定一模]如图,在等腰梯形ABCD中,AD∥BC,AD=AB=CD=1,∠BCD =60°,现将DAC沿AC折起至P AC,使得PB=√2.(1)证明:AB⊥PC;(2)求二面角A-PC-B的余弦值.微专题3探索性问题提分题例4 [2022·山东聊城三模]已知四边形ABCD为平行四边形,E为CD的中点,AB=4,△ADE为等边三角形,将三角形ADE沿AE折起,使点D到达点P的位置,且平面APE⊥平面ABCE.(1)求证:AP⊥BE;(2)试判断在线段PB上是否存在点F,使得平面AEF与平面AEP的夹角为45°.若存在,试确定点F的位置;若不存在,请说明理由.听课笔记:【技法领悟】1.通常假设问题中的数学对象存在或结论成立,再在这个前提下进行推理,如果能推出与条件吻合的数据或事实,说明假设成立,并可进一步证明;否则假设不成立.2.探索线段上是否存在满足条件的点时,一定注意三点共线的条件的应用.巩固训练3[2022·湖南岳阳一模]如图,在三棱锥S-ABC中,SA=SB=SC,BC⊥AC.(1)证明:平面SAB⊥平面ABC;(2)若BC=SC,SC⊥SA,试问在线段SC上是否存在点D,使直线BD与平面SAB所成的角为60°,若存在,请求出D点的位置;若不存在,请说明理由.第三讲立体几何微专题1线面角保分题解析:(1)证明:如图,连接AC,∵四边形ABCD是正方形,∴AC⊥BD.又P A ⊥平面ABCD ,BD ⊂平面ABCD ,∴P A ⊥BD , ∵P A ,AC ⊂平面P AC ,P A∩AC =A , ∴BD ⊥平面P AC , 又CM ⊂平面P AC , ∴BD ⊥CM .(2)易知AB ,AD ,AP 两两垂直,以点A 为原点,建立如图所示的空间直角坐标系A - xyz . ∵P A =2AB =4,∴A (0,0,0),P (0,0,4),M (0,0,2),C (2,2,0),D (0,2,0), ∴MC⃗⃗⃗⃗⃗⃗ =(2,2,-2),MD ⃗⃗⃗⃗⃗⃗ =(0,2,-2),PC ⃗⃗⃗⃗ =(2,2,-4). 设平面MCD 的法向量为n =(x ,y ,z ),则{n ·MC⃗⃗⃗⃗⃗⃗ =2x +2y −2z =0n ·MD ⃗⃗⃗⃗⃗⃗ =2y −2z =0,令y =1,得n =(0,1,1).设直线PC 与平面MCD 所成角为θ,由图可知0<θ<π2,则sinθ=|cos 〈n ,PC ⃗⃗⃗⃗ 〉|=|n·PC ⃗⃗⃗⃗⃗||n ||PC ⃗⃗⃗⃗⃗|=√12+12×√22+22+(−4)2=√36.即直线PC 与平面MCD 所成角的正弦值为√36.提分题[例1] 解析:(1)证明:∵AD =CD ,∠ADB = ∠BDC ,BD =BD , ∴△ABD ≌△CBD ,∴AB =CB .∵E 为AC 的中点,∴DE ⊥AC ,BE ⊥AC . ∵DE∩BE =E ,DE ,BE ⊂平面BED , ∴AC ⊥平面BED .∵AC ⊂平面ACD ,∴平面BED ⊥平面ACD .(2)如图,连接EF .由(1)知AC ⊥平面BED . 又∵EF ⊂平面BED , ∴EF ⊥AC . ∴S △AFC =12AC ·EF .当EF ⊥BD 时,EF 的长最小,此时△AFC 的面积最小. 由(1)知AB =CB =2. 又∵∠ACB =60°,∴△ABC 是边长为2的正三角形,∴BE =√3. ∵AD ⊥CD ,∴DE =1,∴DE 2+BE 2=BD 2,∴DE ⊥BE .以点E 为坐标原点,直线EA ,EB ,ED 分别为x 轴、y 轴、z 轴建立空间直角坐标系,则E (0,0,0),A (1,0,0),B (0,√3,0),C (-1,0,0),D (0,0,1),∴AB ⃗⃗⃗⃗⃗ =(-1,√3,0),AD ⃗⃗⃗⃗⃗ =(-1,0,1),DB ⃗⃗⃗⃗⃗ =(0,√3,-1),ED⃗⃗⃗⃗⃗ =(0,0,1),EC ⃗⃗⃗⃗ =(-1,0,0).设DF ⃗⃗⃗⃗⃗ =λDB ⃗⃗⃗⃗⃗ (0≤λ≤1), 则EF ⃗⃗⃗⃗ =ED ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ =ED ⃗⃗⃗⃗⃗ +λDB ⃗⃗⃗⃗⃗ =(0,0,1)+λ(0,√3,-1)=(0,√3λ,1-λ). ∵EF ⊥DB , ∴EF⃗⃗⃗⃗ ·DB ⃗⃗⃗⃗⃗ =(0,√3λ,1-λ)·(0,√3,-1)=4λ-1=0, ∴λ=14,∴EF ⃗⃗⃗⃗ =(0,√34,34),∴CF ⃗⃗⃗⃗ =EF ⃗⃗⃗⃗ −EC ⃗⃗⃗⃗ =(0,√34,34)-(-1,0,0)=(1,√34,34).设平面ABD 的法向量为n =(x ,y ,z ), 则{n ·AB ⃗⃗⃗⃗⃗ =0,n ·AD⃗⃗⃗⃗⃗ =0,即{−x +√3y =0,−x +z =0.取y =1,则x =√3,z =√3,∴n =(√3,1,√3).设当△AFC 的面积最小时,CF 与平面ABD 所成的角为θ,则sin θ=|cos 〈n ,CF ⃗⃗⃗⃗ 〉|=|n·CF ⃗⃗⃗⃗⃗||n ||CF ⃗⃗⃗⃗⃗ |=|√3×1+1×√34+√3×34|√3+1+3× √1+316+916=4√37. 故当△AFC 的面积最小时,CF 与平面ABD 所成的角的正弦值为4√37. [巩固训练1]解析:(1)证明:∵P A ⊥平面ABCD ,CD ⊂平面ABCD ,∴P A ⊥CD , ∵四边形ABCD 为矩形,∴AD ⊥CD ,又AD∩P A =A ,AD 、P A ⊂平面P AD ,∴CD ⊥平面P AD , ∵AE ⊂平面P AD ,∴AE ⊥CD ,在△P AD 中,P A =AD ,E 为PD 的中点,∴AE ⊥PD , 而PD∩CD =D ,PD 、CD ⊂平面PCD , ∴AE ⊥平面PCD .(2)以A 为坐标原点,分别以AB 、AD 、AP 所在直线为x 、y 、z 轴建立空间直角坐标系, 设AP =a (a >0),则C (2,1,0),P (0,0,a ),E (0,12,a2),∴AC ⃗⃗⃗⃗⃗ =(2,1,0),AE ⃗⃗⃗⃗⃗ =(0,12,a 2),PC ⃗⃗⃗⃗ =(2,1,-a ), 设平面ACE 的一个法向量为n =(x ,y ,z ), 则{n ·AC ⃗⃗⃗⃗⃗ =2x +y =0n ·AE⃗⃗⃗⃗⃗ =12y +a 2z =0,取y =-a ,可得n =(a2,-a ,-1).设直线PC 与平面ACE 所成角为θ,则sin θ=|cos 〈n ,PC ⃗⃗⃗⃗ 〉|=|n·FC⃗⃗⃗⃗⃗ ||n ||FC⃗⃗⃗⃗⃗ |=√54a 2+1·√5+a 2=√29+20a2+5a ≤27,当且仅当a =√2时等号成立.即当AP =√2时,直线PC 与平面ACE 所成角最大, 此时三棱锥E - ABC 的体积V =13×12×2×1×√22=√26.微专题2 二面角保分题解析:(1)证明:取AD 的中点M ,连接EM 、MC ,∵E 为A 1D 的中点,F 为CC 1的中点,∴EM ∥AA 1,EM =12AA 1,又CF ∥AA 1,CF =12AA 1, ∴EM ∥CF ,EM =CF ,∴四边形EMCF 为平行四边形,∴EF ∥CM , 又EF ⊄平面ABCD ,CM ⊂平面ABCD , ∴EF ∥平面ABCD .(2)设AB =AA 1=2BC =2CD =4,∵AC ⊥BC ,∴AC =2√3.由题意知CA 、CB 、CC 1两两垂直,故以C 为坐标原点,分别以CA 、CB 、CC 1所在直线为x 、y 、z 轴建立空间直角坐标系.则A 1(2√3,0,4)、O (√3,1,0)、F (0,0,2)、C (0,0,0)、D (√3,-1,0), ∴A 1D 的中点E 的坐标为(3√32,-12,2), ∴OF⃗⃗⃗⃗⃗ =(-√3,-1,2),EF ⃗⃗⃗⃗ =(-3√32,12,0),设平面OEF 的一个法向量为n =(x ,y ,z ),则{n ·OF ⃗⃗⃗⃗⃗ =0n ·EF ⃗⃗⃗⃗ =0,即{−√3x −y +2z =0−3√32x +12y =0,即{√3x +y −2z =03√3x −y =0, 令x =√3,得n =(√3,9,6),∵AC ⊥BC ,AC ⊥CC 1,BC ∩CC 1=C , ∴AC ⊥平面BCC 1,∴平面BCC 1的一个法向量为CA ⃗⃗⃗⃗⃗ =(2√3,0,0),cos 〈n ,CA ⃗⃗⃗⃗⃗ 〉=n·CA ⃗⃗⃗⃗⃗|n |·|CA ⃗⃗⃗⃗⃗|=√3+81+36·2√3=√1020, ∴平面OEF 与平面BCC 1夹角的余弦值为√1020. 提分题[例2] 解析:(1)证明:连接BD 交AC 于O , 易证O 为BD 中点,又F 是PD 的中点, 所以OF ∥PB ,又OF ⊂平面AFC ,且PB 不在平面AFC 内, 故PB ∥平面AFC .(2)取PC 中点为Q ,以O 为坐标原点,OB 为x 轴,OC 为y 轴,OQ 为z 轴建立空间直角坐标系,设OB =m ,则A (0,-1,0),B (m ,0,0),C (0,1,0),P (0,-1,2),D (-m ,0,0)⇒F (-m2,-12,1),AP ⃗⃗⃗⃗⃗ =(0,0,2),OF ⃗⃗⃗⃗⃗ =(-m 2,-12,1),OC⃗⃗⃗⃗⃗ =(0,1,0), 设平面AFC 的法向量为n =(x ,y ,z ),由{n ⊥OF ⃗⃗⃗⃗⃗ n ⊥OC ⃗⃗⃗⃗⃗ ⇒{−m2x −12y +z =0y =0,令x =2,有n =(2,0,m ),由P A 与平面AFC 所成的角正弦值为√217⇒√217=|AP ⃗⃗⃗⃗⃗ ·n||AP⃗⃗⃗⃗⃗ |·|n|=2√4+m 2⇒m =√3, 平面ACD 的法向量为m =(0,0,1),则锐二面角F - AC - D 的余弦值为 |m·n ||m |·|n |=√3√7=√217.[例3] 解析:(1)证明:在梯形ABCD 中取AD 中点N ,连接CN , 则由BC 平行且等于AN 知ABCN 为平行四边形,所以CN =AB , 由CN =12AD 知C 点在以AD 为直径的圆上,所以AC ⊥CD .又AP ⊥CD ,AP∩AC =A, AP ,AC ⊂平面P AC , ∴CD ⊥平面P AC , 又CD ⊂平面ADC , ∴平面APC ⊥平面ADC .(2)取AC 中点O ,连接PO ,由AP =PC ,可知PO ⊥AC ,再由平面P AC ⊥平面ACD ,AC 为两面交线,所以PO ⊥平面ACD ,以O 为原点,OA 为x 轴,过O 且与OA 垂直的直线为y 轴,OP 为z 轴建立空间直角坐标系,令AB =2,则A (√3,0,0),C (-√3,0,0),P (0,0,1),D (-√3,2,0), 由V P - ACM ∶V D - ACM =1∶2,得PM⃗⃗⃗⃗⃗⃗ =13PD ⃗⃗⃗⃗⃗ , 所以OM ⃗⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ +PM ⃗⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ +13PD ⃗⃗⃗⃗⃗ =(-√33,23,23), 设平面ACM 的法向量为n =(x ,y ,z ), 则由{n ·OM ⃗⃗⃗⃗⃗⃗ =0n ·OA ⃗⃗⃗⃗⃗ =0得{−√33x +23y +23z =0√3x =0,取z =-1得x =0,y =1,所以n =(0,1,-1),而平面P AC 的法向量m =(0,1,0),所以cos 〈n ,m 〉=m·n |m ||n |=√22. 又因为二面角P - AC - M 为锐二面角,所以其余弦值为√22.[巩固训练2]1.解析:(1)证明:取线段PD 的中点H ,连接SO 、OH 、HA ,如图,在△PCD 中,O 、H 分别是PC 、PD 的中点,所以OH ∥CD 且OH =12CD ,所以OH ∥AS 且OH =AS ,所以四边形ASOH 是平行四边形,所以SO ∥AH ,又AH ⊂平面P AD ,SO ⊄平面P AD ,所以SO ∥平面P AD .(2)取线段AD 、BC 的中点E 、F ,连结PE 、EF .由点E 是线段AD 的中点,P A =PD 可得PE ⊥AD ,又EF ⊥AD ,所以∠PEF 是二面角P - AD - B 的平面角,即∠PEF =23π,以E 为原点,EA⃗⃗⃗⃗⃗ 、EF ⃗⃗⃗⃗ 方向分别为x 轴、y 轴正方向,建立如图所示坐标系,在△P AD 中,AD =4,P A =PD =2√2知:PE =2,所以P (0,-1,√3),D (-2,0,0),B (2,2,0),C (-2,2,0),所以PD⃗⃗⃗⃗⃗ =(-2,1,-√3),PB ⃗⃗⃗⃗⃗ =(2,3,-√3),PC ⃗⃗⃗⃗ =(-2,3,-√3), 设平面PBC 的法向量n =(x ,y ,z ),则{n ·PB ⃗⃗⃗⃗⃗=0n ·PC⃗⃗⃗⃗ =0,即{2x +3y −√3z =0−2x +3y −√3z =0,可取n =(0,1,√3),设直线PD 与平面PBC 所成角为θ, 则sin θ=|cos 〈PD⃗⃗⃗⃗⃗ ,n 〉|=2·2√2=√24,所以直线PD 与平面PBC 所成角的正弦值为√24.2.解析:(1)证明:在等腰梯形ABCD 中,过A 作AE ⊥BC 于E ,过D 作DF ⊥BC 于F ,因为在等腰梯形ABCD 中,AD ∥BC ,AD =AB =CD =1,∠BCD =60°,所以BE =CF =12CD =12,AE =DF =√12−(12)2=√32, 所以AC =BD =√(32)2+(√32)2=√3, BC =2,所以BD 2+CD 2=BC 2,所以BD ⊥CD ,同理AB ⊥AC , 又因为AP =AB =1,PB =√2, ∴AP 2+AB 2=PB 2,∴AB ⊥AP又AC∩AP =A ,AC ,AP ⊂平面ACP , 所以AB ⊥平面ACP , 因为PC ⊂平面ACP , 所以AB ⊥PC .(2)取AC 的中点为M ,BC 的中点为N ,则MN ∥AB , 因为AB ⊥平面ACP ,所以MN ⊥平面ACP ,因为AC ,PM ⊂平面ACP ,所以MN ⊥AC ,MN ⊥PM , 因为P A =PC ,AC 的中点为M ,所以PM ⊥AC , 所以MN ,MC ,MP 两两垂直,所以以M 为原点,以MN 所在直线为x 轴,以MC 所在直线为y 轴,以MP 所在直线为z 轴建立空间直角坐标系,则A (0,-√32,0),B (1,-√32,0),C (0,√32,0),P (0,0,12),PC ⃗⃗⃗⃗ =(0,√32,-12),PB ⃗⃗⃗⃗⃗ =(1,-√32,-12), 平面APC 的一个法向量为m =AB⃗⃗⃗⃗⃗ =(1,0,0), 设平面PBC 的一个法向量为n =(x ,y ,z ),则 {n ·PC⃗⃗⃗⃗ =√32y −12z =0n ·PB ⃗⃗⃗⃗⃗ =x −√32y −12z =0,令y =1,则n =(√3,1,√3),所以cos 〈m ,n 〉=m·n |m ||n |=√31×√7=√217, 因为二面角A - PC - B 为锐角, 所以二面角A - PC - B 的余弦值为√217.微专题3 探索性问题提分题[例4] 解析:(1)证明:因为四边形ABCD 为平行四边形,且△ADE 为等边三角形, 所以∠BCE =120°,又E 为CD 的中点,所以CE =ED =DA =CB ,即△BCE 为等腰三角形, 所以∠CEB =30°.所以∠AEB =180°-∠AED -∠BEC =90°, 即BE ⊥AE .又因为平面AEP ⊥平面ABCE ,平面APE ∩平面ABCE =AE ,BE ⊂平面ABCE , 所以BE ⊥平面APE ,又AP ⊂平面APE ,所以BE ⊥AP .(2)取AE 的中点O ,连接PO ,由于△APE 为正三角形,则PO ⊥AE , 又平面APE ⊥平面ABCE ,平面APE ∩平面ABCE =AE ,PO ⊂平面EAP , 所以PO ⊥平面ABCE ,PO =√3,BE =2√3, 取AB 的中点G ,则OG ∥BE ,由(1)得BE ⊥AE ,所以OG ⊥AE ,以点O 为原点,分别以OA ,OG ,OP 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O - xyz ,则O (0,0,0),A (1,0,0),B (-1,2√3,0),P (0,0,√3),E (-1,0,0), 则EA ⃗⃗⃗⃗⃗ =(2,0,0),EB ⃗⃗⃗⃗⃗ =(0,2√3,0),PB ⃗⃗⃗⃗⃗ =(-1,2√3,-√3),EP ⃗⃗⃗⃗ =(1,0,√3), 假设存在点F ,使平面AEF 与平面AEP 的夹角为45°, 设PF⃗⃗⃗⃗ =λPB ⃗⃗⃗⃗⃗ =(-λ,2√3λ,-√3λ),λ∈[0,1], 则EF ⃗⃗⃗⃗ =EP ⃗⃗⃗⃗ +PF ⃗⃗⃗⃗ =(1,0,√3)+(-λ,2√3λ,-√3λ)=(1-λ,2√3λ,√3−√3λ), 设平面AEF 的法向量为m =(x ,y ,z ),由{EF ⃗⃗⃗⃗·m =0EA ⃗⃗⃗⃗⃗ ·m =0得{(1−λ)x +2√3λy +(√3,-√3λ)z =02x =0, 取z =2λ,得m =(0,λ-1,2λ);由(1)知EB⃗⃗⃗⃗⃗ 为平面AEP 的一个法向量, 于是,cos 45°=|cos 〈m ,EB ⃗⃗⃗⃗⃗ 〉|=|m·EB ⃗⃗⃗⃗⃗||m |·|EB ⃗⃗⃗⃗⃗|=2√3|λ−1|2√3·√5λ2−2λ+1=√22,解得λ=13或λ=-1(舍去),所以存在点F ,且当点F 为线段PB 的靠近点P 的三等分点时,平面AEF 与平面AEP 的夹角为45°.[巩固训练3]解析:(1)证明:取AB 的中点E ,连接SE ,CE ,∵SA =SB ,∴SE ⊥AB , ∵BC ⊥AC ,∴三角形ACB 为直角三角形,∴BE =EC , 又BS =SC ,∴△SEC ≌△SEB ,∴∠SEB =∠SEC =90°, ∴SE ⊥EC ,又SE ⊥AB ,AB∩CE =E ,∴SE ⊥平面ABC . 又SE ⊂平面SAB ,∴平面SAB ⊥平面ABC .(2)以E 为坐标原点,平行AC 的直线为x 轴,平行BC 的直线为y 轴,ES 为z 轴建立空间直角坐标系,如图,不妨设SA =SB =SC =2,SC ⊥SA ,则AC =2√2,BC =SC =2知EC =2√3,SE =1,则A (-√2,1,0),B (√2,-1,0),C (√2,1,0),E (0,0,0),S (0,0,1), ∴AB⃗⃗⃗⃗⃗ =(2√2,-2,0),SA ⃗⃗⃗⃗ =(-√2,1,-1), 设D (x ,y ,z ),CD ⃗⃗⃗⃗⃗ =λCS⃗⃗⃗⃗ (0≤λ≤1),则(x -√2,y -1,z )=λ(-√2,-1,1), ∴D (√2−√2λ,1-λ,λ),BD⃗⃗⃗⃗⃗ =(-√2λ,2-λ,λ). 设平面SAB 的一个法向量为n =(x 1,y 1,z 1),则{n ·AB⃗⃗⃗⃗⃗ =2√2x 1−2y 1=0n ·SA ⃗⃗⃗⃗ =−√2x 1+y 1−z 1=0,取x 1=1,得n =(1,√2,0),sin 60°=|n·BD ⃗⃗⃗⃗⃗⃗ ||n ||BD ⃗⃗⃗⃗⃗⃗ |,则√2−2√2λ|√3√2λ2+(2−λ)2+λ2=√32, 得λ2+7λ+1=0,又∵0≤λ≤1,方程无解,∴不存在点D ,使直线BD 与平面SAB 所成的角为60°.。

“立体几何”大题的常考题型探究(课件)2023年高考数学二轮复习(全国通用)

“立体几何”大题的常考题型探究(课件)2023年高考数学二轮复习(全国通用)
因为 平面 ,所以 平面 ,所以 为二面角 的平面角.
因为 ,所以 .由已知得 ,故 .又 ,所以 .因为 , , , , ,所以 .
提分秘籍 体积问题考查的本质就是点面距离,解题关键是抓住以下几种方法:
(1)等体积法(仅限三棱锥)转换顶点;
(2)顶点不变,延展或缩小底面,如四棱锥的高即同顶点的三棱锥的高,点 到平面 的距离可看作点 到平面 的距离;
设 ,则 , , .设平面 的法向量为 ,则 即
令 ,则 ,∴平面 的一个法向量为 , .∵直线的方向向量与平面的法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,∴直线 与平面 所成角的正弦值等于, ,当且仅当 时取等号.
∴直线 与平面 所成角的正弦值的最大值为 .(法二:定义法)如图2, 平面 , , 平面 .
大题攻略03 平面与平面所成的角
例3 (2021年全国甲卷)已知直三棱柱 中,侧面 为正方形, , , 分别为 和 的中点, 为棱 上的点, .
(1)证明: .(2)当 为何值时,平面 与平面 所成的二面角的正弦值最小?
▶审题微“点”
切入点
(1)常规方法是几何法,不过用几何法较为复杂,根据题目条件建系是最优解法;(2)建系是常规方法,也是最优法
▶审题微“点”
切入点
(1)关键是在平面 内找一条直线与 平行,根据线面平行的判定定理即可证明;(2)将包装盒分割成几个规则的锥体和柱体求解
障碍点
(1)在平面 内找直线与 平行;(2)将不规则的几何体分割或补形成几个规则的几何体
隐蔽点
(1)平面 内与 平行的直线;(2)包装盒的高
[解析] (1)如图1所示,分别取 , 的中点 , ,连接 ,因为 , 为全等的正三角形,所以 , , .

新教材适用2024版高考数学二轮总复习第1篇专题4立体几何第1讲空间几何体核心考点2空间几何体的表面

新教材适用2024版高考数学二轮总复习第1篇专题4立体几何第1讲空间几何体核心考点2空间几何体的表面

核心考点2 空间几何体的表面积与体积核心知识·精归纳1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径).多维题组·明技法角度1:空间几何体的表面积和侧面积1. (2023·大观区校级三模)陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺立体结构图.已知,底面圆的直径AB =12 cm ,圆柱体部分的高BC =6 cm ,圆锥体部分的高CD =4 cm ,则这个陀螺的表面积(单位:cm 2)是( C )A .(144+1213)πB .(144+2413)πC .(108+1213)πD .(108+2413)π【解析】 由题意可得圆锥体的母线长为l =62+42=213,所以圆锥体的侧面积为12·12π·213=1213π,圆柱体的侧面积为12π×6=72π,圆柱的底面面积为π×62=36π,所以此陀螺的表面积为1213π+72π+36π=(108+1213)π(cm 2).故选C.2. (2023·黄浦区校级三模)已知正方形ABCD 的边长是1,将△ABC 沿对角线AC 折到△AB ′C 的位置,使(折叠后)A 、B ′、C 、D 四点为顶点的三棱锥的体积最大,则此三棱锥的表面积为 1+32. 【解析】 根据题意,正方形ABCD 中,设AC 与BD 交于点O ,在翻转过程中,当B ′O ⊥面ACD 时,四棱锥B ′-ACD 的高最大,此时四棱锥B ′-ACD 的体积最大,若B ′O ⊥面ACD ,由于OA =OB ′=OC ,则B ′D =B ′A =B ′C =1,则△DB ′C △DB ′A 都是边长为1的等边三角形,S △DB ′A =S △DB ′C =12×1×1×32=34,△ADC 中,AD =DC =1且AD ⊥DC ,则S △ADC =12×1×1=12,同理:S △AB ′C =S △ABC =S △ADC =12,此时,三棱锥的表面积S =S △DB ′A +S △DB ′C +S △ADC +S △AB ′C =1+32. 角度2:空间几何体的体积3. (2023·福州模拟)已知菱形ABCD 的边长为2,∠BAD =60°,则将菱形ABCD 以其中一条边所在的直线为轴,旋转一周所形成的几何体的体积为( B )A .2πB .6πC .43πD .8π【解析】 根据题意,旋转一周所形成的几何体如图,该几何体上部分为圆锥,下部分为在圆柱内挖去一个与上部分相同的圆锥,其体积等于中间圆柱的体积,且中间圆柱的高h =DC =2,底面圆的半径r =BC sin 60°=2×32=3,故要求几何体的体积V =πr 2h =6π.故选B.4.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别为AB ,BC 的中点,则多面体A 1C 1-AEFC 的体积为 53.【解析】 多面体A 1C 1-AEFC 的体积等于三棱柱ABC -A 1B 1C 1的体积与三棱台EBF -A 1B 1C 1的体积之差,其中三棱柱ABC -A 1B 1C 1的体积为12×2×2×2=4,三棱台EBF -A 1B 1C 1的体积为⎝ ⎛⎭⎪⎫12×1×1+12×2×2+12×1×1×12×2×2×2×13=73,所以多面体A 1C 1-AEFC 的体积为4-73=53. 方法技巧·精提炼1.求几何体的表面积的方法(1)求表面积问题的思路是将立体几何问题转化为平面图形问题,即空间图形平面化,这是解决立体几何的主要出发点;(2)求不规则几何体的表面积时,通常将所给几何体分割成柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得所给几何体的表面积.2.求空间几何体体积的常用方法(1)公式法:直接根据常见柱、锥、台体等规则几何体的体积公式计算;(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积必等;(3)割补法:把不能直接计算体积的空间几何体进行适当分割或补形,转化为可计算体积的几何体.加固训练·促提高1. (2023·平罗县校级模拟)已知圆锥的底面半径为1,侧面展开图的圆心角为23π,则该圆锥的侧面积为( C )A .πB .2πC .3πD .4π【解析】 底面圆周长为2π,母线长为2π2π3=3,所以侧面积为12×2π×3=3π.故选C.2. (2023·普陀区校级模拟)如图,在正四棱锥P -ABCD 中,AP =AB =4,则正四棱锥的体积为 3223.【解析】 连接AC 与BD 交于O ,则O 是正方形ABCD 的中心,∴PO ⊥平面ABCD ,∵AB=4,∴AO =22,∵PA =4,∴PO =16-8=22,∴正四棱锥的体积为V =13S 正方形ABCD ·PO=13×16×22=3223.故答案为3223.3. (2023·琼山区四模)三棱锥A -BCD 中,AC ⊥平面BCD ,BD ⊥CD ,若AB =3,BD =1,则该三棱锥体积的最大值为 23.【解析】 如图所示,因为AC ⊥平面BCD ,即AC 为三棱锥A -BCD 的高,设为x ,又因为BC ⊂平面BCD ,所以AC ⊥BC ,在直角△ABC 中,由AB =3,AC =x ,可得BC =9-x 2,因为BD ⊥CD ,且BD =1,可得CD =BC 2-BD 2=8-x 2,所以三棱锥A -BCD 的体积为V =13S △BCD ·AC =13×128-x 2×1×x =168-x2·x 2≤16×8-x 2+x 22=23,当且仅当8-x 2=x 2时,即x =2时,三棱锥A -BCD 的体积取得最大值,最大值为23.。

高三数学二轮复习:立体几何

高三数学二轮复习:立体几何
板块三 专题突破 核心考点
专题四 立体几何
第1讲 空间几何体
[考情考向分析]
1.以三视图为载体,考查空间几何体面积、体积的计算. 2.考查空间几何体的侧面展开图及简单的组合体问题.
内容索引
热点分类突破 真题押题精练
热规则 俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视 图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图 的宽度一样.即“长对正、高平齐、宽相等”. 2.由三视图还原几何体的步骤 一般先依据俯视图确定底面再利用正(主)视图与侧(左)视图确定几何体.
跟踪演练3 (1)(2018·咸阳模拟)在三棱锥P-ABC中,PA⊥平面ABC,
AB⊥BC,若AB=2,BC=3,PA=4,则该三棱锥的外接球的表面积为
A.13π C.25π
B.20π
√D.29π
解析 答案
(2)(2018·四川成都名校联考)已知一个圆锥的侧面积是底面积的2倍,
√ 记该圆锥的内切球的表面积为S1,外接球的表面积为S2,则SS12 等于
例3 (1)(2018·百校联盟联考)在三棱锥P-ABC中,△ABC和△PBC均为
边长为3的等边三角形,且PA=326 ,则三棱锥P-ABC外接球的体积为
13 13 A. 6 π
10 10 B. 3 π
√C.5
15 2π
55 D. 6 π
解析 答案
(2)(2018·衡水金卷信息卷)如图是某三棱锥的三视
跟踪演练1 (1)(2018·衡水模拟)已知一几何体的正(主)视图、侧(左)视 图如图所示,则该几何体的俯视图不可能是

解析 答案
(2)(2018·合肥质检)在正方体ABCD-A1B1C1D1中,E是棱 A1B1的中点,用过点A,C,E的平面截正方体,则位于 截面以下部分的几何体的侧(左)视图为

高三数学二轮复习专题《立体几何》

高三数学二轮复习专题《立体几何》

高三数学二轮复习专题《立体几何》专题热点透析高考中立体几何主要考查学生的空间想象能力,在推理中兼顾考查逻辑思维能力,解决立体几何的基本方法是将空间问题转化为平面问题。

近几年高考立体几何试题以基础题和中档题为主,热点问题主要有证明点线面的关系,如点共线、线共点、线共面问题;证明空间线面平行、垂直关系;求空间的角和距离;利用空间向量,将空间中的性质及位置关系的判定与向量运算相结合,使几何问题代数化等等。

考查的重点是点线面的位置关系及空间距离和空间角,突出空间想象能力,侧重于空间线面位置关系的定性与定量考查,算中有证。

其中选择、填空题注重几何符号语言、文字语言、图形语言三种语言的相互转化,考查学生对图形的识别、理解和加工能力;解答题则一般将线面集中于一个几何体中,即以一个多面体为依托,设置几个小问,设问形式以证明或计算为主。

热点题型范例 一、平行与垂直的证明例1.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F . (1)证明P A //平面EDB ;(2)证明PB ⊥平面EFD 解:(1)连结AC ,AC 交BD 于O ,连结EO . ∵底面ABCD 是正方形,∴点O 是AC 的中点 在PAC ∆中,EO 是中位线,∴P A // EO而⊂EO 平面EDB 且⊄PA 平面EDB ,所以,P A // 平面EDB (2)∵PD ⊥底面ABCD 且⊂DC 底面ABCD ,∴DC PD ⊥∵PD =DC ,可知PDC ∆是等腰直角三角形,而DE 是斜边PC 的中线,∴PC DE ⊥. ①同样由PD ⊥底面ABCD ,得PD ⊥BC .∵底面ABCD 是正方形,有DC ⊥BC ,∴BC ⊥平面PDC .而⊂DE 平面PDC ,∴DE BC ⊥. ②由①和②推得⊥DE 平面PBC .而⊂PB 平面PBC ,∴PB DE ⊥ 又PB EF ⊥且E EF DE = ,所以PB ⊥平面EFD .例2.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD ,已知45ABC ∠=︒,2AB =,BC =,SA SB ==(Ⅰ)证明:SA BC ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小.解:(1)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为A CDBCASOESA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥,故SA AD ⊥,由AD BC ==,SA =SD sin 452AO AB ==DE BC ⊥,垂足为E ,则DE ⊥平面SBC ,连结SE .ESD ∠为直线SD 与平面SBC 所成的角.sin 11ED AO ESD SD SD ====∠,所以直线SD 与平面SBC所成的角为. 1.1已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90底面ABCD ,且P A =AD =DC =21AB =1,M 是PB 的中点. (Ⅰ)证明:面P AD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小. 解:(Ⅰ)∵P A ⊥面ABCD ,CD ⊥AD ,∴由三垂线定理得:CD ⊥PD .因而,CD 与面P AD 内两条相交直线AD ,PD 都垂直,∴CD ⊥面P AD .又CD ⊂面PCD ,∴面P AD ⊥面PCD .(Ⅱ)过点B 作BE //CA ,且BE =CA ,则∠PBE 是AC 与PB 所成的角.连结AE ,可知AC =CB =BE =AE =2,又AB =2,所以四边形ACBE 为正方形. 由P A ⊥面ABCD 得∠PEB =90° 在Rt △PEB 中BE =2,PB =5, .510cos ==∠∴PB BE PBE .510arccos 所成的角为与PB AC ∴ (Ⅲ)作AN ⊥CM ,垂足为N ,连结BN .在Rt △P AB 中,AM =MB ,又AC =CB ,∴△AMC ≌△BMC ,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角.∵CB ⊥AC ,由三垂线定理,得CB ⊥PC ,在Rt △PCB 中,CM =MB ,所以CM =AM .在等腰三角形AMC 中,AN ·MC =AC AC CM ⋅-22)2(,5625223=⨯=∴AN . ∴AB =2,322cos 222-=⨯⨯-+=∠∴BN AN AB BN AN ANB 故所求的二面角为).32arccos(-ADCBNM EP二、空间角与距离例3.如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的 菱形,4ABC π∠=, OA ABCD ⊥底面, 2OA =,M 为OA 的中点。

高三文科数学第二轮复习总结资料(立体几何)

高三文科数学第二轮复习总结资料(立体几何)

高三文科数学第二轮复习资料——《立体几何》专题一、空间基本元素:直线与平面之间位置关系的小结.如下图:二、练习题:1. 1∥ 2,a ,b 与 1, 2都垂直,则a ,b 的关系是A .平行B .相交C .异面D .平行、相交、异面都有可能2.三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别为AA 1、CC 1上的点,且满足AP=C 1Q ,则四棱锥B —APQC 的体积是 A .V 21 B .V 31 C .V 41 D .V 323.设α、β、γ为平面, m 、n 、l 为直线,则m β⊥的一个充分条件是A .,,l m l αβαβ⊥=⊥ B .,,m αγαγβγ=⊥⊥C .,,m αγβγα⊥⊥⊥D .,,n n m αβα⊥⊥⊥ 4.如图1,在棱长为a 的正方体ABCD A B C D -1111中, P 、Q 是对角 线A C 1上的点,若aPQ =2,则三棱锥P BDQ -的体积为A3 B3 C3D .不确定5.圆台的轴截面面积是Q ,母线与下底面成60°角,则圆台的内切球的表面积是 A 12Q B 23Q C 2πQ D 23πQ6.在正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别为棱BC 、CC 1、C 1D 1、AA 1的中点,O 为AC 与BD 的交点(如图),求证: (1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H ; (3)A 1O ⊥平面BDF ; (4)平面BDF ⊥平面AA 1C .7.如图,斜三棱柱ABC —A ’B ’C ’中,底面是边长为a 的正三角形, 侧棱长为 b ,侧棱AA ’与底面相邻两边AB 、AC 都成450角,求 此三棱柱的侧面积和体积.DD 1B 110. 如图10,在正四棱柱ABCD-A 1B 1C 1D 1中,AB=a , AA 1=2a ,M 、N 分别是BB 1、DD 1的中点. (1)求证:平面A 1MC 1⊥平面B 1NC 1;(2)若在正四棱柱ABCD-A 1B 1C 1D 1的体积为V , 三棱锥M-A 1B 1C 1的体积为V 1,求V 1:V 的值.11.直三棱柱ABC-A 1B 1C 1中,BC AB ⊥,E 是A 1C 的中点,ED A C ⊥1且交AC 于D ,A A AB BC 122==(如图11) . (I )证明:B C 11//平面A BC 1; (II )证明:A C 1⊥平面EDB .图11DE A 1C BAC 1B 1 A NBCD A 1 B 1C 1D 1图 10M参考答案1.D 2.B 3.D 4.A 5.D6.解析:(1)欲证EG ∥平面BB 1D 1D ,须在平面BB 1D 1D 内找一条与EG 平行的直线,构造辅助平面BEGO ’及辅助直线BO ’,显然BO ’即是. (2)按线线平行⇒线面平行⇒面面平行的思路, 在平面B 1D 1H 内寻找B 1D 1和O ’H 两条关键的相交直线, 转化为证明:B 1D 1∥平面BDF ,O ’H ∥平面BDF .(3)为证A 1O ⊥平面BDF ,由三垂线定理,易得BD ⊥A 1O , 再寻A 1O 垂直于平面BDF 内的另一条直线.猜想A 1O ⊥OF .借助于正方体棱长及有关线段的关系计算得:A 1O 2+OF 2=A 1F 2⇒A 1O ⊥OF .(4)∵ CC 1⊥平面AC ,∴ CC 1⊥BD又BD ⊥AC ,∴ BD ⊥平面AA 1C又BD ⊂平面BDF ,∴ 平面BDF ⊥平面AA 1C7.解析:在侧面AB ’内作BD ⊥AA ’于D ,连结CD .∵ AC=AB ,AD=AD ,∠DAB=∠DAC=450∴ △DAB ≌△DAC∴ ∠CDA=∠BDA=900,BD=CD ∴ BD ⊥AA ’,CD ⊥AA ’∴ △DBC 是斜三棱柱的直截面 在Rt △ADB 中,BD=AB ·sin450=a 22 ∴ △DBC 的周长=BD+CD+BC=(2+1)a ,△DBC 的面积=4a 2∴ S 侧=b(BD+DC+BC)=(2+1)ab ∴ V=DBC S ∆·AA ’=4ba 210.解:(1)取CC 1的中点P ,联结MP 、NP 、D 1P(图18), 则A 1MPD 1为平行四边形 ∴ D 1P ∥A 1M ,∵A 1B 1C 1D 1是边长 为a 的正方形,又C 1P=a ,∴C 1PND 1也是正方形,∴C 1N ⊥D 1P .∴C 1N ⊥A 1M . 又 C 1B 1⊥A 1M ,∴ A 1M ⊥平面B 1NC 1,又A 1M ⊂平面A 1MC 1,AND A 1 B 1C 1D 1M∴平面A 1MC 1⊥平面B 1NC 1; (2)V=32a ,V M-A 1B 1C 1=V C-MA 1B 1=23111326a a a ⋅=,∴ V 1:V =11211.证明:(I )证: 三棱柱ABC A B C -111中B C BC 11//,又BC ⊂平面A BC 1,且B C 11⊂/平面A BC 1,∴B C 11//平面A BC 1(II )证: 三棱柱ABC A B C -111中A A AB 1⊥,∴Rt A AB ∆1中,AB A B =221,∴=∴BC A B A BC 11,∆是等腰三角形. E 是等腰∆A BC 1底边A C 1的中点,∴⊥A C BE1①又依条件知 A C ED1⊥② 且ED BE E=③由①,②,③得A C 1⊥平面EDB .图11DE A 1C BAC 1 B 1。

2025届高考数学二轮专题复习与测试第一部分专题三立体几何02命题分析03知识方法

专题三 立体几何1.高考立体几何试题具有较强的综合性,重视基础学问、基本技能和创新意识的考查,突出直观想象、逻辑推理、数学运算等学科核心素养的考查.内容包括“空间几何体”“点、直线、平面之间的位置关系”和“空间向量与立体几何”.2. 从近几年高考数学试题考查的状况来看,题目难度和题量相对稳定,一般是一个大题,两个小题,占22分,难度基本是中等.3.立体几何高考选择题或填空题有两个常考的热点:一是空间几何体的表面积、体积的计算,有时和数学文化、科技情境交汇命题,特殊要留意的是球与球的组合体问题,常作为小题的压轴题出现,难度较大,对空间想象实力和推理实力都有较高的要求.二是空间中点、直线、平面之间的位置关系的判定,或空间角的计算,若出现在压轴小题的位置,则类型一般为立体几何动态问题或翻折问题.4.立体几何高考解答题常以棱柱或棱锥为载体,一般设置两问,“一证一算”,一问是定性分析,一问是定量分析.其中定性分析以线、面平行、垂直的证明为主,考查逻辑推理实力及学科素养;而定量分析主要是应用空间向量求线面角、二面角,考查数学运算实力与学科素养.1.几何体的表面积与体积公式(1)柱体的体积和表面积:V =S 底h ;S 圆柱侧=2πrl ;S 表面积=S 侧+2S 底.(2)台体的体积和表面积:V =13(S 上+S 下+S 上S 下)h ;S 圆台侧=π(r 1+r 2)l ;S 表面积=S 侧+S 上+S 下.(3)锥体的体积和表面积:V =13S 底h ;S 圆锥侧=πrl ;S 表面积=S 侧+S 底. (4)球的体积和表面积:V =43πR 3;S =4πR 2. 2.三个基本领实(1)基本领实1:过不在同一条直线上的三点,有且只有一个平面.(2)基本领实2:假如一条直线上的两点在一个平面内,那么这条直线在此平面内.(3)基本领实3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.3.线面平行、垂直的定理(1)线面平行的判定定理:a ⊄α,b ⊂α,a ∥b ⇒a ∥α.(2)线面平行的性质定理:a ∥α,a ⊂β,α∩β=b ⇒a ∥b .(3)面面平行的判定定理:a ⊂α,b ⊂α,a ∩b =P ,a ∥β,b ∥β⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b .(5)线面垂直的判定定理:⎭⎪⎬⎪⎫l ⊥a l ⊥b a ∩b =O a ⊂αb ⊂α⇒l ⊥α. (6)线面垂直的性质定理:⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b . (7)面面垂直的判定定理: ⎭⎪⎬⎪⎫l ⊥αl ⊂β⇒α⊥β.(8)面面垂直的性质定理: ⎭⎪⎬⎪⎫α⊥βα∩β=al ⊥al ⊂β⇒l ⊥α. 4.三种空间角的求法设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同).(1)线线夹角:设l ,m 的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21·a 22+b 22+c 22 .(2)线面夹角:设直线l 与平面α的夹角为θ⎝⎛⎭⎪⎫0≤θ≤π2,则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|.(3)面面夹角:设平面α,β的夹角为θ(0≤θ<π),则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|.5.空间距离(1)点到直线的距离直线l 的单位方向向量为u ,A 是直线l 上的任一点,P 为直线l 外一点,设AP →=a ,则点P到直线l 的距离d =a 2-(a ·u )2.(2)点到平面的距离平面α的法向量为n ,A 是平面α内任一点,P 为平面α外一点,则点P 到平面α的距离为d =|AP →·n ||n |.。

2023年高考数学二轮复习讲练测(新高考)专题08 立体几何解答题常考全归类(原卷版)

专题08 立体几何解答题常考全归类【命题规律】空间向量是将空间几何问题坐标化的工具,是常考的重点,立体几何解答题的基本模式是论证推理与计算相结合,以某个空间几何体为依托,分步设问,逐层加深.解决这类题目的原则是建系求点、坐标运算、几何结论.作为求解空间角的有力工具,通常在解答题中进行考查,属于中等难度.【核心考点目录】核心考点一:非常规空间几何体为载体核心考点二:立体几何探索性问题核心考点三:立体几何折叠问题核心考点四:立体几何作图问题核心考点五:立体几何建系繁琐问题核心考点六:两角相等(构造全等)的立体几何问题核心考点七:利用传统方法找几何关系建系核心考点八:空间中的点不好求核心考点九:创新定义【真题回归】1.(2022·天津·统考高考真题)直三棱柱111ABC A B C 中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.2.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.3.(2022·浙江·统考高考真题)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.4.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.5.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.6.(2022·全国·统考高考真题)在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.7.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C 中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.8.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C 的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【方法技巧与总结】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的.(3)计算:在证明的基础上计算得出结果.简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin h l,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°.4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【核心考点】核心考点一:非常规空间几何体为载体【规律方法】关键找出三条两两互相垂直的直线建立空间直角坐标系.【典型例题】例1.(2022·陕西安康·统考一模)如图,已知AB 为圆锥SO 底面的直径,点C 在圆锥底面的圆周上,2BS AB ==,6BAC π∠=,BE 平分SBA ∠,D 是SC 上一点,且平面DBE ⊥平面SAB .(1)求证:SA BD ⊥;(2)求二面角E BD C --的正弦值.例2.(2022·安徽·校联考二模)如图,将长方形11OAAO (及其内部)绕1OO 旋转一周形成圆柱,其中11,2OA O O ==,劣弧11A B 的长为,6AB π为圆O 的直径.(1)在弧AB 上是否存在点C (1,C B 在平面11OAAO 的同侧),使1BC AB ⊥,若存在,确定其位置,若不存在,说明理由;(2)求平面11A O B 与平面11B O B 夹角的余弦值.例3.(2022·山东东营·胜利一中校考模拟预测)如图,,AB CD 分别是圆台上、下底面的直径,且AB CD ,点E 是下底面圆周上一点,AB =(1)证明:不存在点E 使平面AEC ⊥平面ADE ;(2)若4DE CE ==,求二面角D AE B --的余泫值.例4.(2022·河北·统考模拟预测)如图,在圆台1OO 中,上底面圆1O 的半径为2,下底面圆O 的半径为4,过1OO 的平面截圆台得截面为11ABB A ,M 是弧AB 的中点,MN 为母线,cos NMB ∠=(1)证明:1AB ⊥平面1AOM ; (2)求二面角M NB A --的正弦值.核心考点二:立体几何探索性问题【规律方法】与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或二面角满足特定要求时的存在性问题.处理原则:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断.【典型例题】例5.(2022·上海虹口·统考一模)如图,在三棱柱111ABC A B C 中,底面ABC 是以AC 为斜边的等腰直角三角形,侧面11AAC C 为菱形,点1A 在底面上的投影为AC 的中点D ,且2AB =.(1)求证:1BD CC ⊥;(2)求点C 到侧面11AA B B 的距离;(3)在线段11A B 上是否存在点E ,使得直线DE 与侧面11AA B B 请求出1A E 的长;若不存在,请说明理由.例6.(2022春·山东·高三山东省实验中学校考阶段练习)如图,在三棱柱111ABC A B C 中,1AB C 为等边三角形,四边形11AA B B 为菱形,AC BC ⊥,4AC =,3BC =.(1)求证:11AB AC ⊥;(2)线段1CC 上是否存在一点E ,使得平面1AB E 与平面ABC 的夹角的余弦值为14?若存在,求出点E 的位置;若不存在,请说明理由.例7.(2022春·黑龙江绥化·高三海伦市第一中学校考期中)如图1,在矩形ABCD 中,AB =2,BC =1,E 是DC 的中点,将DAE 沿AE 折起,使得点D 到达点P 的位置,且PB =PC ,如图2所示.F 是棱PB 上的一点.(1)若F 是棱PB 的中点,求证://CF 平面P AE ;(2)是否存在点F ,使得二面角F AE C --?若存在,则求出PF FB 的值;若不存在,请说明理由.例8.(2022·广东韶关·统考一模)已知矩形ABCD 中,4AB =,2BC =,E 是CD 的中点,如图所示,沿BE 将BCE 翻折至BFE △,使得平面BFE ⊥平面ABCD .(1)证明:BF AE ⊥;(2)若(01)DP DB λλ=<<是否存在λ,使得PF 与平面DEF 求出λ的值;若不存在,请说明理由.核心考点三:立体几何折叠问题【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质.【典型例题】例9.(2022春·江苏南通·高三期中)已知梯形ABCD 中,//AD BC ,π2∠=∠=ABC BAD ,24AB BC AD ===,E ,F 分别是AB ,CD 上的点,//EF BC ,AE x =,G 是BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)当2x =时①求证:BD EG ⊥;②求二面角D BF C --的余弦值;(2)三棱锥D FBC -的体积是否可能等于几何体ABE FDC -体积的一半?并说明理由.例10.(2022春·辽宁·高三辽宁实验中学校考期中)如图1,在平面四边形ABCD 中,已知ABDC ,AB DC ∥,142AD DC CB AB ====,E 是AB 的中点.将△BCE 沿CE 翻折至△PCE ,使得2DP =,如图2所示.(1)证明:DP CE ⊥;(2)求直线DE 与平面P AD 所成角的正弦值.例11.(2022春·湖南长沙·高三宁乡一中校考期中)如图,平面五边形P ABCD 中,PAD 是边长为2的等边三角形,//AD BC ,AB =2BC =2,AB BC ⊥,将PAD 沿AD 翻折成四棱锥P -ABCD ,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且PC =(1)证明:AB FM ⊥;(2)当直线EF 与平面P AD 所成的角最大时,求平面ACE 与平面P AD 夹角的余弦值.例12.(2022·四川雅安·统考模拟预测)如图①,ABC 为边长为6的等边三角形,E ,F 分别为AB ,AC 上靠近A 的三等分点,现将AEF △沿EF 折起,使点A 翻折至点P 的位置,且二面角P EF C --的大小为120°(如图②).(1)在PC 上是否存在点H ,使得直线//FH 平面PBE ?若存在,确定点H 的位置;若不存在,说明理由. (2)求直线PC 与平面PBE 所成角的正弦值.核心考点四:立体几何作图问题 【规律方法】(1)利用公理和定理作截面图(2)利用直线与平面平行的性质定理作平行线 (3)利用平面与平面垂直作平面的垂线 【典型例题】例13.(2022·贵州·校联考模拟预测)如图,已知平行六面体1111ABCD A B C D -的底面ABCD 是菱形,112CD CC AC ===,3DCB π∠=且113cos cos 4C CD C CB ∠=∠=.(1)试在平面ABCD 内过点C 作直线l ,使得直线//l 平面1C BD ,说明作图方法,并证明:直线11//l B D ; (2)求点C 到平面1A BD 的距离.例14.(2022秋·河北石家庄·高一石家庄市第十五中学校考期中)如图为一块直四棱柱木料,其底面ABCD 满足:AB AD ⊥,AD BC ∥.(1)要经过平面11CC D D 内的一点P 和棱1BB 将木料锯开,在木料表面应该怎样画线?(借助尺规作图,并写出作图说明,无需证明)(2)若2AD AB ==,11BC AA ==,当点P 是矩形11CDD C 的中心时,求点1D 到平面1APB 的距离.例15.(2022·全国·高三专题练习)如图多面体ABCDEF 中,面FAB ⊥面ABCD ,FAB 为等边三角形,四边形ABCD 为正方形,//EF BC ,且332EF BC ==,H ,G 分别为CE ,CD 的中点.(1)求二面角C FH G --的余弦值;(2)作平面FHG 与平面ABCD 的交线,记该交线与直线AB 交点为P ,写出APAB的值(不需要说明理由,保留作图痕迹).例16.(2022·全国·高三专题练习)四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,23DAB π∠=.ACBD O =,且PO ⊥平面ABCD ,PO =点,F G 分别是线段.PB PD 上的中点,E 在PA 上.且3PA PE =.(Ⅰ)求证://BD 平面EFG ;(Ⅰ)求直线AB 与平面EFG 的成角的正弦值;(Ⅰ)请画出平面EFG 与四棱锥的表面的交线,并写出作图的步骤.核心考点五:立体几何建系繁琐问题 【规律方法】 利用传统方法解决 【典型例题】例17.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例18.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.例19.(2022春·福建南平·高三校考期中)在三棱柱111ABC A B C 中,AB AC ⊥,1B C ⊥平面ABC ,E 、F 分别是棱AC 、11A B 的中点.(1)设G 为11B C 的中点,求证://EF 平面11BCC B ;(2)若2AB AC ==,直线1BB 与平面1ACB 所成角的正切值为2,求多面体1B EFGC -的体积V .核心考点六:两角相等(构造全等)的立体几何问题 【规律方法】 构造垂直的全等关系 【典型例题】例20.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例21.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.核心考点七:利用传统方法找几何关系建系【规律方法】利用传统方法证明关系,然后通过几何关系建坐标系. 【典型例题】例22.如图:长为3的线段PQ 与边长为2的正方形ABCD 垂直相交于其中心()O PO OQ >. (1)若二面角P AB Q --的正切值为3-,试确定O 在线段PQ 的位置;(2)在(1)的前提下,以P ,A ,B ,C ,D ,Q 为顶点的几何体PABCDQ 是否存在内切球?若存在,试确定其内切球心的具体位置;若不存在,请说明理由.例23.在四棱锥P ABCD -中,E 为棱AD 的中点,PE ⊥平面ABCD ,//AD BC ,90ADC ∠=︒,2ED BC ==,3EB =,F 为棱PC 的中点.(Ⅰ)求证://PA 平面BEF ;(Ⅰ)若二面角F BE C --为60︒,求直线PB 与平面ABCD 所成角的正切值.例24.三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,侧面11BCC B 为矩形,123A AB π∠=,二面角1A BC A --的正切值为12. (Ⅰ)求侧棱1AA 的长;(Ⅰ)侧棱1CC 上是否存在点D ,使得直线AD 与平面1A BC ,若存在,判断点的位置并证明;若不存在,说明理由.核心考点八:空间中的点不好求 【规律方法】 方程组思想 【典型例题】例25.(2022·江苏南京·模拟预测)已知三棱台111ABC A B C 的体积为143,且π2ABC ∠=,1A C ⊥平面11BB C C . (1)证明:平面11A B C ⊥平面111A B C ;(2)若11AC B C =,11112A B B C ==,求二面角1B AA C --的正弦值.例26.(2022春·浙江·高三浙江省新昌中学校联考期中)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是边长为2的菱形,3DAB π∠=,平面11BDD B ⊥平面ABCD ,点1,O O 分别为11,B D BD 的中点,1111,,O B A AB O BO ∠∠=均为锐角.(1)求证:1AC BB ⊥;(2)若异面直线CD 与1AA ,四棱锥1A ABCD -的体积为1,求二面角1B AA C --的平面角的余弦值.例27.(2022春·辽宁沈阳·高三沈阳市第一二〇中学校考期中)如图,在几何体ABCDE 中,底面ABC 为以AC为斜边的等腰直角三角形.已知平面ABC ⊥平面ACD ,平面ABC ⊥平面,//BCE DE 平面,ABC AD DE ⊥.(1)证明;DE ⊥平面ACD ;(2)若22AC CD ==,设M 为棱BE 的中点,求当几何体ABCDE 的体积取最大值时,AM 与CD 所成角的余弦值.核心考点九:创新定义 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例28.(2022·安徽合肥·合肥一六八中学校考模拟预测)已知顶点为S 的圆锥面(以下简称圆锥S )与不经过顶点S 的平面α相交,记交线为C ,圆锥S 的轴线l 与平面α所成角θ是圆锥S 顶角(圆S 轴截面上两条母线所成角θ的一半,为探究曲线C 的形状,我们构建球T ,使球T 与圆锥S 和平面α都相切,记球T 与平面α的切点为F ,直线l 与平面α交点为A ,直线AF 与圆锥S 交点为O ,圆锥S 的母线OS 与球T 的切点为M ,OM a =,MS b =.(1)求证:平面SOA ⊥平面α,并指出a ,b ,θ关系式; (2)求证:曲线C 是抛物线.例29.(2022·全国·高三专题练习)类比于二维平面中的余弦定理,有三维空间中的三面角余弦定理;如图1,由射线PA ,PB ,PC 构成的三面角-P ABC ,APC α∠=,BPC β∠=,APB γ∠=,二面角A PC B --的大小为θ,则cos cos cos sin sin cos γαβαβθ=+.(1)当α、π0,2β⎛⎫∈ ⎪⎝⎭时,证明以上三面角余弦定理;(2)如图2,四棱柱1111ABCD A B C D -中,平面11AA C C ⊥平面ABCD ,160A AC ∠=︒,45BAC ∠=︒, ①求1A AB ∠的余弦值;②在直线1CC 上是否存在点P ,使//BP 平面11DA C ?若存在,求出点P 的位置;若不存在,说明理由.例30.(2022·全国·校联考模拟预测)蜂房是自然界最神奇的“建筑”之一,如图1所示.蜂房结构是由正六棱柱截去三个相等的三棱锥H ABC -,J CDE -,K EFA -,再分别以AC ,CE ,EA 为轴将ACH ∆,CEJ ∆,EAK ∆分别向上翻转180︒,使H ,J ,K 三点重合为点S 所围成的曲顶多面体(下底面开口),如图2所示.蜂房曲顶空间的弯曲度可用曲率来刻画,定义其度量值等于蜂房顶端三个菱形的各个顶点的曲率之和,而每一顶点的曲率规定等于2π减去蜂房多面体在该点的各个面角之和(多面体的面角是多面体的面的内角,用弧度制表示).(1)求蜂房曲顶空间的弯曲度;(2)若正六棱柱的侧面积一定,当蜂房表面积最小时,求其顶点S 的曲率的余弦值.【新题速递】1.(2022·重庆沙坪坝·重庆八中校考模拟预测)如图,在三棱柱111ABC A B C 中,1BC CC =,1AC AB =.(1)证明:平面1ABC ⊥平面11BCC B ;(2)若BC =,1AB B C =,160CBB ∠=︒,求直线1BA 与平面111A B C 所成角的正弦值.2.(2022·四川达州·统考一模)如图,三棱柱111ABC A B C -中,底面ABC 为等腰直角三角形,112AB AC BB ===,,160ABB ∠=.(1)证明: 1AB B C ⊥;(2)若12B C =,求1AC 与平面1BCB 所成角的正弦值.3.(2022·陕西宝鸡·统考一模)如图在四棱锥P ABCD -中,PA ⊥底面ABCD ,且底面ABCD 是平行四边形.已知2,1,PA AB AD AC E ====是PB 中点.(1)求证:平面PBC ⊥平面ACE ;(2)求平面PAD 与平面ACE 所成锐二面角的余弦值.4.(2022·广东广州·统考一模)如图,已知四棱锥P ABCD -的底面ABCD 是菱形,平面PBC ⊥平面ABCD ,30,ACD E ∠=为AD 的中点,点F 在PA 上,3AP AF =.(1)证明:PC //平面BEF ;(2)若PDC PDB ∠∠=,且PD 与平面ABCD 所成的角为45,求平面AEF 与平面BEF 夹角的余弦值.5.(2022·上海奉贤·统考一模)如图,在四面体ABCD 中,已知BA BD CA CD ===.点E 是AD 中点.(1)求证:AD ⊥平面BEC ;(2)已知95,arccos,625AB BDC AD ∠===,作出二面角D BC E --的平面角,并求它的正弦值.6.(2022·上海浦东新·统考一模)如图,三棱锥-P ABC 中,侧面P AB 垂直于底面ABC ,PA PB =,底面ABC 是斜边为AB 的直角三角形,且30ABC ∠=︒,记O 为AB 的中点,E 为OC 的中点.(1)求证:PC AE ⊥;(2)若2AB =,直线PC 与底面ABC 所成角的大小为60°,求四面体P AOC 的体积.7.(2022·四川成都·石室中学校考模拟预测)如图,在四棱锥P ABCD -中,AB BD BP ===PA PD ==90APD ∠=︒,E 是棱PA 的中点,且BE 平面PCD(1)证明:CD ⊥平面PAD ;(2)若1CD =,求二面角A PB C --的正弦值.8.(2022春·江苏徐州·高三期末)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD ∥BC ,N 为PB 的中点.(1)若点M 在AD 上,2AM MD =,34AD BC =,证明:MN 平面PCD ; (2)若3PA AB AC AD ====,4BC =,求二面角D AC N --的余弦值.9.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD ED FA ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求二面角F AC E --的大小.10.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD FA ED ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求点A 到平面FBD 的距离.11.(2022·四川广安·广安二中校考模拟预测)APD △是等腰直角三角形,AP PD ⊥且AD =ABCD 是直角梯形,AB BC ⊥,DC BC ⊥,且222AB BC CD ===,平面APD ⊥平面ABCD .(1)求证:AP ⊥平面BPD ;(2)若点E 是线段PB 上的一个动点,问点E 在何位置时三棱锥D APE -.12.(2022·四川南充·统考一模)在平面五边形ABCDE 中(如图1),ABCD 是梯形,//AD BC ,2AD BC ==AB =90ABC ∠=︒,ADE 是等边三角形.现将ADE 沿AD 折起,连接EB ,EC 得四棱锥E ABCD -(如图2)且CE =(1)求证:平面EAD ⊥平面ABCD ;(2)在棱EB 上有点F ,满足13EF EB =,求二面角E AD F --的余弦值.13.(2022·贵州贵阳·贵阳六中校考一模)如图,在四棱锥P ABCD -中,DA AB ⊥,PD PC ⊥,PB PC ⊥,1AB AD PD PB ====,4cos 5DCB ∠=.(1)求证:BD ⊥平面PAC .(2)设E 为BC 的中点,求PE 与平面ABCD 所成角的正弦值.14.(2022春·广东广州·高三校考期中)如图所示,在四棱锥P ABCD -中,PC ⊥底面ABCD ,四边形ABCD 是直角梯形,AB AD ⊥,//,222AB CD PC AB AD CD ====,点E 在侧棱PB 上.(1)求证:平面EAC ⊥平面PBC ;(2)若平面PAC 与平面ACE PE BE 的值.。

高三数学二轮专题复习教案――立体几何

高三数学二轮专题复习教案――立体几何一、本章知识结构:二、重点知识回顾1、空间几何体的结构特征(1)棱柱、棱锥、棱台和多面体棱柱是由满足下列三个条件的面围成的几何体:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行;棱柱按底面边数可分为:三棱柱、四棱柱、五棱柱等.棱柱性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体.棱锥具有以下性质:①底面是多边形;②侧面是以棱锥的顶点为公共点的三角形;③平行于底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比.截面面积和底面面积的比等于上述相似比的平方.棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分.由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥.多面体是由若干个多边形围成的几何体.多面体有几个面就称为几面体,如三棱锥是四面体.(2)圆柱、圆锥、圆台、球分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、圆台、球圆柱、圆锥和圆台的性质主要有:①平行于底面的截面都是圆;②过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形;③圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥.2、空间几何体的侧面积、表面积(1)棱柱侧面展开图的面积就是棱柱的侧面积,棱柱的表面积就是它的侧面积与两底面面积的和.因为直棱柱的各个侧面都是等高的矩形,所以它的展开图是以棱柱的底面周长与高分别为长和宽的矩形.如果设直棱柱底面周长为c,高为h,则侧面积S ch=侧.若长方体的长、宽、高分别是a、b、c,则其表面积2() S ab bc ca=++表.(2)圆柱的侧面展开图是一个矩形.矩形的宽是圆柱母线的长,矩形的长为圆柱底面周长.如果设圆柱母线的长为l,底面半径为r,那么圆柱的侧面积2πS rl=侧,此时圆柱底面面积2πS r=底.所以圆柱的表面积222π2π2π()S S S rl r r r l=+=+=+侧底.(3)圆锥的侧面展开图是以其母线为半径的扇形.如果设圆锥底面半径为r,母线长为l,则侧面积πS rl=侧,那么圆锥的表面积是由其侧面积与底面面积的和构成,即为2πππ()S S S rl r r r l=+=+=+侧底.(4)正棱锥的侧面展开图是n个全等的等腰三角形.如果正棱锥的周长为c,斜高为h',则它的侧面积12S ch'=侧.(5)正棱台的侧面积就是它各个侧面积的和.如果设正棱台的上、下底面的周长是c c',,斜高是h',那么它的侧面积是12S ch'=侧.(6)圆台侧面展开图是以截得该圆台的圆锥母线为大圆半径,圆锥与圆台的母线之差为小圆半径的一个扇环.如果设圆台的上、下底面半径分别为r r',,母线长为l,那么它的侧面积是π()S r r l'=+侧.圆台的表面积等于它的侧面积与上、下底面积的和,即2222π()πππ() S S S S r r l r r r r r l rl''''=++=+++=+++侧上底下底.(7)球的表面积24πS R =,即球的表面积等于其大圆面积的四倍.3、空间几何体的体积(1)柱体(棱柱、圆柱)的体积等于它的底面积S 和高h 的积,即V Sh=柱体.其中底面半径是r ,高是h 的圆柱的体积是2πV r h=圆柱.(2)如果一个锥体(棱锥、圆锥)的底面积是S ,高是h ,那么它的体积是13V Sh=锥体.其中底面半径是r ,高是h 的圆锥的体积是21π3V r h=圆锥,就是说,锥体的体积是与其同底等高柱体体积的13.(3)如果台体(棱台、圆台)的上、下底面积分别是S S ',,高是h,那么它的体积是1()3V S S h=+台体.其中上、下底半径分别是r R ,,高是h 的圆台的体积是221π()3V r Rr R h=++圆台.(4)球的体积公式:334R V π=.4、中心投影和平行投影(1)中心投影:投射线均通过投影中心的投影。

高三二轮复习之立体几何

高三二轮复习之立体几何第1讲空间几何体的三视图、表面积与体积考点一空间几何体的三视图[核心提炼]一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样,即“长对正、高平齐、宽相等”.[例1](1)(2018·全国Ⅲ卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A[由题意可知带卯眼的木构件的直观图如右图所示,由直观图可知其俯视图应选A.故选A.](2)(2018·济南一模)如图,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△P AC在该正方体各个面上的正投影可能是()A.①②B.①④C.②③D.②④B[P点在上下底面投影落在AC或A1C1上,所以△P AC在上底面或下底面的投影为①,在前面、后面以及左面,右面的投影为④,故选B.][方法归纳]由三视图还原直观图的思路 (1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱的位置.(3)确定几何体的直观图形状. [对点训练]1.(2018·全国Ⅰ卷)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .2B [先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.ON =14×16=4,OM =2,∴|MN |=OM 2+ON 2=22+42=2 5.故选B.]2.(2018·相阳教育“黉门云”高考等值试卷模拟)某四面体的三视图由如图所示的三个直角三角形构成,则该四面体六条棱长最长的为( )A .7 B.41 C .6D.35B [四面体如图所示,其中SB ⊥平面ABC 且△ABC 中,∠ACB =90°.由SB ⊥平面ABC ,AB ⊂平面ABC 得到SB ⊥AB ,同理SB ⊥BC ,所以棱长最大为SA 且SA =SB 2+AB 2=SB 2+AC 2+BC 2=41,故选B.]考点二 空间几何体的表面积与体积[核心提炼]1.柱体、锥体、台体的侧面积公式 (1)S 柱侧=ch (c 为底面周长,h 为高); (2)S 锥侧=12ch ′(c 为底面周长,h ′为斜高);(3)S 台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面的周长,h ′为斜高).2.柱体、锥体、台体的体积公式 (1)V 柱体=Sh (S 为底面面积,h 为高); (2)V 锥体=13Sh (S 为底面面积,h 为高);(3)V 台=13(S +SS ′+S ′)h (S ,S ′分别为上、下底面面积,h 为高)(不要求记忆).3.球的表面积和体积公式 (1)S 球表=4πR 2(R 为球的半径); (2)V 球=43πR 3(R 为球的半径).[例2] (1)(2018·威海二模)某几何体的三视图如图所示,则该几何体的体积为( )A .18B .24C .32D .36B [由三视图可知,几何体是三棱柱削去一个同底的三棱锥,如右图,三棱柱的高为5,削去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,所以几何体的体积为12×3×4×5-13×12×3×4×3=30-6=24.故选B.](2)(2018·天津二调)已知一个几何体的三视图如图所示(单位:cm),则该几何体的体积为________cm 3.解析 根据几何体的三视图,得该几何体是上部为四棱锥,下部为半个圆柱的组合体,四棱锥的高为2,底面矩形的宽为2,长为4,圆柱的高为4,底面半径为1,∴该组合体的体积为V =13×2×4×2+12×π×12×4=163+2π.答案163+2π [方法归纳]求解几何体的表面积及体积的技巧(1)求几何体的表面积及体积问题,可以多角度、多方位地考虑、熟记公式是关键所在.求三棱锥的体积,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.(2)求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体进行求解.[对点训练]1.(2018·山东名校联盟一模)某几何体的三视图如图所示,依次为正视图,侧视图和俯视图,则这个几何体体积为( )A .6π+43B .8π+83C .6π+23D .8π+43B [由三视图可知,几何体是如图所示的组合体,该组合体由一个三棱锥与四分之三球体组成,其中棱锥的底面是等腰直角三角形,一侧面与底面垂直,球半径为2,所以可得,该几何体的体积为V =34×4π3×23+13×12×4×2×2=8π+83,故选B.]2.(2018·豫北名校精英对抗赛)若某多面体的三视图如右图所示(单位:cm)则此多面体的体积是________cm 3.解析 解根据三视图得该几何体是由棱长为1 cm 的正方体ABCD -EFGH 、沿相邻三个侧面的对角线截去一个三棱锥E -AFH 得到一个多面体(如图所示),所以此多面体的体积V =1-13×12×1×1×1=56(cm 3).答案 56考点三 多面体与球的切、接问题[核心提炼]与球有关的组合体问题,一种是内切,一种是外接.解题时需认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.[例3] (1)(2018·葫芦岛二模)某几何体的三视图如图所示,坐标纸上的每个小方格的边长为1,则该几何体的外接球的表面积是( )A.5103B .112π C.10009πD.50001081πC [该几何体是如图所示的三棱锥,三棱锥的高PD =6, 且侧面P AC ⊥底面ABC ,AC ⊥BC ,P A =PC =42+62=52,AC =8,BC =6;AB =82+62=10,∴P A 2+PB 2=AB 2,∴△ABC 的外接圆的圆心为斜边AB 的中点E ,设该几何体的外接球的球心为O .OE ⊥底面ABC ,设OE =x ,外接球的半径为R , 则x 2+⎝⎛⎭⎫1022=32+(6-x )2,解得x =53.∴R 2=⎝⎛⎭⎫532+52=2509,∴外接球的表面积S =4π×R 2=1000π9.故选C.](2)(2018·全国Ⅲ卷)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3B [由等边△ABC 的面积为93可得34AB 2=93, 所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3. 设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d , 则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.故选B.][方法归纳]多面体与球接、切问题的求解策略涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内接、外切的几何体的直观图,确定球心的位置,弄清球的半径(或直径)与该几何体已知量的关系,列方程(组)求解.[对点训练]1.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π4B [设圆柱的底面半径为r ,则r 2=12-⎝⎛⎭⎫122=34,所以,圆柱的体积V =34π×1=3π4,故选B.]2.(2018·湛江二模)已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球体积为________.解析 如图所示,在长、宽、高分别为22,2,2的长方体中,点E ,F 分别为对应棱的中点,则三视图对应的几何体为三棱锥E -ABF ,将三棱锥补形为三棱柱ABF -A 1B 1E ,则三棱锥的外接球即三棱柱的外接球, 取AB ,A 1B 1的中点,易知外接球的球心为GH 的中点, 据此可得外接球半径R =(2)2+12=3,外接球的体积V =43πR 3=43π.答案 43π课时作业(十二)1.(2018·辽宁部分重点中学协作体模拟)在一个密闭透明的圆柱筒内装一定体积的水,将该圆柱筒分别竖直、水平、倾斜放置时,指出圆柱桶内的水平面可以呈现出的几何形状不可能是( )A .圆面B .矩形面C .梯形面D .椭圆面或部分椭圆面C [将圆柱桶竖放,水面为圆面;将圆柱桶斜放,水面为椭圆面或部分椭圆面;将圆柱桶水平放置,水面为矩形面,所以圆柱桶内的水平面可以呈现出的几何形状不可能是梯形面,故选C.]2.(2018·四川棠湖中学3月月考)用一个平面去截正方体,则截面不可能是( ) A .直角三角形 B .等边三角形 C .正方形D .正六边形A [用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形; ④截面为六边形时,可以是正六边形. 故可选A.]3.某几何体的三视图是如图所示的三个直角三角形,若该几何体的体积为144 cm 2,则d =( )A .14 cmB .13 cmC .12 cmD .11 cmC [根据已知的三视图,作出直观图如下:由已知有AB ⊥平面BCD ,且∠CBD =90°,且AB =8,BD =9,BC =d ,由三棱锥的体积计算公式V =13Sh =13×12×9×d ×8=144,求出d =12 cm ,故选C.]4.(2018·济南二模)中国古代数学名著《九章算术》中,将底面是直角三角形的直棱柱称为“堑堵”.已知某“堑堵”的正视图和俯视图如右图所示,则该“堑堵”的左视图的面积为( )A .18 6B .18 3C .18 2D.2722 C [由三视图可知,该几何体为直三棱柱, 底面直角三角形斜边的高为6×3=3 2该“堑堵”的左视图的面积为32×6=182,故选C.]5.(2018·厦门质检二)已知某正三棱锥的侧棱长大于底边长,其外接球体积为125π6,三视图如图所示,则其侧视图的面积为( )A.32 B .2 C .4D .6D [设正三棱锥外接球的半径为R , 则43πR 3=1256⇒R =52, 由三视图可得底面边长为23, 底面正三角形的高为32×23=3,底面三角形外接圆半径为23×3=2,由勾股定理得⎝⎛⎭⎫522=22+⎝⎛⎭⎫h -522,得h =4, ∴侧视图面积为S △PBE =12×3×4=6,故选D.]6.(2018·洛阳一模)某几何体的三视图如图所示,则该几何体的体积为( )A.233B.152C.476D .8A [根据题中所给的几何体的三视图,可以得到该几何体是由正方体切割而成的,记正方体为ABCD -A 1B 1C 1D 1,取A 1D 1中点为M ,取D 1C 1中点为N ,该几何体就是正方体切去一个三棱锥D -MND 1之后剩余部分,故其体积为V =23-13×12×1×1×2=233,故选A.]7.(2018·皖江八校八联)某几何体的三视图如图所示,其中每个单位正方体的边长为1,则该几何体的体积( )A .8π-6B .8π-163C .4π+4D .4π+143B [由三视图可知,该几何体是半圆柱挖去一个三棱锥,其体积为12×π×22×4-13×12×4×2×4=8π-163.故选B.]8.(2018·重庆三调)一个几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的体积为( )A.π6B.π3C.π2D .πB [原几何体如图所示:它是半个圆锥,其底面半径为1,高为2,故体积为12×13×π×12×2=π3,故选B.]9.(2018·全国Ⅰ卷)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10πB [设圆柱的轴截面的边长为x ,则由x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×22=12π.故选B.]10.(2018·烟台二模)某几何体的三视图如图所示,则该几何体的体积为( )A.163B.203C.169D.209B [由给定的三视图可知,该几何体表示左侧是一个以边长为2的正方形为底面,高为2的四棱锥,其体积为V 1=13×2×2×2=83;右侧为一个直三棱柱,其底面如俯视图所示,高为2的直三棱柱,其体积为V 2=12×2×2×2=4,所以该几何体的体积为V =V 1+V 2=83+4=203,故选B.]11.(2018·大同、阳泉质监二)《九章算术》中将底面是直角三角形的直三棱柱称之为“堑堵”.一块“堑堵”型石材表示的三视图如图所示.将该石材切削、打磨,加工成若干个相同的球,并使每个球的体积最大,则所剩余料体积为( )A .288-48πB .288-16πC .288-32πD .288-4πC [如图所示,作三棱柱底面的内接圆,设内接圆的半径为r ,则CF =CE =6-r ,AD =AE =8-r ,∵AD +CF =CE +AE =AC =62+82=10,得6-r +8-r =10,故r =2,又∵三棱柱的高为12,故共有12÷4=3个球, ∵该三棱柱的体积等于12×6×8×12=288,∴剩余材料的体积为288-3×43π×23=288-32π,故选C.]12.(2018·莆田质检二)某四棱锥的底面为正方形,其三视图如图所示,则该四棱锥的外接球的表面积为( )A .πB .2πC .3πD .4πC [观察分析题中所给的三视图,可以确定该四棱锥的底面是边长为1的正方形,高为1,且顶点在底面上的摄影落在底面顶点处的四棱锥,从而可以断定该四棱锥的五个顶点都在以1为棱长的正方体上,从而求得该正方体的外接球的半径为32,所以其面积为S =4πr 2=3π,故选C.]13.(2018·全国Ⅱ卷)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为________.解析 在Rt △SAB 中,SA =SB ,S △SAB =12·SA 2=8,解得SA =4.设圆锥的底面圆心为O ,底面半径为r ,高为h ,在Rt △SAO 中,∠SAO =30°, 所以r =23,h =2,所以圆锥的体积为13πr 2·h =13h ×(23)2×2=8π.14.(2018·南京师大附中考前模拟)如图,直三棱柱ABC -A 1B 1C 1的各条棱长均为2,D 为棱B 1C 1上任意一点,则三棱锥D -A 1BC 的体积是________.解析 由题可得VD -A 1BC =VA 1-BCD =13·S BCD ·AD =13×2×2×12×3=233.答案23315.(2018·天津十二校二联)一个几何体的三视图如图所示,则该几何体的体积为________.解析 由三视图可知,该几何体是一个组合体,它由半个圆锥与四分之一球体组成, 其中,圆锥的底面半径为1,高为2,体积为12×13×π×12×2=π3;球半径为1,体积为14×43π×12=π3,所以,该几何体的体积为π3+π3=2π3.答案2π316.(2018·威海二模)已知正三棱柱ABC -A 1B 1C 1,侧面BCC 1B 1的面积为43,则该正三棱柱外接球表面积的最小值为________.解析 设BC =a ,CC 1=b ,则ab =4 3.底面三角形外接圆的半径为r ,则a sin60°=2r ,∴r =33a .所以R 2=⎝⎛⎭⎫b 22+⎝⎛⎭⎫33a 2=b 24+a 23≥2b 24·a 23=24812=4, 所以该正三棱柱外接球表面积的最小值为4π×4=16π.第2讲空间点、线、面的位置关系考点一空间线面位置关系的判断[核心提炼]空间中点、线、面的位置关系的判定(1)可以从线、面的概念、定理出发,学会找特例、反例.(2)可以借助长方体,在理解空间点、线、面位置关系的基础上,抽象出空间线、面的位置关系的定义.[例1](1)(2018·湛江二模)下列命题正确的是()①三点确定一个平面;②两两相交且不共点的三条直线确定一个平面;③如果两个平面垂直,那么其中一个平面内的直线一定垂直于另一个平面;④如果两个平面平行,那么其中一个平面内的直线一定平行于另一个平面.A.①③B.①④C.②④D.②③C[注意考查所给的命题:①不在同一条直线上的三点确定一个平面,该说法错误;②两两相交且不共点的三条直线确定一个平面,该说法正确;③如果两个平面垂直,那么其中一个平面内的直线不一定垂直于另一个平面,可能相交或平行于另一个平面,该说法错误;④如果两个平面平行,那么其中一个平面内的直线一定平行于另一个平面,该说法正确.综上可得:命题正确的是②④.故选C.](2)(2018·天一大联考四)设m,n为空间两条不同的直线,α,β为空间两个不同的平面,给出下列命题:①若m⊥α,m⊥β,则α∥β;②若m∥n,m⊥β,则n⊥β;③若m⊥α,m ∥β,则α⊥β;④若m⊥α,α∥β,则m⊥β.其中正确命题的个数是()A.1 B.2C.3 D.4D[①一根直线同时垂直两个不相同的平面,显然这两个平面平行,故正确;②因为两条平行直线中有一条垂直于一个平面,则另外一条直线也垂直这个平面,故正确;③若m ⊥α,m∥β,则必存在直线l⊂β⇒l∥m,l⊥α,所以由面面垂直的判定可知α⊥β,故正确;④若m⊥α,α∥β,则由线面垂直的判定可知m⊥β,故正确,故选D.][方法归纳]对于空间中与平行、垂直相关的定理我们一定要准确记忆和理解,不能漏掉任何一个条件.如两平面平行的判定定理“一个平面内的两条相交直线与另一个平面平行,则这两个平面平行”,必须注意“相交”,否则推不出两平面平行.[对点训练]1.(2018·泸州模拟)设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是()A.a∥b,b⊂α,则a∥αB.a⊂α,b⊂β,α∥β,则a∥bC.a⊂α,b⊂α,a∥β,b∥β,则α∥βD.α∥β,a⊂α,则a∥βD[由a,b是空间中不同的直线,α,β是不同的平面,知:在A中,a∥b,b⊂α,则a∥α或a⊂α,故A错误;在B中,a⊂α,b⊂β,α∥β,则a与b平行或异面,故B错误;在C中,a⊂α,b⊂α,α∥β,b∥β,则α与β相交或平行,故C错误;在D中,α∥β,a⊂α,则由面面平行的性质定理得a∥β,故D正确.故选D.]2.(2018·绵阳三诊)如图,平面α与平面β相交于BC,AB⊂α,CD⊂β,点A∉BC,点D∉BC,则下列叙述错误的是()A.直线AD与BC是异面直线B. 过AD只能作一个平面与BC平行C.过AD只能作一个平面与BC垂直D.过D只能作唯一平面与BC垂直,但过D可作无数个平面与BC平行C[由异面直线判定定理得直线AD与BC是异面直线;在平面β内仅有一条直线过点D且与BC平行,这条直线与AD确定一个平面与与BC平行,即过AD只能作一个平面与BC平行;若AD垂直平面α,则过AD的平面都与BC垂直,因此C错;过D只能作唯一平面与BC垂直,但过D可作无数个平面与BC平行;故选C.]考点二空间线面平行、垂直关系的证明[核心提炼]1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α=α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b . 2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m ⊂α,n ⊂α,m ∩n =P ,l ⊥m ,l ⊥n ⇒l ⊥α. (2)线面垂直的判定定理:a ⊥α,b ⊥β⇒a ∥b . (3)面面垂直的判定定理:a ⊂β,a ⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β.[例2] (2018·全国Ⅰ卷)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.解 (1)证明:由已知可得, ∠BAC =90°,即BA ⊥AC . 又BA ⊥AD ,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC . (2)由已知可得,DC =CM =AB =3,DA =3 2. 又BP =DQ =23DA ,所以BP =2 2.如图,过点Q 作QE ⊥AC , 垂足为E ,则QE 綊13DC .由已知及(1)可得,DC ⊥平面ABC ,所以QE⊥平面ABC,QE=1. 因此,三棱锥Q-ABP的体积为V Q-ABP=13×S△ABP×QE=13×12×3×22sin 45°×1=1.[方法归纳]平行关系及垂直关系的转化空间平行、垂直关系证明的主要思想是转化,即通过判定定理、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.[对点训练]1.(2018·南京师大附中考前模拟)如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若AF⊥EF,求证:平面P AD⊥平面ABCD.证明(1) 因为四边形ABCD是矩形,所以AB∥CD.又AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC,又因为AB⊂平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2) 因为四边形ABCD是矩形,所以AB⊥AD.因为AF ⊥EF ,(1)中已证AB ∥EF , 所以AB ⊥AF ,又AB ⊥AD , 由点E 在棱PC 上(异于点C ),所以F 点异于点D ,所以AF ∩AD =A , AF ,AD ⊂平面P AD ,所以AB ⊥平面P AD , 又AB ⊂平面ABCD ,所以平面P AD ⊥平面ABCD .2.(2018·厦门质检)如图,四棱锥P -ABCD 中,侧面P AB ⊥底面ABCD ,P A =PB ,CD =2AB =4,CD ∥AB ,∠BP A =∠BAD =90°.(1)求证:PB ⊥平面P AD ;(2)若三棱锥C -PBD 的体积为2,求△P AD 的面积.解 (1)∵平面P AB ⊥平面ABCD ,平面P AB ∩平面ABCD =AB ,AD ⊂平面ABCD ,且AD ⊥AB ,∴AD ⊥平面P AB .又∵PB ⊂平面P AB ,∴PB ⊥AD .又∵PB ⊥P A ,P A ∩AD =A ,P A ,PD ⊂平面P AD , ∴PB ⊥平面P AD .(2)取AB 中点E ,连接PE . ∵P A =PB ,∴PE ⊥AB .又∵PE ⊂平面P AB ,平面P AB ⊥平面ABCD , 平面P AB ∩平面ABCD =AB ,∴PE ⊥平面ABCD . ∴PE 为三棱锥P -BCD 的高,且PE =12AB =1.又∵CD ∥AB ,AD ⊥CD ,∴S △BCD =12CD ·AD =2AD .∴V C -PBD =V P -BCD=13·S △BCD ·PE =23AD =2,得AD =3.P A =AB ·cos 45°=2.又∵AD ⊥平面P AB 且P A ⊂平面P AB ,∴P A ⊥AD . ∴S △P AD =12P A ·AD =322.考点三 异面直线所成角、直线与平面所成的角[核心提炼]1.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(2)范围:⎝⎛⎦⎤0,π2. 2.直线与平面所成的角(1)定义:一条斜线和它在平面上的射影所成得锐角叫做这条直线和这个平面所成的角. (2)范围:⎣⎡⎦⎤0,π2 [例3] (1)(2018·全国Ⅱ卷)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15 B.56 C.55D.22C [图(1)方法1:如图(1),在长方体ABCD -A 1B 1C 1D 1的一侧补上一个相同的长方体A ′B ′BA -A 1′B 1′B 1A 1.连接B 1B ′,由长方体性质可知,B 1B ′∥AD 1,所以∠DB 1B ′为异面直线AD 1与DB 1所成的角或其补角,连接DB ′,由题意,得DB ′=12+(1+1)2=5,B ′B 1=12+(3)2=2,DB 1=12+12+(3)2= 5.在△DB ′B 1中,由余弦定理得DB ′2=B ′B 21+DB 21-2B ′B 1·DB 1·cos ∠DB 1B ′, 即5=4+5-2×25cos ∠DB 1B ′,∴cos ∠DB 1B ′=55.故选C.图(2)方法2:如图(2),分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴建立空间直角坐标系.由题意,得A (1,0,0),D (0,0,0),D 1(0,0,3),B 1(1,1,3),∴AD 1→=(-1,0,3),DB 1→=(1,1,3),∴AD 1→·DB 1→=-1×1+0×1+(3)2=2, |AD 1→|=2,|DB 1→|=5,∴cos 〈AD 1→,DB 1→〉=AD 1→·DB 1→|AD 1→|·|DB 1→|=225=55.故选C.](2)(2018·全国Ⅰ卷)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A.334B.233C.324D.32A [如图所示,在正方体ABCD -A 1B 1C 1D 1中,平面AB 1D 1与棱A 1A ,A 1B 1,A 1D 1所成的角都相等,又正方体的其余棱都分别与A 1A ,A 1B 1,A 1D 1平行,故正方体ABCD -A 1B 1C 1D 1的每条棱所在直线与平面AB 1D 1所成的角都相等.如图所示,取棱AB ,BB 1,B 1C 1,C 1D 1,DD 1,AD 的中点E ,F ,G ,H ,M ,N ,则正六边形EFGHMN 所在平面与平面AB 1D 1平行且面积最大,此截面面积为S 正六边形EFGHMN =6×12×22×22sin 60°=334.故选A.] [方法归纳]异面直线所成角的求法(1)求异面直线所成的角常用方法是平移法,平移方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.(2)求异面直线所成角的三个步骤①作:通过作平行线,得到相交直线的夹角. ②证:证明相交直线夹角为异面直线所成的角.③求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.[对点训练]1.(2018·钦州质检三)在正方体ABCD -A 1B 1C 1D 1中,下列几种说法正确的是( ) A .A 1C 1与B 1C 成60°角 B .D 1C 1⊥AB C .AC 1与DC 成45°角D .A 1C 1⊥ADA [直线A 1C 1与B 1C 是异面直线,而B 1C ∥A 1D ,所以∠DA 1 C 为A 1C 1与B 1C 所成的角,显然三角形DA 1C 1是等边三角形,所以∠DA 1C =60°,所以A 是正确的;选项B :由正方体的性质易得D 1C 1∥AB ,所以是错误的;选项C :可得DC ∥D 1C 1,在Rt △AC 1D 1中,AD 1≠D 1C 1,故AC 1与DC 不可能成45°角,所以是错误的;选项D :易得∠D 1A 1C 1为A 1C 1与AD 所成的角,在等腰直角三角形D 1A 1C 1为中易得∠D 1A 1C 1=45°,所以A 1C 1与AD 不可能垂直,所以是错误的,故选A.]2.(2018·全国大联考5月)如图,已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=AD =2BC ,∠A 1B 1C 1=∠B 1C 1D 1=120°,且BC ∥AD ,则直线AB 1与直线A 1D 所成角的余弦值为( )A.1010B.31020C.105D.55B [不妨设AD =4,如图,延长BC 至点M ,使得CM =BC ,连接B 1 M ,AM ,易证直线AB 1与直线A 1D 所成的角等于∠AB 1M 或其补角.易知AB 1=25,B 1M =42, AM =AB 2+BM 2-2AB ·BM ·cos ∠ABM =27,所以cos ∠AB 1M =AB 21+B 1M 2-AM 22AB 1·B 1M=31020,则直线AB 1与直线A 1D 所成角的余弦值为31020,故选B.]课时作业(十三)1.下列命题正确的个数为( ) ①经过三点确定一个平面; ②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面; ④如果两个平面有三个公共点,则这两个平面重合.A .0B .1C .2D .3C [因为①中,只有经过不共线的三点,才能唯一的确定一个平面,所以不正确;②中,梯形的上底和下底所在的直线互相平行,所以梯形是一个平面图象,所以是正确的;③中,当两两相交的三条直线,交于一点时,最多可以确定三个平面,所以是正确的;④中,当两个平面相交时,存在一条公共直线,当三点在这条直线上时,两个平面可以是相交的,所以不正确,所以正确命题的个数为两个,故选C.]2.(2018·宁波5月模拟)已知直线l 、m 与平面α、β,l ⊂α,m ⊂β,则下列命题中正确的是( )A .若l ∥m ,则必有α∥βB .若l ⊥m ,则必有α⊥βC .若l ⊥β,则必有α⊥βD .若α⊥β,则必有m ⊥αC [对于选项A ,平面α和平面β还有可能相交,所以选项A 错误;对于选项B ,平面α和平面β还有可能相交或平行,所以选项B 错误;对于选项C ,因为l ⊂α,l ⊥β,所以α⊥β.所以选项C 正确;对于选项D ,直线m 可能和平面α不垂直,所以选项D 错误.故选C.]3.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( )A.1010B.15C.35D.31010D [连BA 1,则在正四棱柱中可得BA 1∥CD 1,∴∠A 1BE 即为异面直线BE 与CD 1所成角(或其补角).设AA 1=2AB =2,则在△A 1BE 中,BE =2,EA 1=1,BA 1=5,由余弦定理得cos ∠A 1BE =(2)2+(5)2-122×2×5=31010 ,∴异面直线BE 与CD 1所成角的余弦值为31010 .故选D.]4.(2018·潍坊二模)已知三棱柱ABC -A 1B 1C 1,平面β截此三棱柱,分别与AC ,BC ,B 1C 1,A 1C 1交于点E ,F ,G ,H ,且直线CC 1∥平面β.有下列三个命题:①四边形EFGH 是平行四边形;②平面β∥平面ABB 1A 1;③若三棱柱ABC -A 1B 1C 1是直棱柱,则平面β⊥平面A 1B 1C 1.其中正确的命题为( )A.①②B.①③C.①②③D.②③B[在三棱柱ABC-A1B1C1中,平面β截此三棱柱,分别与AC,BC,B1C1,A1C1交于点E,F,G,H,且直线CC1∥平面β,则CC1∥EH∥FG,且CC1=EH=FG,所以四边形EFGH 是平行四边形,故①正确;∵EF与AB不一定平行∴平面β与平面ABB1A1平行或相交,故②错误;若三棱柱ABC-A1B1C1是直棱柱,则CC1⊥平面A1B1C1.∴EH⊥平面A1B1C1.又∵EH⊂平面β,∴平面β⊥平面A1B1C1,故③正确.故选B.]5.(2018·包头一模)如图,在正方形ABCD中,E,F分别是AB,BC的中点,G是EF 的中点,沿DE,EF,FD将正方形折起,使A,B,C重合于点P,构成四面体,则在四面体P-DEF中,给出下列结论:①PD⊥平面PEF;②PD⊥EF;③DG⊥平面PEF;④DF⊥PE;⑤平面PDE⊥平面PDF.其中正确结论的序号是()A.①②③⑤B.②③④⑤C.①②④⑤D.②④⑤C[如图所示,因为E,F分别为AB,BC的中点,所以BD⊥EF,因为DA⊥AE,DC⊥CF,所以折叠后DP⊥PE,DP⊥PF,所以DP⊥平面PEF,所以①正确;由DP⊥平面PEF,EF⊂平面PEF,所以DP⊥EF,所以②正确;由DP⊥平面PEF,根据过一点有且只有一条直线垂直于一个平面,所以DG⊥平面PEF是不正确的,所以③不正确;由PE⊥PF,PE⊥DP,可得PE⊥平面DPF,又DF⊂平面DPF,所以PE⊥DF,所以④正确;由PE⊥平面DPF,又PE⊂平面PDE,所以平面PDE⊥平面DPF,所以⑤是正确,综上可知,正确的结论序号为①②④⑤,故选C.]6.(2018·唐山三模)若异面直线m,n所成的角是60°,则以下三个命题:①存在直线l,满足l与m,n的夹角都是60°;②存在平面α,满足m⊂α,n与α所成角为60°;③存在平面α,β,满足m⊂α,n⊂β,α与β所成锐二面角为60°.其中正确命题的个数为()A.0 B.1C.2 D.3D[异面直线m,n所成的角是60°,在①中,由异面直线m,n所成的角是60°,在m上任取一点A,过A作n′∥n,在空间中过点A能作出直线l,使得l与n′,n的夹角均为60°,∴存在直线l,满足l与m,n的夹角都是60°,故①正确;在②中,在n上取一点B,过B作m′∥m,则以m,m′确定的平面α,满足m⊂α,n 与α所成的角是60°,故②正确;在③中,在n上取一点C,过C作m′∥m,m,m′确定一个平面平面α,过n能作出一个平面β,满足m⊂α,n⊂β,α与β所成锐二面角为60°,故③正确,故选D.]7.(2018·南京、盐城二模)α,β为两个不同的平面,m,n为两条不同的直线,下列命题中正确的是________(填上所有正确命题的序号).①若α∥β,m⊂α,则m∥β;②若m∥α,n⊂α,则m∥n;③若α⊥β,α∩β=n,m⊥n,则m⊥β;④若n⊥α,n⊥β,m⊥α,则m⊥β.解析由题意得,由α∥β,m⊂α,根据面面平行的性质,可得m∥β,所以①正确的;由m∥α,n⊂α,则m与n平行或异面,所以②不正确;由α⊥β,α∩β=n,m⊥n,则m⊥β或m ⊂β,所以③不正确;由n⊥α,n⊥β,n⊥α,根据直线垂直平行平面中一个也必垂直于另一个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

肥东锦弘中学2014届高考二轮专题复习
专题三 立体几何
一.探索性问题
例1. 如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,P A ⊥底面ABCD ,垂足为A ,P A =AB ,点M 在棱PD 上,PB ∥平面ACM . (1)试确定点M 的位置;
(2)设点N 在棱PB 上,当N 在何处时,使得MN ⊥平面P AC ?
(3)设点E 在棱PC 上,当点E 在何处时,使得AE ⊥平面PBD ?
例2 多面体ABCDEF 中,底面ABCD 是边长为a 的正方形,FD ⊥底面
ABCD ,CD FD EC FD =且,//,M,N 分别是AB,AC 的中点,G 是DF 上一个动点. (1)求该多面体的体积和表面积; (2)求证:GN ⊥AC ;
(3)当FG =GD 时,在棱AD 上确定一点P ,使得GP ∥平面FMC ,并给出证明.
练习:
1. 如图,在四棱锥S -ABCD 中,平面SAD ⊥平面ABCD .四边形ABCD 为正方形,
且P 为AD 的中点,Q 为SB 的中点. (Ⅰ)求证:CD ⊥平面SAD ; (Ⅱ)求证:PQ ∥平面SCD ;
(Ⅲ)若SA =SD ,M 为BC 中点,在棱SC 上是否存在点N ,使得平面DMN ⊥平面ABCD ,并证明你的结论.
2. 在四棱锥P —ABC D 中,底面ABCD 是菱形,AC ∩BD =O .
(1)若PD AC ⊥,求证:AC 平面PBD ; (2)若平面P AC ⊥平面ABCD ,求证:PB =PD ;
(3)在棱PC 上是否存在点M (异于点C )使得BM //平面P AD ?若存在,求PC
PM
的值;若不存在,说明理由.
3. 如图,在直三棱柱ABC -A 1B 1C 1中,D 、E 分别是棱BC 、AB 的中点,点F 在棱CC1上,已知AB =A C ,AA 1=3,BC = CF =2. (1)求证:C 1E ∥平面ADF ;
(2)设点M 在棱BB 1上,当BM 为何值时,平面CAM ⊥平面ADF ?
4. 如图,在长方体ABCD -A 1B 1C 1D 1中AA 1=AD =1,E 为CD 中点. (1)求证:B 1E ⊥AD 1;
(2)若二面角A -B 1EA 1的大小为30°,求AB 的长;
(3)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.
二.图形翻折问题
例1 如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点
,CD BE =O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥
A BCDE '-,
其中A O '=
(Ⅰ) 证明:A O '⊥平面BCDE ;
(Ⅱ) 求二面角A CD B '--的平面角的余弦值. 练习:
1. 如图,在矩形ABCD 中,点E,F 分别在线段AB,AD 上,AE =EB =AF =3
2
FD =4,沿直线EF 将∆AEF 翻着成∆A 'EF ,使平面A 'EF ⊥平面BEF .
(1)求二面角A '-F D-C 的余弦值;
(2)点M,N 分别在线段FD,BC 上,若沿直线MN 将四边形MNCD 向上翻着,使C 与A '重合,求线段FM 的长.
.
C
O B
D
E
A C
D
O
B
E
'A
图1

2
2. 如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2. (1) 求证:A 1C ⊥平面BCDE ;
(2) 若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;
(3) 线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由.
三.传统习题
例1.已知,//,//,βαβαm m l = 求证:m l //.
例2.如图,21,,,,θθααα=∠=∠⊂⊥=POB POA OB A PA O PO 记平面于平面 ,
3θ=∠AOB ,试研究321cos ,cos ,cos θθθ三者之间的关系.
练习:空间中两异面直线l 1和l 2所成角为︒50,那么与l 1和l 2所成角均为︒65角的直线有几条
?
3.。

相关文档
最新文档