高中数学《立体几何》高考专题复习
高考数学立体几何专项知识点精选全文完整版

可编辑修改精选全文完整版高考数学立体几何专项知识点高中数学平面几何不时是数学的一大难点,下面是小编整理的数学平面几何专项知识点,对提高数学效果会有很大的协助。
(1)空间几何体① 看法柱、锥、台、球及其复杂组合体的结构特征.② 能画出复杂空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的平面模型,会用斜二侧法画出它们的直观图.③ 了解球、棱柱、棱锥、台的外表积和体积的计算公式(不要求记忆公式).(2)点、直线、平面之间的位置关系① 了解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:假设一条直线上的两点在一个平面内,那么这条直线上一切的点在此平面内.◆公理2:过不在同一条直线上的三点,有且只要一个平面.◆公理3:假设两个不重合的平面有一个公共点,那么它们有且只要一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线相互平行◆定理:空间中假设一个角的两边与另一个角的两边区分平行,那么这两个角相等或互补.② 以平面几何的上述定义、公理和定理为动身点,看法和了解空间中线面平行、垂直的有关性质与判定.了解以下判定定理:◆假设平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆假设一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆假设一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆假设一个平面经过另一个平面的垂线,那么这两个平面相互垂直.了解以下性质定理,并可以证明:◆假设一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.◆假设两个平行平面同时和第三个平面相交,那么它们的交线相互平行◆垂直于同一个平面的两条直线平行◆假设两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.③ 能运用公理、定理和已取得的结论证明一些空间位置关系的复杂命题.温习关注:平面几何试题着重考察空间点、线、面的位置关系的判别及几何体的外表积与体积的计算,关注画图、识图、用图的才干,关注对平行、垂直的探求,关注对条件或结论不完备情形下的开放性效果的探求小编为大家提供的2021-2021高考数学平面几何专项知识点大家细心阅读了吗?最后祝考生们学习提高。
2023届高考数学总复习《立体几何》附答案解析

(2)若点 N 为 BC 的中点,求四面体 A'MNB 的体积.
【解答】证明:(1)连接 BD,设 BD∩EC=F,连接 MF,
由题意可得四边形 BCDE 为正方形,则 F 为 BD 的中点,
∴MF 为△A′BD 的中位线,可得 MF∥A′B,
又 A′B⊄平面 EMC,MF⊂平面 EMC,
∴A'B∥平面 EMC;
2023 年高考:立体几何复习题及答案
1.如图,已知直角梯形 ABCD,BC∥AD,BC=CD=2,AD=4,∠BCD=90°,点 E 为 AD 的中点,现将三角形 ABE 沿 BE 折叠,得到四棱锥 A'﹣BCDE,其中∠A'ED=120°, 点 M 为 A'D 的中点.
(1)求证:A'B∥平面 EMC;
第2页共3页
∵BE⊂平面 BEF,∴平面 BEF⊥平面 AMD, 结合题意分析知,点 F 在线段 AD 上,连接 MF, 过 A 作 AH⊥MF,交 MF 的延长线于点 H,
则结合已知条件得
,解得 AH ,
设 Dt ,
第3页共3页
【解答】解:(1)证明:由题意知 PC2+AC2=PA2,∴PC⊥AC, 同理,PC⊥BC,又 AC∩BC=C,∴PC⊥平面 ABC, ∵D,E 分别是 AC,PA 的中点,∴DE∥PC, ∴DE⊥平面 ABC, 又 DE⊂平面 BDE,∴平面 BDE⊥平面 ABC. (2)在△BDE 中,DE⊥BD,BD=2 ,DE=2,∴BE=4, 如图,过 A 作 AM⊥BE 于 M,连接 MD, 在△ABE 中,AB=BE=4,AE=2 ,解得 AM ,ME=1, ∵DM⊂平面 BDE,∴AC⊥DM, 在 Rt△ADM 中,AM ,AD=2,∴DM , ∴DM2+EM2=DE2,∴MD⊥BE, ∵AM∩MD=M,∴BE⊥平面 AMD,
高三高考数学总复习《立体几何》题型归纳与汇总

(3)当 PA// 平面 BDE 时, PA 平面 PAC ,且平面 PAC 平面 BDE DE ,可得 PA//DE .由 D 是 AC 边的中 点知, E 为 PC 边的中点.故而 ED 1 PA 1, ED∥PA ,因为 PA 平面 ABC ,所以 ED 平面 BDC .
2
由 AB BC 2 ,AB BC ,D 为 AC 边中点知,BD CD 2. 又 BD AC ,有 BD DC ,即 BDC 90.
3 【解析】(1)∵ PA PD, N 为 AD 的中点,∴ PN AD, ∵底面 ABCD为菱形, BAD 60 ,∴ BN AD, ∵ PN BN N ,∴ AD 平面 PNB . (2)∵ PN PD AD 2 , ∴ PN NB 3 , ∵平面 PAD 平面 ABCD,平面 PAD 平面 ABCD AD , PN AD, ∴ PN 平面 ABCD, ∴ PN NB ,
【易错点】 外接球球心位置不好找 【思维点拨】 应用补形法找外接球球心的位置
题型四 立体几何的计算
例 1 如图,已知三棱锥的底面是直角三角形,直角 边边长分别为 3 和 4 ,过直角顶点的侧棱长为 4 ,且 垂直于底面,该三棱锥的主视图是 ( )
【答案】 B 【解析】显然由空间直角坐标系可知,该几何体在 xoy 面内的点保持不动,在 y 轴上的点在 xoy 面内的射影为坐标原 点,所以该几何体的主视图就是其在面 xoy 面的表面图形,即主视图应为高为 4 ,底面边长为 3 的直角三角形.故选 B.
以 PA BD . (2)因为 AB BC , AB BC , D 为线段 AC 的中点,所以在等腰 Rt△ABC 中, BD AC .又 由(1)可知, PA BD,PA AC A,所以 BD 平面 PAC .由 E 为线段 PC 上一点,则 DE 平面 PAC ,
2023年高考数学总复习《立体几何》附答案解析

所以 z1=0,
,故可取
, ,,
于是 < , >
,
设所成锐二面角为θ,所以 sinθ
,
所以平面 PAD 和平面 PBE 所成锐二面角的正弦值为 .
第3页共3页
第1页共3页
∴CF CC1 AA1 , ∵∠BAC=90°,
∴CD
,
在 Rt△FCD 中,tan∠FDC 맨
,
故直线 DF 与平面 ABC 所成角的正切值为 .
2.如图所示,四棱锥 P﹣ABCD 的底面 ABCD 是边长为 1 的菱形,∠BCD=60°,E 是 CD 的中点,PA⊥底面 ABCD,PA=2. (1)证明:平面 PBE⊥平面 PAB; (2)求平面 PAD 和平面 PBE 所成二面角(锐角)的正弦值.
【解答】(1)证明:如图所示,连接 BD,由 ABCD 是菱形且∠BCD=60°, 知△ABC 是等边三角形. ∵E 是 CD 的中点, ∴BE⊥CD,又 AB∥CD, ∴AB⊥BE,∴BE⊥平面 PAB, 又 BE⊂平面 PBE, ∴平面 PBE⊥平面 PAB. (2)解:在平面 ABCD 内,过点 A 作 AB 的垂线,如图所示,以 A 为原点建立空间直角
【解答】(1)证明:连接 DG、FG, 由直三棱柱的性质知,BB1∥CC1,且 BB1=CC1, ∵B1E=2EB,C1F=2FC, ∴EB∥FC,且 EB=FC, ∴四边形 BCFE 为平行四边形, ∴EF∥BC,EF=BC, ∵BD=2DA,CG=2GA, ∴GD∥BC,且 GD BC, ∴EF∥GD,且 GD EF, ∴四边形 DEFG 为梯形,即 D、E、F、G 四点共面, ∴点 G 在平面 EFD 内. (2)解:由直三棱柱的性质知,CC1⊥平面 ABC, ∵F 为 CC1 上一点, ∴点 F 在平面 ABC 上的投影为点 C, 连接 CD,则∠FDC 即为直线 DF 与平面 ABC 所成角. ∵点 D 在棱 AB 上,且 BD=2DA, ∴AD AB , ∵C1F=2FC,
高考立体几何专题复习公开课获奖课件

第20页
面面垂直鉴定
假如一种平面通过另一种平面一条 垂线,则这两个平面互相垂直
推论:假如一种平面与另一种平面垂线 平行,则这两个平面互相垂直
第21页
面面垂直性质
假如两个平面垂直,则在一种平面内垂直 于它们交线直线垂直于另一种平面
推论:假如两个相交平面都与另一种平面 垂直,则这两个平面交线 l 垂直于另一种 平面
(3)推论:
假如一种平面内两条相交直线与另一种平面两条 相交直线分别平行,那么这两个平面平行。
第10页
(4)运用线面垂直:
假如两个平面分别垂直于同一条直线,那么这两 个平面平行。
(5)运用面面平行:
假如两个平面都平行于第三个平面,那么这两个 平面平行。
(6)运用距离:
假如一种平面上所有点到另一种平面距离相等, 那么这两个平面平行。
α
a
直线与平 面所成角
βA Pm
αB
二面角
00<θ≤900
00≤ θ≤900
00≤θ ≤1800
空间角计算环节:一作、二证、三算
第34页
空间中角解法小结
1、异面直线所成角措施 (1)平移法(2)补形法
2、直线与平面所成角措施
关键:抓垂足、斜足,找斜线在平面内射影。
3、二面角
找二面角棱,进而找棱两条垂线
第6页
(4)运用垂直
假如一条直线和一种平面分别与另一种平面垂 直,且直线不在这个平面内,则这条直线和这 个平面平行。
(5)运用平行 假如一条直线与两个平行平面中一种平 行且不在另一种平面内,则这条直线与 另一种平面平行。
(6)运用距离
高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解
2023届高考数学总复习:立体几何复习题附答案

a,
在 Rt△FCM 中,tan∠FCM .
,
∴sin∠FCM ,
故直线 CF 与平面 ACDE 所成角的正弦值为 . 2.如图,在三棱柱 ABC﹣A1B1C1 中,BC⊥平面 AA1C1C,D 是 AA1 的中点,△ACD 是边长
为 1 的等边三角形. (1)证明:CD⊥B1D; (2)若 BC ,求二面角 B﹣C1D﹣B1 的大小.
,令
由(1)知,平面 B1C1D 的一个法向量为
,得
,, ,
, ,,
故 th< , >
,
所以二面角 B﹣C1D﹣B1 的大小为 30°.
第3页共3页
在直角梯形 AEFB 中,有 AF EF,BF
쳌
∴AF2+BF2=AB2,即 AF⊥BF.
∵BC∩BF=B,BC、BF⊂平面 BCF,
∴AF⊥平面 BCF.
EF,AB=2EF,
(2)解:∵AE⊥平面 ABC,AE⊂平面 ACDE,∴平面 ACDE⊥平面 ABC,
又平面 ABC∥平面 DEF,∴平面 ACDE⊥平面 DEF.
【解答】解:(1)证明:因为△ACD 是边长为 1 的等边三角形,所以∠ADC=60°,∠ DA1C1=120° 因为 D 是 AA1 的中点,所以 AD=A1D=A1C1=1,即△A1C1D 是等腰三角形, 则∠A1DC1=30°,故∠CDC1=90°,即 CD⊥C1D, 因为 BC⊥平面 AA1C1C,BC∥B1C1,所以 B1C1⊥平面 AA1C1C, 因为 CD⊂平面 AA1C1C,所以 B1C1⊥CD, 因为 B1C1∩C1D=C1,B1C1⊂平面 B1C1D,C1D⊂平面 B1C1D,所以 CD⊥平面 B1C1D, 因为 B1D⊂平面 B1C1D,所以 CD⊥B1D;
2023届高考数学总复习:立体几何附答案

设平面 PCD 的一个法向量为 (x1,y1,z1),
有
t
t, (0,1,1),
平面 ECD 的一个法向量为 (x2,y2,z2),
t 所以 th
t, (0,1,2), tt,
t 即二面角 P﹣DC﹣E 的余弦值为 .
t
第3页共3页
以 F 为坐标原点, , , ‐的方向为 x,y,z 轴的正方向建立空间直角坐标系,
t, t, , t,
∴
t, , tt,
,t,tt,
t, , t,
设平面 AEF 的法向量为
,,t
∵
t,
t
∴
t ,∴ t
t, , t,
∵
,
∴
,
∴直线 B1F⊥平面 AEF.
(Ⅱ)
, , t,
【解答】(Ⅰ)证明:因为 PA=AB,E 为 PB 中点,所以 AE⊥PB,
因为 PA⊥平面 ABCD,所以 PA⊥BC,
由 BC⊥AB,所以 BC⊥平面 PAB,所以 BC⊥AE,又 AE⊥PB,BC∩PB=B,
所以 AE⊥平面 PBC,
平面 AEF⊥平面 PBC.
(Ⅱ)解:法 1:取 PA 中点 G,连结 GE,GD,由 GE∥AB,CD∥AB,
t,t, t,
设平面 B1AE 的法向量为
,,t
∵
t ,∴
t
t
t, t
不妨取 y2=3 ,则 x2=﹣5,z2=﹣4 .
∴
⺁, , t t,
第1页共3页
平面 AEF 的法向量为
t, , t,
设二面角 B1﹣AE﹣F 的平面角为θ,
∴ th
t⺁.
2.如图,在四棱锥 P﹣ABCD 中,底面 ABCD 为正方形,PA⊥底面 ABCD,PA=AB,E 为 PB 的中点,F 为线段 BC 上的动点. (Ⅰ)求证:平面 AEF⊥平面 PBC; (Ⅱ)求二面角 P﹣DC﹣E 的余弦值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学专题立体几何复习教案
一、教学目标
1、掌握以三视图为命题载体,熟悉一些典型的几何体模型,如长(正)方体、三棱柱、三棱锥等几何体的三视图,与学生共同研究空间几何体的结构特征(数量关系、位置关系).
2、外接球问题关键是找到球与多面体的联系元素,如球心与截面圆心的关系即“心心相映法”,线面垂直的多面体可补成直棱柱再找外接球球心即“补体法”,进而构建球半径R 、截面圆半径r 、球心到截面距离d 三者之间的勾股定理。
3、在三视图与直观图的互换过程中,培养学生养成构建长方体为“母体”的解题意识,通过寻找外接球球心问题,引导学生更好地理解球与多面体的关系,培养学生的分割与补形的解题意识,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力、计算能力和动手操作能力,体现化归与转化的基本思想.. 二、学情分析
立体几何是培养学生空间想象力的数学分支,根据学生实际学情,依据考纲依靠课本,在立体几何的复习过程中要想办法让学生建立起完整的知识网络,要突出这门学科的主干,让学生多一点思考,少一点计算。
高考立体几何试题一般是两小题一大题, 其中三视图与直观图、多面体与球相关的外接与内切问题是高考命题的热点,要注意重视空间想象,会识图会画图会想图,提高识图、理解图、应用图的能力,解题时应多画、多看、多想,这样才能提高空间想象能力和解决问题的能力,突出转化、化归的基本思想. 三、重点: 三视图与直观图的数量、位置的转化;多面体与球相关的外接与内切问题;
难点:化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法; 四、教学方法: 问题引导式 五、教学过程
专题:立体几何
问题1:三视图
1.一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )
2.某几何体的三视图如图所示,则该几何体的体积是
3.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )
D. 3
问题2:球与多面体
4.(2016厦门3月质检15)已知四棱锥P ABCD
-的底面ABCD是边长为a的正方形,其外接球的表面积为28π,△PAB是等边三角形,平面PAB⊥平面ABCD,则a=▲.
延伸1:已知四棱锥P ABCD
-的底面ABCD是边长为a的正方形,其外接球的表面积为π
24,平面PAB⊥平面ABCD,△PAB是等腰直角三角形,PA⊥AB,则a=▲.
延伸2:已知四棱锥P ABCD
-的底面ABCD是边长为a的正方形,其外接球的表面积为π
24,平面PAB⊥平面ABCD,△PAB是等腰直角三角形,PA⊥PB,则a=▲.
延伸3:已知四棱锥P ABCD
-的底面ABCD是边长为a的正方形,其外接球的表面积为240π,△PAB 是等腰三角形,PA=PB=2a,平面PAB⊥平面ABCD,则a=▲.
延伸4:已知四棱锥P ABCD
-的底面ABCD是边长为a的正方形,其外接球的表面积为π
24,平面PAB⊥平面ABCD,△PAB中,PA = 2a,PB= a2,则a=▲.
延伸5::已知四棱锥P ABCD
-,底面ABCD是AB=a,BC=2a的矩形,其外接球的表面积为28π,△PAB 是等边三角形,平面PAB⊥平面ABCD,则a=▲.
延伸6:在三棱锥P ABC -
中,PA =2PC =
,AB =,3BC =,2
ABC π
∠=
,则三棱锥P ABC -外接球的表面积为()
问题3:立体几何与空间向量
1.平行垂直的证明主要利用线面关系的转化 线∥线线∥面面∥面
判定线⊥线线⊥面面⊥面性质线∥线线⊥面面∥面
←→−←→−−→−−←→−←→
−←−−−←→−←→−
2.空间向量在几何中的应用
1.线线角:设直线a ,b 的方向向量为a ,b ,其夹角为θ,则
22
22
22
21
21
2
1
2
12121cos cos z
y x z y x z z y y x x a ++∙++++
=
=
<=θ
2.线面角:设直线
l 的方向向量为, 平面α的法向量为n ,直线l 与平面a 所成的角为θ,则有
22
22
22
21
21
21
2
12121cos sin z
y x z y x z z y y x x AB ++∙++++=
=
<=θ
3.面面角:平面α的法向量为1
n ,平面β的法向量为2n ,平面α与平面β的夹角为θ,则有
2
2
2222212121
2
121211cos cos z y x z y x z z y y x x
n ++∙++++=
=
<=θ
4.点面距离:
22
22
22
2
12121cos z
y x z z y y x x d ++++=
=
<∙=
5.如图,四棱锥
P-ABCD 中,底面ABCD 是边长为2的菱形,且︒=∠60DAB ,侧面
PAD 为等边三角形,且与底面ABCD 垂直,M 为PC 的中点. (1)求证:PA||平面BDM (2)求证:AD ⊥PB ;
(3)求直线AB 与平面BDM 所成角的正弦值. (4)求二面角A -BD -M 的余弦值
题目背景变换为以下几种,如何建立坐标系?
延伸1: 如图,四棱锥P-ABCD 中,底面ABCD 是梯形,AB||CD,AB=4,CD=2,︒=∠60DAB ,侧面PAD 为边长为2的等边三角形,且与底面ABCD 垂直.
延伸2: 如图,四棱锥P-ABCD 中,底面ABCD 是平行四边形,AB=4,AD=2,且︒=∠60DAB ,侧面PAD 为等边三角形,且与底面ABCD 垂直.
限时训练
1.某几何体三视图如图一所示,则该几何体的体积为( )
A .8-2π
B .8-π
C .8-π2
D .8-π
4
2.已知三棱锥P ABC -的四个顶点都在半径为2的球面上,且PA ⊥平面ABC ,若2AB =
,AC 2
BAC π
∠=,则棱PA 的长为( )
A .
3
2
B
C .3
D .9 3.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则
能得到的最大球的半径等于( ) A .1 B .2 C .3 D .4 4.若三棱锥S A B C 的底面是以AB 为斜边的等腰直角三角形,2AB SA SB SC ====,则该三棱锥的外接球的表面积为( ) A .
83π B
C .43π
D .163
π
A
图一
5.已知某几何体的三视图如图所示,则该几何体的体积为________.
6.如图,长方体ABCD —A 1B 1C 1D 1中,AB = 16,BC = 10,AA 1 = 8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E = D 1F = 4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形。
(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值。
D
D 1
C 1
A 1 E
F
A B
C
B 1。