高中物理生活中的圆周运动试题类型及其解题技巧及解析

合集下载

高中物理生活中的圆周运动解题技巧及练习题(含答案)及解析.docx

高中物理生活中的圆周运动解题技巧及练习题(含答案)及解析.docx

高中物理生活中的圆周运动解题技巧及练习题( 含答案 ) 及解析一、高中物理精讲专题测试生活中的圆周运动1.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m,一质量 m=1kg 的小物块(视为质点)从左側水平轨道上的 A 点以大小 v0= 12m/ s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的 D 点.已知 A、B 两点间的距离 L1= 5. 75m,物块与水平轨道写的动摩擦因数0. 2,取 g= 10m/ s2,圆形轨道间不相互重叠,求:(1)物块经过 B 点时的速度大小 v B;(2)物块到达 C 点时的速度大小 v C;(3) BD 两点之间的距离 L2,以及整个过程中因摩擦产生的总热量Q【答案】 (1)11m / s (2)9m / s(3) 72J【解析】【分析】【详解】(1)物块从 A 到 B 运动过程中,根据动能定理得:mgL11mv B21mv02 22解得: v B11m / s(2)物块从 B 到 C 运动过程中,根据机械能守恒得:1mv B21mv C2mg·2R 22解得: v C9m / s(3)物块从 B 到 D 运动过程中,根据动能定理得:mgL201mv B2 2解得: L230.25m对整个过程,由能量守恒定律有:Q 1mv020 2解得: Q=72J【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.2.如图所示,竖直平面内有一光滑的直角细杆MON ,其中 ON 水平, OM 竖直,两个小物块 A 和 B 分别套在 OM 和 ON 杆上,连接 AB 的轻绳长为 L=0.5m ,.现将直角杆 MON 绕过2OM 的轴 O 1O 2 缓慢地转动起来.已知A 的质量为 m 1=2kg ,重力加速度 g 取 10m/s 。

高考物理生活中的圆周运动试题类型及其解题技巧及解析

高考物理生活中的圆周运动试题类型及其解题技巧及解析

高考物理生活中的圆周运动试题类型及其解题技巧及解析一、高中物理精讲专题测试生活中的圆周运动1.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。

杆静止时,小环靠在杆上,细绳方向竖直;当杆绕竖直轴以角速度ω旋转时,如图所示,小环与Q 点等高,细绳恰好被绷断。

重力加速度g =10m /s 2,忽略一切摩擦。

求:(1)杆静止时细绳受到的拉力大小T ; (2)细绳断裂时杆旋转的角速度大小ω; (3)小环着地点与O 点的距离D 。

【答案】(1)5N (2)53/rad s (3)1.6m 【解析】 【详解】(1)杆静止时环受力平衡,有2T =mg 得:T =5N(2)绳断裂前瞬间,环与Q 点间距离为r ,有r 2+d 2=(L -r )2 环到两系点连线的夹角为θ,有d sin L r θ=-,rcos L rθ=- 绳的弹力为T 1,有T 1sinθ=mg T 1cosθ+T 1=m ω2r 得53/rad s ω=(3)绳断裂后,环做平抛运动,水平方向s =vt竖直方向:212H d gt -=环做平抛的初速度:v =ωr小环着地点与杆的距离:D 2=r 2+s 2 得D =1.6m 【点睛】本题主要是考查平抛运动和向心力的知识,解答本题的关键是掌握向心力的计算公式,能清楚向心力的来源即可。

2.游乐场正在设计一个全新的过山车项目,设计模型如图所示,AB 是一段光滑的半径为R 的四分之一圆弧轨道,后接一个竖直光滑圆轨道,从圆轨道滑下后进入一段长度为L 的粗糙水平直轨道BD ,最后滑上半径为R 圆心角060θ=的光滑圆弧轨道DE .现将质量为m 的滑块从A 点静止释放,通过安装在竖直圆轨道最高点C 点处的传感器测出滑块对轨道压力为mg ,求:(1)竖直圆轨道的半径r .(2)滑块在竖直光滑圆弧轨道最低点B 时对轨道的压力.(3)若要求滑块能滑上DE 圆弧轨道并最终停在平直轨道上(不再进入竖直圆轨道),平直轨道BD 的动摩擦因数μ需满足的条件. 【答案】(1)3R (2)7mg (3)2R RL L μ<≤ 【解析】(1) 对滑块,从A 到C 的过程,由机械能守恒可得:21(2)2C mg R r mv -=22Cv mg m r=解得:3R r =; (2) 对滑块,从A 到B 的过程,由机械能守恒可得:212B mgR mv =在B 点,有:2Bv N mg m r-=可得:滑块在B 点受到的支持力 N=7mg ;由牛顿第三定律可得,滑块在B 点对轨道的压力7N N mg '==,方向竖直向下;(3) 若滑块恰好停在D 点,从B 到D 的过程,由动能定理可得:2112B mgL mv μ-=-可得:1R Lμ=若滑块恰好不会从E 点飞出轨道,从B 到E 的过程,由动能定理可得:221(1cos )2B mgL mgR mv μθ---=-可得:22R Lμ=若滑块恰好滑回并停在B 点,对于这个过程,由动能定理可得:231·22B mg L mv μ-=-综上所述,μ需满足的条件:2R R L Lμ<<.3.如图所示,P 为弹射器,PA 、BC 为光滑水平面分别与传送带AB 水平相连,CD 为光滑半圆轨道,其半径R =2m ,传送带AB 长为L =6m ,并沿逆时针方向匀速转动.现有一质量m =1kg 的物体(可视为质点)由弹射器P 弹出后滑向传送带经BC 紧贴圆弧面到达D 点,已知弹射器的弹性势能全部转化为物体的动能,物体与传送带的动摩擦因数为μ=0.2.取g =10m/s 2,现要使物体刚好能经过D 点,求: (1)物体到达D 点速度大小;(2)则弹射器初始时具有的弹性势能至少为多少.【答案】(1)5;(2)62J 【解析】 【分析】 【详解】(1)由题知,物体刚好能经过D 点,则有:2Dv mg m R=解得:25D v gR ==m/s(2)物体从弹射到D 点,由动能定理得:21202D W mgL mgR mv μ--=-p W E =解得:p E =62J4.如图1所示是某游乐场的过山车,现将其简化为如图2所示的模型:倾角θ=37°、L =60cm 的直轨道AB 与半径R =10cm 的光滑圆弧轨道BCDEF 在B 处平滑连接,C 、F 为圆轨道最低点,D 点与圆心等高,E 为圆轨道最高点;圆轨道在F 点与水平轨道FG 平滑连接,整条轨道宽度不计,其正视图如图3所示.现将一质量m =50g 的滑块(可视为质点)从A 端由静止释放.已知滑块与AB 段的动摩擦因数μ1=0.25,与FG 段的动摩擦因数μ2=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2.(1) 求滑块到达E 点时对轨道的压力大小F N ;(2)若要滑块能在水平轨道FG 上停下,求FG 长度的最小值x ;(3)若改变释放滑块的位置,使滑块第一次运动到D 点时速度刚好为零,求滑块从释放到它第5次返回轨道AB 上离B 点最远时,它在AB 轨道上运动的总路程s . 【答案】(1)F N =0.1N (2)x =0.52m (3)93m 160s = 【解析】 【详解】(1)滑块从A 到E ,由动能定理得:()]211sin 1cos 2cos 2E mg L R R mgL mv θθμθ⎡+---=⎣ 代入数据得:30m/s 5E v =滑块到达E 点:2N Ev mg F m R+= 代入已知得:F N =0.1N(2)滑块从A 下滑到停在水平轨道FG 上,有()12sin 1cos cos 0mg L R mgL mgx θθμθμ⎡⎤+---=⎣⎦代入已知得:x =0.52m(3)若从距B 点L 0处释放,则从释放到刚好运动到D 点过程有:010sin +(1cos )]cos 0mg L R R mgL θθμθ---=[代入数据解得:L 0=0.2m从释放到第一次返回最高点过程,若在轨道AB 上上滑距离为L 1,则:()()01101sin cos 0mg L L mg L L θμθ--+=解得:11001sincos 1sin cos 2L L L θμθθμθ-==+同理,第二次返回最高点过程,若在斜轨上上滑距离为L 2,有:2121101sin cos 11sin cos 22L L L L θμθθμθ-⎛⎫=== ⎪+⎝⎭故第5次返回最高点过程,若在斜轨上上滑距离为L 5,有: 55012L L ⎛⎫= ⎪⎝⎭所以第5次返回轨道AB 上离B 点最远时,它在AB 轨道上运动的总路程012345932222m 160L L L L L L s =+++++=5.如图所示,AB 为倾角37θ=︒的斜面轨道,BP 为半径R =1m 的竖直光滑圆弧轨道,O 为圆心,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一端在斜面上C 点处,轨道的AC 部分光滑,CB 部分粗糙,CB 长L =1.25m ,物块与斜面间的动摩擦因数为μ=0.25,现有一质量m =2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后释放(不栓接),物块经过B 点后到达P 点,在P 点物块对轨道的压力大小为其重力的1.5倍,sin370.6,37cos 0.8︒︒==,g=10m/s 2.求:(1)物块到达P 点时的速度大小v P ; (2)物块离开弹簧时的速度大小v C ;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值v m . 【答案】(1)5m/s P v = (2)v C =9m/s (3)6m/s m v = 【解析】 【详解】(1)在P 点,根据牛顿第二定律:2PP v mg N m R+=解得: 2.55m/s P v gR ==(2)由几何关系可知BP 间的高度差(1cos37)BP h R =+︒物块C 至P 过程中,根据动能定理:2211sin 37cos37=22BP P C mgL mgh mgL mv mv μ-︒--︒-联立可得:v C =9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的E 点, 物块C 至E 过程中根据动能定理:21cos37sin 37sin 53=02m mgL mgL mgR mv μ-︒-︒-︒-解得:6m/s m v =6.某同学设计出如图所示实验装置,将一质量为0.2kg 的小球(可视为质点)放置于水平弹射器内,压缩弹簧并锁定,此时小球恰好在弹射口,弹射口与水平面AB 相切于A 点.AB 为粗糙水平面,小球与水平面间动摩擦因数μ=0.5,弹射器可沿水平方向左右移动;BC 为一段光滑圆弧轨道.O /为圆心,半径R =0.5m ,O /C 与O /B 之间夹角为θ=37°.以C 为原点,在C 的右侧空间建立竖直平面内的直角坐标系xOy ,在该平面内有一水平放置开口向左且直径稍大于小球的接收器D .(sin37°=0.6,cos37°=0.8,g 取10m/s 2)(1)某次实验中该同学使弹射口距离B 处L 1=1.6m 处固定,解开锁定释放小球,小球刚好到达C 处,求弹射器释放的弹性势能?(2)求上一问中,小球到达圆弧轨道的B 点时对轨道的压力?(3)把小球放回弹射器原处并锁定,将弹射器水平向右移动至离B 处L 2=0.8m 处固定弹射器并解开锁定释放小球,小球将从C 处射出,恰好水平进入接收器D ,求D 处坐标?【答案】(1)1.8J(2)2.8N(3) (0.144,0.384) 【解析】 【详解】(1)从A 到C 的过程中,由定能定理得:W 弹-μmgL 1-mgR (1-cosθ)=0解得:W 弹=1.8J .根据能量守恒定律得:E P =W 弹=1.8J ;(2)从B 到C 由动能定理:021(1cos37)2B mgR mv -=在B 点由牛顿第二定律:2BNB v F mg m R-=带入数据联立解得:F NB =2.8N(3)小球从C 处飞出后,由动能定理得:W 弹-μmgL 2-mgR (1-cosθ)=12mv C 2-0, 解得:v C 2m/s方向与水平方向成37°角,由于小球刚好被D 接收,其在空中的运动可看成从D 点平抛运动的逆过程,v Cx =v C cos37°=825m/s v Cy =v C sin37°=625m/s , 由v Cy =gt 解得t 2s则D 点的坐标:x =v Cx t y =12v Cy t , 解得:x =0.144m ,y =0.384m即D 处坐标为:(0.144m ,0.384m ). 【点睛】本题考查了动能定理的应用,小球的运动过程较复杂,分析清楚小球的运动过程是解题的前提与关键,分析清楚小球的运动过程后,应用动能定理、平抛运动规律可以解题.7.如图所示,在某竖直平面内,光滑曲面AB 与水平面BC 平滑连接于B 点,BC 右端连接内壁光滑、半径r =0.2m 的四分之一细圆管CD ,管口D 端正下方直立一根劲度系数为k =100N/m 的轻弹簧,弹簧一端固定,另一端恰好与管口D 端平齐,一个质量为1kg 的小球放在曲面AB 上,现从距BC 的高度为h =0.6m 处静止释放小球,它与BC 间的动摩擦因数μ=0.5,小球进入管口C 端时,它对上管壁有F N =2.5mg 的相互作用力,通过CD 后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能E p =0.5J 。

高考物理生活中的圆周运动解题技巧分析及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧分析及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧分析及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min x R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max D v =小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max x =故落点与B 点水平距离d 的范围为:)()11R d R ≤≤3.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C与B点的水平距离;(2)小球通过管道上B点时对管道的压力大小和方向.【答案】(1)0.9m;(2)1N【解析】【分析】(1)根据平抛运动时间求得在C点竖直分速度,然后由速度方向求得v,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B点应用牛顿第二定律求得支持力N B的大小和方向.【详解】(1)根据平抛运动的规律,小球在C点竖直方向的分速度v y=gt=10m/s水平分速度v x=v y tan450=10m/s则B点与C点的水平距离为:x=v x t=10m(2)根据牛顿运动定律,在B点N B+mg=m2 v R解得 N B=50N根据牛顿第三定律得小球对轨道的作用力大小N, =N B=50N方向竖直向上【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.4.如图所示,竖直平面内有一光滑的直角细杆MON,其中ON水平,OM竖直,两个小物块A和B分别套在OM和ON杆上,连接AB的轻绳长为L=0.5m,.现将直角杆MON绕过OM的轴O1O2缓慢地转动起来.已知A的质量为m1=2kg,重力加速度g取10m/s2。

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性: ①若小球滑行的高度不超过圆形轨道半径R 由机械能守恒定律得:()()211332m m v m m gR +≤+ 解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤3.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =,253gR v =4.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-= 222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤ 若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.5.如图所示,竖直平面内的光滑3/4的圆周轨道半径为R,A点与圆心O等高,B点在O 的正上方,AD为与水平方向成θ=45°角的斜面,AD长为72R.一个质量为m的小球(视为质点)在A点正上方h处由静止释放,自由下落至A点后进入圆形轨道,并能沿圆形轨道到达B点,且到达B处时小球对圆轨道的压力大小为mg,重力加速度为g,求:(1)小球到B点时的速度大小v B(2)小球第一次落到斜面上C点时的速度大小v(3)改变h,为了保证小球通过B点后落到斜面上,h应满足的条件【答案】2gR10gR 33 2R h R≤≤【解析】【分析】【详解】(1)小球经过B点时,由牛顿第二定律及向心力公式,有2Bv mg mg m R+=解得B v(2)设小球离开B 点做平抛运动,经时间t ,下落高度y ,落到C 点,则212y gt =cot B y v t θ=两式联立,得2244B v gR y R g g===对小球下落由机械能守恒定律,有221122B mv mgy mv += 解得v ===(3)设小球恰好能通过B 点,过B 点时速度为v 1,由牛顿第二定律及向心力公式,有21v mg m R=又211()2mg h R mv -=得32h R =可以证明小球经过B 点后一定能落到斜面上设小球恰好落到D 点,小球通过B 点时速度为v 2,飞行时间为t ',21)sin 2gt θ='2)cos v t θ='解得2v =又221()2mg h R mv -=可得3h R =故h 应满足的条件为332R h R ≤≤ 【点睛】小球的运动过程可以分为三部分,第一段是自由落体运动,第二段是圆周运动,此时机械能守恒,第三段是平抛运动,分析清楚各部分的运动特点,采用相应的规律求解即可.6.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,水平转台上有一个质量为m 的物块,用长为2L 的轻质细绳将物块连接在转轴上,细绳与竖直转轴的夹角θ=30°,此时细绳伸直但无张力,物块与转台间动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力.物块随转台由静止开始缓慢加速转动,重力加速度为g ,求:(1)当转台角速度ω1为多大时,细绳开始有张力出现; (2)当转台角速度ω2为多大时,转台对物块支持力为零; (3)转台从静止开始加速到角速度3gLω=的过程中,转台对物块做的功.【答案】(1)1g Lμω=(2)233g Lω=(3)132mgL ⎛ ⎝【解析】 【分析】 【详解】(1)当最大静摩擦力不能满足所需要向心力时,细绳上开始有张力:212sin mg m L μωθ=⋅代入数据得1g Lμω=(2)当支持力为零时,物块所需要的向心力由重力和细绳拉力的合力提供22tan 2sin mg m L θωθ=⋅代入数据得233g Lω=(3)∵32ωω>,∴物块已经离开转台在空中做圆周运动.设细绳与竖直方向夹角为α,有23tan 2sin mg m L αωα=⋅代入数据得60α=︒转台对物块做的功等于物块动能增加量与重力势能增加量的总和即231(2sin 60)(2cos302cos60)2W m L mg L L ω=⋅+-o o o 代入数据得:1(3)2W mgL =+【点睛】本题考查牛顿运动定律和功能关系在圆周运动中的应用,注意临界条件的分析,至绳中出现拉力时,摩擦力为最大静摩擦力;转台对物块支持力为零时,N=0,f=0.根据能量守恒定律求转台对物块所做的功.2.如图所示,竖直平面内的光滑3/4的圆周轨道半径为R ,A 点与圆心O 等高,B 点在O 的正上方,AD 为与水平方向成θ=45°角的斜面,AD 长为72R .一个质量为m 的小球(视为质点)在A 点正上方h 处由静止释放,自由下落至A 点后进入圆形轨道,并能沿圆形轨道到达B 点,且到达B 处时小球对圆轨道的压力大小为mg ,重力加速度为g ,求:(1)小球到B 点时的速度大小v B(2)小球第一次落到斜面上C 点时的速度大小v(3)改变h ,为了保证小球通过B 点后落到斜面上,h 应满足的条件 【答案】2gR 10gR 332R h R ≤≤ 【解析】 【分析】 【详解】(1)小球经过B 点时,由牛顿第二定律及向心力公式,有2Bv mg mg m R+=解得2B v gR(2)设小球离开B 点做平抛运动,经时间t ,下落高度y ,落到C 点,则212y gt =cot B y v t θ=两式联立,得2244B v gR y R g g===对小球下落由机械能守恒定律,有221122B mv mgy mv += 解得v ===(3)设小球恰好能通过B 点,过B 点时速度为v 1,由牛顿第二定律及向心力公式,有21v mg m R=又211()2mg h R mv -=得32h R =可以证明小球经过B 点后一定能落到斜面上设小球恰好落到D 点,小球通过B 点时速度为v 2,飞行时间为t ',21)sin 2gt θ='2)cos v t θ='解得2v =又221()2mg h R mv -=可得3h R =故h 应满足的条件为332R h R ≤≤ 【点睛】小球的运动过程可以分为三部分,第一段是自由落体运动,第二段是圆周运动,此时机械能守恒,第三段是平抛运动,分析清楚各部分的运动特点,采用相应的规律求解即可.3.如图所示,半径R=0.40m 的光滑半圆环轨道处于竖起平面内,半圆环与粗糙的水平地面相切于圆环的端点A .一质量m=0.10kg 的小球,以初速度V 0=7.0m/s 在水平地面上向左做加速度a=3.0m/s 2的匀减速直线运动,运动4.0m 后,冲上竖直半圆环,最后小球落在C 点.求(1)小球到A 点的速度 (2)小球到B 点时对轨道是压力(3)A 、C 间的距离(取重力加速度g=10m/s 2).【答案】(1) 5/A V m s = (2) 1.25N F N = (3)S AC =1.2m 【解析】 【详解】(1)匀减速运动过程中,有:2202A v v as -=解得:5/A v m s =(2)恰好做圆周运动时物体在最高点B 满足: mg=m 21Bv R,解得1B v =2m/s假设物体能到达圆环的最高点B ,由机械能守恒:12mv 2A =2mgR+12mv 2B 联立可得:v B =3 m/s因为v B >v B1,所以小球能通过最高点B .此时满足2N v F mg m R+=解得 1.25N F N =(3)小球从B 点做平抛运动,有:2R=12gt 2 S AC =v B ·t得:S AC =1.2m . 【点睛】解决多过程问题首先要理清物理过程,然后根据物体受力情况确定物体运动过程中所遵循的物理规律进行求解;小球能否到达最高点,这是我们必须要进行判定的,因为只有如此才能确定小球在返回地面过程中所遵循的物理规律.4.如图所示,ABCD是一个地面和轨道均光滑的过山车轨道模型,现对静止在A处的滑块施加一个水平向右的推力F,使它从A点开始做匀加速直线运动,当它水平滑行2.5 m时到达B点,此时撤去推力F、滑块滑入半径为0.5 m且内壁光滑的竖直固定圆轨道,并恰好通过最高点C,当滑块滑过水平BD部分后,又滑上静止在D处,且与ABD等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s2,求:(1)水平推力F的大小;(2)滑块到达D点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N(2)(3)t=1 s ;【解析】【分析】【详解】(1)由于滑块恰好过C点,则有:m1g=m1从A到C由动能定理得:Fx-m1g·2R=m1v C2-0代入数据联立解得:F=1 N(2)从A到D由动能定理得:Fx=m1v D2代入数据解得:v D=5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t=1 s此时滑块的位移为:x1=v D t-a1t2,木板的位移为:x2=a2t2,L=x1-x2,代入数据解得:L=2.5 mv共=2 m/sx2=1 m达到共同速度后木板又滑行x′,则有:v共2=2μ2gx′,代入数据解得:x′=1.5 m木板在水平地面上最终滑行的总位移为:x木=x2+x′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.5.一个同学设计了一种玩具的模型如图所示,该模型由足够长的倾斜直轨道AB与水平直轨道BC平滑连接于B点,水平直轨道与圆弧形轨道相切于C点,圆弧形轨道的半径为R、直径CD竖直,BC=4R。

高考物理生活中的圆周运动试题类型及其解题技巧含解析

高考物理生活中的圆周运动试题类型及其解题技巧含解析

高考物理生活中的圆周运动试题类型及其解题技巧含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。

铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。

【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。

【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m m A v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,半径R=2.5m 的竖直半圆光滑轨道在B 点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A 点.一瞬时冲量使滑块以一定的初速度从A 点开始运动,经B 点进入圆轨道,沿圆轨道运动到最高点C,并从C 点水平飞出,落在水平面上的D 点.经测量,D 、B 间的距离s1=10m,A 、B 间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C 点时的速度大小;(2)滑块刚进入圆轨道时,在B 点轨道对滑块的弹力; (3)滑块在A 点受到的瞬时冲量的大小. 【答案】(1) (2)45N (3)【解析】 【详解】(1)设滑块从C 点飞出时的速度为v c ,从C 点运动到D 点时间为t 滑块从C 点飞出后,做平抛运动,竖直方向:2R=gt 2 水平方向:s 1=v c t 解得:v c =10m/s(2)设滑块通过B 点时的速度为v B ,根据机械能守恒定律 mv B 2=mv c 2+2mgR 解得:v B =10m/s设在B 点滑块受轨道的压力为N ,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A 点开始运动时的速度为v A ,根据动能定理;-μmgs 2=mv B 2-mv A 2 解得:v A =16.1m/s设滑块在A 点受到的冲量大小为I ,根据动量定理I=mv A 解得:I=8.1kg•m/s ; 【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.3.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析

高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析

高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,一根长为0.1 m的细线,一端系着一个质量是0.18kg的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N.求:(1)线断裂的瞬间,线的拉力;(2)这时小球运动的线速度;(3)如果桌面高出地面0.8 m,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】(1)线断裂的瞬间,线的拉力为45N;(2)线断裂时小球运动的线速度为5m/s;(3)落地点离桌面边缘的水平距离2m.【解析】【分析】【详解】(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg、桌面弹力F N和细线的拉力F,重力mg和弹力F N平衡,线的拉力提供向心力,有:F N=F=mω2R,设原来的角速度为ω0,线上的拉力是F0,加快后的角速度为ω,线断时的拉力是F1,则有:F1:F0=ω2: 2=9:1,又F1=F0+40N,所以F0=5N,线断时有:F1=45N.(2)设线断时小球的线速度大小为v,由F1=2vmR,代入数据得:v=5m/s.(3)由平抛运动规律得小球在空中运动的时间为:t =220.810h s g ⨯==0.4s , 则落地点离桌面的水平距离为:x =vt =5×0.4=2m .2.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。

【答案】【解析】 【分析】根据牛顿第二定律求出支持力为零时,小球的线速度的大小,从而确定小球有无离开圆锥体的斜面,若离开锥面,根据竖直方向上合力为零,水平方向合力提供向心力求出线对小球的拉力大小。

高考物理生活中的圆周运动试题类型及其解题技巧含解析

高考物理生活中的圆周运动试题类型及其解题技巧含解析

高考物理生活中的圆周运动试题类型及其解题技巧含解析一、高中物理精讲专题测试生活中的圆周运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,半径R=2.5m 的竖直半圆光滑轨道在B 点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A 点.一瞬时冲量使滑块以一定的初速度从A 点开始运动,经B 点进入圆轨道,沿圆轨道运动到最高点C,并从C 点水平飞出,落在水平面上的D 点.经测量,D 、B 间的距离s1=10m,A 、B 间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C 点时的速度大小;(2)滑块刚进入圆轨道时,在B 点轨道对滑块的弹力; (3)滑块在A 点受到的瞬时冲量的大小. 【答案】(1) (2)45N (3)【解析】 【详解】(1)设滑块从C 点飞出时的速度为v c ,从C 点运动到D 点时间为t 滑块从C 点飞出后,做平抛运动,竖直方向:2R=gt 2 水平方向:s 1=v c t 解得:v c =10m/s(2)设滑块通过B 点时的速度为v B ,根据机械能守恒定律 mv B 2=mv c 2+2mgR 解得:v B =10m/s设在B 点滑块受轨道的压力为N ,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A 点开始运动时的速度为v A ,根据动能定理;-μmgs 2=mv B 2-mv A 2解得:v A =16.1m/s设滑块在A 点受到的冲量大小为I ,根据动量定理I=mv A 解得:I=8.1kg•m/s ; 【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.3.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,4.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理生活中的圆周运动试题类型及其解题技巧及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .2.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.3.如图所示,半径为4l,质量为m 的小球与两根不可伸长的轻绳a ,b 连接,两轻绳的另一端分别固定在一根竖直光滑杆的A ,B 两点上.已知A ,B 两点相距为l ,当两轻绳伸直后A 、B 两点到球心的距离均为l ,重力加速度为g .(1)装置静止时,求小球受到的绳子的拉力大小T ;(2)现以竖直杆为轴转动并达到稳定(轻绳a ,b 与杆在同一竖直平面内). ①小球恰好离开竖直杆时,竖直杆的角速度0ω多大? ②轻绳b 伸直时,竖直杆的角速度ω多大?【答案】(1)1515T mg = (2)①ω0=15215g l②2g l ω≥【解析】 【详解】(1)设轻绳a 与竖直杆的夹角为α15cos 4α=对小球进行受力分析得cos mgT α=解得:415T =(2)①小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。

可知小球做圆周运动的半径为r=4l 20tan mg m r αω=解得:ω0=15215g l②轻绳b 刚伸直时,轻绳a 与竖直杆的夹角为60°,可知小球做圆周运动的半径为sin60r l '=︒2tan 60mg m r ω'︒=解得:ω=2g l 轻绳b 伸直时,竖直杆的角速度2g lω≥4.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。

(1)求小球在最低点时的速度大小;(2)如果在小球通过最低点时,突然在空间产生竖直向下的匀强电场,若使小球在后面的运动中,绳出现松软状态,求电场强度可能的大小。

【答案】(1)18v gL =2)335mg mgE q q≤≤ 【解析】 【详解】(1)在最低点,由向心力公式得:21mv F mg L-= 解得:18v gL =(2)果在小球通过最低点时,突然在空间产生竖直向下的匀强电场,若使小球在后面的运动中,绳出现松软状态,说明小球能通过与圆心等的水平面,但不能通过最高点。

则小球不能通过最高点, 由动能定理得:2212112222mg L Eq L mv mv ⋅+=- 且22v Eq mg m L+=则35mgE q=也不可以低于O 水平面212mv mgL EqL += 则3mgE q=所以电场强度可能的大小范围为335mg mgE q q≤≤5.如图所示,长为3l 的不可伸长的轻绳,穿过一长为l 的竖直轻质细管,两端分别拴着质量为m 、2m 的小球A 和小物块B ,开始时B 静止在细管正下方的水平地面上。

保持细管竖直用手轻轻摇动细管,稳定后A 在水平面内做匀速圆周运动而B 保持静止状态。

某时刻B 静止在地面上且对地面的压力恰好为零。

已知重力加速度为g ,不计一切阻力。

求:()1该时刻连接A 的轻绳与竖直方向的夹角θ;()2该时刻A 的线速度大小v ;()3从该时刻起轻摇细管使B 升高到离地高度为/2l 处保持静止,求B 上升过程中手对A 、B 系统做的功。

【答案】()1?60o;()32?2gl;()938mgl 。

【解析】 【分析】(1)对B 根据平衡求绳子的拉力;对A 球分析,由力的平衡条件可求绳与竖直方向夹角θ;(2)对A 水平方向做圆周运动,利用牛顿第二定律列式求解;(3)由力的平衡条件和牛顿第二定律并结合功能关系列式联立可求整个过程中人对A 、B 系统做的功。

【详解】(1)B 对地面刚好无压力,故此时绳子的拉力为2T mg = 对A 受力分析如图所示:在竖直方向合力为零,故cos T mg θ= 代入数据解得:60θ=o(2)A 球水平方向做圆周运动,由牛顿第二定律得:2sin sin v T m l θθ=代入数据解得:32glv =(3)当B 上升2l 时,拉A 的绳长为32l,此时对水平方向上有: 21sin 3sin 2v T ml θθ= 联立解得:132v gl =A 相对于原来的高度下降的距离:cos 24l l h V θ==B 物体重力势能的增加量:122lE mg mgl =⋅=V A 物体重力势能的减少量:244l mglE mg =⋅=V A 物体动能的增加量2231113228E mv mv mgl =-=V 对系统运用功能关系可得手对系统做的功:12298W E E E mgl =-+=V V V 【点睛】本题综合考查共点力平衡、牛顿第二定律和功能关系,对于圆锥摆问题,关键分析小球的受力情况,确定其向心力,运用牛顿第二定律和圆周运动的知识结合解答。

相关文档
最新文档