高一物理圆周运动专题练习(解析版)
高一物理匀速圆周运动试题答案及解析

高一物理匀速圆周运动试题答案及解析1.如图所示,把一个小球放在玻璃漏斗中,晃动漏斗,可以使小球沿光滑的漏斗壁在某一水平面内做匀速圆周运动。
小球的向心力由以下哪个力提供A.重力B.支持力C.重力和支持力的合力D.重力、支持力和摩擦力的合力【答案】C【解析】小球受到重力和支持力,由于小球在水平面内做匀速圆周运动,所以小球的向心力由重力和支持力的合力提供,故C正确.【考点】考查了向心力2.图中所示为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则()A.ab两点的线速度大小相等B.ab两点的角速度大小相等C.ac两点的线速度大小相等D.ad两点的向心加速度大小相等【答案】CD【解析】由图可看出,a点的线速度等于c点的线速度,而c点的线速度大于b点的线速度,故a点的线速度大于b点的线速度,选项A错误,C正确;设c点的线速度为v,则a点的角速度为,b点的角速度,选项B错误;a点的向心加速度,d点的向心加速度,选项D正确。
【考点】线速度、角速度及向心加速度。
3.如图所示,A、B是两个摩擦传动轮(不打滑),两轮半径大小关系为RA =2RB,则两轮边缘上的( )A.角速度之比ωA :ωB=2:1B.周期之比TA :TB=2:1C.转速之比nA :nB=2:1D.向心加速度之比aA :aB=2:1【答案】B【解析】A、B两轮边缘线速度相同,由公式ɷ=得ωA :ωB=rB:rA=1:2,故选项A错误;由公式T=得,TA :TB=ωB:ωA=2:1,故B正确;由公式n=知,nA:nB=TB:TA=1:2,故选项C错误;由加速度公式a==知aA :aB=rB:rA=1:2,故选项D错误。
【考点】匀速圆周运动的公式4.如图所示,一个圆盘绕轴心O在水平面内匀速转动,圆盘半径R= 0.4m,转动角速度=15rad/s。
高一物理匀速圆周运动试题

高一物理匀速圆周运动试题1.如图所示,光滑水平面上,小球m在拉力F作用下作匀速圆周运动。
若小球运动到P点时,拉力F发生变化,关于小球运动情况的说法正确的是A.若拉力突然消失,小球将沿轨迹Pa作离心运动B.若拉力突然变小,小球将沿轨迹Pa作离心运动C.若拉力突然变大,小球将沿轨迹Pb作离心运动D.若拉力突然变小,小球将沿轨迹Pc作离心运动【答案】A【解析】在水平面上,细绳的拉力提供m所需的向心力,当拉力消失,物体受力合为零,将沿切线方向做匀速直线运动,故A正确.当拉力减小时,将沿pb轨道做离心运动,故BD错误;当拉力增大时,将沿pc轨道做近心运动,故C错误.【考点】考查了离心现象2.如图所示,两轮用皮带传动,皮带不打滑,图中有A、B、C三点,这三点所在处半径rA>r B =rC,则这三点的向心加速度aA、aB、aC的关系是A.aA =aB=aCB.aC>aA>aBC.aC<aA<aBD.aC=aB>aA【答案】C【解析】由皮带传动规律知,A、B两点的线速度相同,A、C两点的角速度相同,由得:aA <aB,aC<aA,则aC<aA<aB,C正确。
【考点】本题考查皮带传动规律。
3.物体在做匀速圆周运动的过程中,保持不变的物理量为()A.线速度B.角速度C.向心力D.向心加速度【答案】 B【解析】物体在做匀速圆周运动时,速度方向改变,线速度变,向心力和向心加速度指向圆心,方向时刻改变,所以本题选择B。
【考点】匀速圆周运动4.如图所示,物体A、B随水平圆盘绕轴匀速转动,物体B在水平方向所受的作用力有( ) A.圆盘对B及A对B的摩擦力,两力都指向圆心B.圆盘对B的摩擦力指向圆心,A对B的摩擦力背离圆心C.圆盘对B及A对B的摩擦力和向心力D.圆盘对B的摩擦力和向心力【答案】B【解析】据题意,A、B两个物体均做匀速转动,对A物体,其转动的向心力由B对A的静摩擦力提供,据相互作用力关系,B物体一定受到A物体给的静摩擦力,其方向向外,在水平方向B 物体还受到圆盘给的指向圆心的摩擦力,故选项B正确。
高一物理课后习题精准解析(新教材人教版必修第二册)第6章__圆周运动复习与提高B组

第 6章圆周运动复习与提高 B组(解析版)—2019版新教科书物理必修第二册“复习与提高”习题详解1.如图 6-7所示,半径 R=0.40 m的光滑半圆环轨道处于竖直平面内,半圈环与水平地面相切于圆环的端点 A,一小球从 A点冲上竖直半圆环,沿轨道运动到 B点飞出,最后落在水平地面上的 C点〔图上未画),g取 10 m/s .(1)能实现上述运动时,小球在 B点的最小速度是多少?2(2)能实现上述运动时,A、C间的最小距离是多少?【解析】(1)小球在B点受力等于向心力,当N=0时最小速度为(2)小球从B做平抛运动,解得0.8m,即为A、C间的最小距离。
2.如图 6-8所示,做匀速圆周运动的质点在时间 t内由 A点运动到 B点,AB弧所对的圆心角为。
(1)若 A8弧长为,求质点向心加速度的大小。
(2)若由 A点运动到 B点速度改变量的大小为,求质点做匀速圆周运动的向心加速度的大小。
【解析】(1)因为,所以,又,所以,代入得(2)3.如图 6-9所示,带有一白点的黑色圆盘,绕过其中心且垂直于盘面的轴沿颠时针方向匀速转动,转速 n=20 rls。
在暗室中用每秒闪光 21次的频闪光源照射圆盘,求观察到白点转动的方向和转动的周期。
【解析】每闪光1次所用时间,在此时间内,白点顺时针转过的角为,也就是逆时针转动了,用角度表示约为,所以观察到的白点转动方向为逆时针方向。
如图所示角速度,所以周期= 。
4.如图 6-10所示,一长为的轻杆的一端固定在水平转轴上,另一端固定一质量为 m的小球,轻杆随转轴在竖直平面内做角速度为的匀速圆周运动,重力加速度为 g。
(1)小球运动到最高点时,长杆对球的作用力。
( 2)小球运动到水平位置 A时,求杆对球的作用力。
【解析】(1)在最高点,设杆对球的作用力为F,方向向下为正,有,则①若②若③若,则,则,则,F=0,杆对球的作用力为0;,F>0,杆对球的作用力为, 方向向下,是拉力;,F<0,杆对球的作用力大小为,方向向上,是支持力。
专题 竖直面内的圆周运动 高一物理 (人教版2019)

专题5 竖直面内的圆周运动(解析版)一、目标要求目标要求重、难点向心力的来源分析重难点水平面内的圆周运动重难点火车转弯模型难点二、知识点解析1.汽车过桥模型(单轨,有支撑)汽车在过拱形桥或者凹形桥时,桥身只能给物体提供弹力,而且只能向上(如以下两图所示).(1)拱形桥(失重)汽车在拱形桥上行驶到最高点时的向心力由重力和桥面对汽车的弹力提供,方向竖直向下,在这种情况下,汽车对桥的压力小于汽车的重力:mg-F=2mvR,F ≤ mg,汽车的速度越大,汽车对桥的压力就越小,当汽车的速度达到v max=gR,此时物体恰好离开桥面,做平抛运动.(2)凹形路(超重)汽车在凹形路上行驶通过最低点的向心力也是由重力和桥面对汽车的弹力提供,但是方向向上,在这种情况下,汽车对路面的压力大于汽车的重力:2-=mvF mgR,由公式可以看出汽车的速度越大,汽车对路面的压力也就越大.说明:汽车过桥模型是典型的变速圆周运动.一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题.2.绳模型(外管,无支撑,水流星模型)(1)受力条件:轻绳对小球只能产生沿绳收缩方向的拉力,圆形轨道对小球只能产生垂直于轨道向内的弹力,故这两种模型可归结为一种情况,即只能对物体施加指向轨迹圆心的力.(2)临界问题:①临界条件:小球在最高点时绳子的拉力(或轨道的弹力)如果刚好等于零,小球的重力充当圆周运动所需的向心力,这是小球能通过最高点的最小速度,则:2=v mg m R,解得:0=v gR说明:如果是处在斜面上,则向心力公式应为:20sin v mg m R α=,解得:0sin v gR α=②能过最高点的条件:v ≥0v .③不能过最高点的条件:v <0v ,实际上小球在到0v 达最高点之前就已经脱离了圆轨道,做斜上抛运动.3.杆模型(双管,有支撑)(1)受力条件:轻杆对小球既能产生拉力又能产生支持力,圆形管道对其内部的小球能产生垂直于轨道用长为L 的轻绳拴着质量为m 的小球 使小球在竖直平面内作圆周运动 质量为m 的小球在半径为R 的光滑竖直外管内侧做圆周运动用长为L 的轻杆拴着质量为m 的小球使小球在竖直平面内作圆周运动 质量为m 的小球在半径为R 的光滑竖直双管内做圆周运动向内和向外的弹力.故这两种模型可归结为一种情况,即能对物体施加沿轨道半径向内和向外的力.(2)临界问题:①临界条件:由于硬杆或管壁的支撑作用,小球能到达最高点的临界速度0=v 临,此时轻杆或轨道内侧对小球有向上的支持力:0-=N F mg .②当0<v gR N F .由-mg N F 2=v m R 得:N F 2=-v mg m R.支持力N F 随v 的增大而减小,其取值范围是0<N F <mg .③当=v gR 时,重力刚好提供向心力,即2=v mg m R,轻杆或轨道对小球无作用力.④当v gR F 或轨道外侧对小球施加向下的弹力N F 弥补不足,由2+=v mg F m R 得:2=-v F m mg R,且v 越大F (或N F )越大.说明:如果是在斜面上:则以上各式中的mg 都要改成sin mg α. 4.离心运动做匀速圆周运动的物体,在合外力突然消失或者减小的情况下,就做逐渐远离圆心的运动,这种运动叫做离心运动.(1)离心运动的成因做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞去的倾向.当2F mr ω=时,物体做匀速圆周运动;当0F =时,物体沿切线方向飞出;当2F mr ω<时,物体逐渐远离圆心.F 为实际提供的向心力.如图所示.(2)离心运动的应用离心运动可以给我们的生活、工作带来方便,如离心干燥器、洗衣机的脱水筒等就是利用离心运动而设计的.离心干燥器:将湿物体放在离心干燥器的金属网笼里,当网笼转得较快时,水滴所受的附着力不足以提供其维持圆周运动所需的向心力,水滴就做离心运动,穿过网孔,飞离物体,使物体甩去多余的水分.(3)离心运动的防止有时离心运动也会给人们带来危害,如汽车、摩托车、火车转弯时若做离心运动则易造成交通事故;砂轮转动时发生部分砂块做离心运动而造成人身伤害.因此应对它们进行限速,这样所需向心力mvr2较小,不易出现向心力不足的情况,从而避免离心运动的产生.(4)几种常见的离心运动物理情景实物图原理图现象及结论洗衣机脱水筒当水滴跟物体之间的附着力F不能提供足够的向心力(即2ω<F m r))时,水滴做离心运动汽车在水平路面上转弯当最大静摩擦力不足以提供向心力(即2max<vF mr))时,汽车做离心运动三、考查方向题型1:汽车过桥模型典例一:如图所示,质量为m的滑块与轨道间的动摩擦因数为μ,当滑块从A滑到B的过程中,受到的摩擦力的最大值为Fμ,则( )A.Fμ=μmg B.Fμ<μmgC.Fμ>μmg D.无法确定Fμ的值【答案】:C【解析】在四分之一圆弧底端,根据牛顿第二定律得:2vN mg mR-=,解得:N=mg+ 2vmR,此时摩擦力最大,有:2>v F N mg m mg R μμμμ⎛⎫==+ ⎪⎝⎭.故C 正确确,ABD 错误.题型2:绳模型典例二:如图所示,杂技演员表演水流星节目.一根长为L 的细绳两端系着盛水的杯子,演员握住绳中间,随着演员的抡动,杯子在竖直平面内做圆周运动,杯子运动中水始终不会从杯子洒出,设重力加速度为g ,则杯子运动到最高点的角速度ω至少为( )A gLB 2g LC 5gLD 10gL【答案】:B【解析】:据题知,杯子圆周运动的半径2=Lr ,杯子运动到最高点时,水恰好不流出,由水的重力刚好提供其做圆周运动的向心力,根据牛顿第二定律得:22Lmg m ω= 解得:2g L ω=题型3:杆模型典例三:一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是( )A .小球过最高点时,杆所受到的弹力可以等于零B gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小 【答案】:A【解析】:轻杆可对小球产生向上的支持力,小球经过最高点的速度可以为零,当小球过最高点的速度v gR A正确,B错误;若v gR最高点对小球的弹力竖直向上,mg-F=m2vR,随v增大,F减小,若v gR高点对小球的弹力竖直向下,mg+F=m2vR,随v增大,F增大,故C、D均错误。
人教版 高一物理 必修2 5.4圆周运动练习解析版2

…○…………订_____班级:___________考…○…………订绝密★启用前2019-2020学年度???学校2月月考卷4试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题54.如图是自行车传动机构的示意图,其中Ⅰ是半径为R 1的大链轮,Ⅱ是半径为R 2的小飞轮,Ⅲ是半径为R 3的后轮,假设脚踏板的转速为n (单位:r/s ),则自行车后轮边缘的线速度为( )A .132nR R R π B .231nR R R π C .2312nR R R π D .1322nR R R π 【答案】D 【解析】 【详解】转速为单位时间内转过的圈数,因为转动一圈,对圆心转的角度为2π,所以ω=2πn ,因为要测量自行车前进的速度,即车轮III 边缘上的线速度的大小,根据题意知:轮I 和轮II 边缘上的线速度的大小相等,据v=rω可知:r 1ω1=r 2ω2,已知ω1=2πn ,则轮II 的角速度1212r r ωω=.因为轮II 和轮III 共轴,所以转动的ω相等即ω3=ω2,根据v=rω可知,v=r 3ω3=1322nr r r π;故选D .【点睛】此题考查圆周运动的知识在实际生活中的应用问题;解决本题的关键知道靠链条传动,边缘的线速度相等,共轴转动,角速度相等;根据角速度与线速度的关系式v=rω,结合半径关系即可解答.55.如图所示,用长为L 的轻杆拴着质量为m 的小球在竖直平面内做圆周运动,则试卷第2页,总24页……○…………………○…※※请※※不……○…………………○…( )A .小球在最高点时所受向心力一定为重力B .小球在最高点时杆子的拉力不可能为零C .若小球刚好能在竖直面内做圆周运动,则其在最高点速率是√gLD .小球在圆周最低点时一定对杆子施加向下的拉力,且一定大于重力 【答案】D 【解析】 【详解】小球在最高点时受重力,还有可能受杆对小球的作用力,故向心力是这两个力的合力,选项A 错误;小球在最高点时杆子的拉力可能为零,此时小球的速度满足mg =m v 2L ,即v =√gL ,选项B 错误;若小球刚好能在竖直面内做圆周运动,则其在最高点速率为零,选项C 错误;小球在圆周最低点时杆对小球一定施加向上的拉力,且满足F −mg =m v 2L ,即F =mg +m v 2L 〉mg ,所以小球对杆子施加向下的拉力,且一定大于重力,选项D 正确。
高一物理圆周运动实例分析试题答案及解析

高一物理圆周运动实例分析试题答案及解析1.当气车行驶在凸形桥时,为使通过桥顶时减小汽车对桥的压力,司机应()A.以尽可能小的速度通过桥顶B.增大速度通过桥顶C.使通过桥顶的向心加速度尽可能小D.和通过桥顶的速度无关【答案】B【解析】当汽车驶在凸形桥时,重力和前面对汽车的支持力提供向心力,则,解得:,根据牛顿第三定律可知:汽车对桥的压力等于桥顶对汽车的支持力,为使通过桥顶时减小汽车对桥的压力,可以增大速度通过桥顶,故B正确,A、C错误;向心加速度小,桥顶对汽车的支持力就大,故C错误。
【考点】考查了圆周运动实例分析2.如图所示,拱桥的外半径为40m。
问:(1)当重1t的汽车通过拱桥顶点的速度为10m/s时,车对桥顶的压力多少牛?(2)当汽车通过拱桥顶点的速度为多少时,车对桥顶刚好没有压力(g=10m/s2)【答案】(1)7500N(2)20m/s【解析】(1)小车受到的mg 和N的合力提供向心力-----------------------------------------------4分带入数据得: N=7500N-----------------------------------1分由牛顿第三定律得: 小车对桥的压力N’=N=7500N------1分(2)当重力完全充当向心力时,车对桥顶没哟偶作用力,即,解得20m/s-4分【考点】考查了圆周运动实例分析3.图示小物体A与圆盘保持相对静止跟着圆盘一起做匀速圆周运动,则A受力情况()A.重力、支持力、摩擦力B.重力、支持力、向心力C.重力、支持力D.重力、支持力、向心力、摩擦力【答案】A【解析】因为小物体A与圆盘保持相对静止跟着圆盘一起做匀速圆周运动,则在竖直方向,A受到重力和圆盘的支持力;水平方向受静摩擦力作用,用来提供做圆周运动的向心力,故答案A 正确.【考点】受力分析;向心力。
4.铁路转弯处的圆弧半径为R,内侧和外侧的高度差为h.L为两轨间的距离,且L>h.如果列车转弯速率大于,则( )A.外侧铁轨与轮缘间产生挤压B.铁轨与轮缘间无挤压C.内侧铁轨与轮缘间产生挤压D.内、外铁轨与轮缘间均有挤压【答案】A【解析】设轨道平面与水平面的夹角为θ,如果列车所受的重力和支持力恰好提供转弯的向心力,=mgtanθ,θ很小的情况下,sinθ≈tanθ,即则F向,如果列车转弯速率大于v,列车所受重力和支持力的合力将不足以提供所需的向心力,会挤压外轨,A正确,BCD错误。
高一物理圆周运动专题训练(附解析)

高一物理圆周运动专题训练(附解析)高中物理是高中理科(自然科学)基础科目之一,小编准备了高一物理圆周运动专题训练,具体请看以下内容。
一、选择题1.下列有关洗衣机中脱水筒的脱水原理的说法正确的是()A.水滴受离心力作用而背离圆心方向甩出B.水滴受到向心力,由于惯性沿切线方向甩出C.水滴受到的离心力大于它受到的向心力,而沿切线方向甩出D.水滴与衣服间的附着力小于它所需要的向心力,于是水滴沿切线方向甩出2.关于铁道转弯处内外铁轨间的高度关系,下列说法中正确的是()A.内、外轨一样高,以防列车倾倒造成翻车事故B.因为列车在转弯处有向内倾倒的可能,故一般使内轨高于外轨,以防列车翻倒C.外轨比内轨略高,这样可以使列车顺利转弯,减少车轮与铁轨的挤压D.以上说法均不正确3.在世界一级方程式锦标赛中,赛车在水平路面上转弯时,常常在弯道上冲出跑道,其原因是()A.是由于赛车行驶到弯道时,运动员未能及时转动方向盘造成的B.是由于赛车行驶到弯道时,没有及时加速造成的C.是由于赛车行驶到弯道时,没有及时减速造成D.是由于在弯道处汽车受到的摩擦力比在直道上小造成的4.在光滑的轨道上,小球滑下经过圆弧部分的最高点A时,恰好不脱离轨道,此时小球受到的作用力是()A.重力、弹力和向心力B.重力和弹力C.重力和向心力D.重力5.用长为L的细绳拴着质量为m的小球在竖直平面内做圆周运动,正确的说法是()A.小球在圆周最高点时所受的向心力一定为重力B.小球在最高点时绳子的拉力有可能为零C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为0D.小球过最低点时绳子的拉力一定大于小球的重力6.在高速公路的拐弯处,路面建造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧的要高一些,路面与水平面间的夹角为,设拐弯路段是半径为R的圆弧,要使车速为v 时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,应等于()A.sin =B.tan =C.sin 2=D.cot =7.长为l的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直面内做圆周运动,关于最高点的速度v,下列说法正确的是()A.v的极小值为B.v由零逐渐增大,向心力也增大C.当v由逐渐增大时,杆对小球的弹力逐渐增大D.当v由逐渐减小时,杆对小球的弹力逐渐增大二、非选择题8.一根长l=0.625 m的细绳,一端拴一质量m=0.4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,g取10 m/s2,求:(1)小球通过最高点时的最小速度;(2)若小球以速度v=3.0 m/s通过圆周最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动?参考答案1.D [根据离心运动的特点知,水滴的离心现象是由于水滴与衣服间的附着力小于水滴运动所需要的向心力,即提供的向心力不足,所以水滴沿切线方向甩出,正确选项为D.]2.C [铁道转弯处外轨比内轨略高,从而使支持力的水平方向分力可提供一部分向心力,以减少车轮与铁轨的挤压避免事故发生,C对,A、B、D错.]3.C [赛车在水平弯道上行驶时,摩擦力提供向心力,而且速度越大,需要的向心力越大,如不及时减速,当摩擦力不足以提供向心力时,赛车就会做离心运动,冲出跑道,故C正确.]4.D [小球在最高点恰好不脱离轨道时,小球受轨道的弹力为零,而重力恰好提供向心力,向心力并不是小球受到的力,而是根据力的作用效果命名的,故D正确,A、B、C均错误.]5.BD [设在最高点小球受的拉力为F1,最低点受到的拉力为F2,当在最高点v1时,则F1+mg=m,即向心力由拉力F1与mg的合力提供,A错;当v1=时,F1=0,B对;v1=为球经过最高点的最小速度,即小球在最高点的速率不可能为0,C 错;在最低点,F2-mg=m,F2=mg+m,所以经最低点时,小球受到绳子的拉力一定大于它的重力,D对.]6.B[当车轮与路面的横向摩擦力等于零时,汽车受力如图所示,则有:Nsin =m,Ncos =mg,解得:tan =,故B正确.]7.BCD [由于是轻杆,即使小球在最高点速度为零,小球也不会掉下来,因此v的极小值是零;v由零逐渐增大,由F=可知,F也增大,B对;当v=时,F==mg,此时杆恰对小球无作用力,向心力只由其自身重力来提供;当v由增大时,则=mg+F?F=m-mg,杆对球的力为拉力,且逐渐增大;当v由减小时,杆对球为支持力.此时,mg-F=,F=mg-,支持力F逐渐增大,杆对球的拉力、支持力都为弹力,所以C、D也对,故选B、C、D.]8.(1)2.5 m/s(2)1.76 N 平抛运动解析(1)小球通过圆周最高点时,受到的重力G=mg必须全部作为向心力F向,否则重力G中的多余部分将把小球拉进圆内,而不能实现沿竖直圆周运动.所以小球通过圆周最高点的条件应为F向mg,当F向=mg时,即小球受到的重力刚好全部作为通过圆周最高点的向心力,绳对小球恰好没有力的作用,此时小球的速度就是通过圆周最高点的最小速度v0,由向心力公式有:mg=m解得:G=mg=mv0== m/s=2.5 m/s.(2)小球通过圆周最高点时,若速度v大于最小速度v0,所需的向心力F向将大于重力G,这时绳对小球要施加拉力F,如图所示,此时有F+mg=m解得:F=m-mg=(0.4-0.410) N=1.76 N若在最高点时绳子突然断了,则提供的向心力mg小于需要的向心力m,小球将沿切线方向飞出做离心运动(实际上是平抛运动).高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高一物理圆周运动专题训练,希望大家喜欢。
高中物理 圆周运动典型例题详解

B、作匀速圆周运动的物体,在所受合外力突然消失时,
将沿圆周切线方向离开圆心
C、作匀速圆周运动的物体,它自己会产生一个向心力,
维持其作圆周运动
D、作离心运动的物体,是因为受到离心力作用的缘故
【例4】以下属于离心现象应用的是( BC ) A、水平抛出去的物体,做平抛运动 B、链球运动员加速旋转到一定的速度后将链球抛开 C、离心干燥器使衣物干燥 D、锤头松了,将锤柄在石头上磕风下就可以把柄安牢
解题感悟
2.两个圆周运动临界问题
v0
v0
杆连球(管通球)模型的临界问题
小球速度 运动情况 弹力的方向
弹力的大小
v=0 平衡状态 竖直向上的支持力
v gr 圆周运动 竖直向上的支持力
FN=mg
FN
mg
m
v2 r
v gr
圆周运动
v gr 圆周运动 指向圆心的拉力
FN
FN=0 mg
m
解题感悟
解决竖直平面内的变速圆周运动问题的关键是掌握两个圆周 运动模型和两个圆周运动临界问题: 1.两种圆周运动模型:
最低点圆周运动模型
最高点圆周运动模型
v0
v0
第四章 曲线运动和万有引力→3圆周运动
(三)考点应用,精讲精析 典型问题三:曲线运动中的动力学问题(四)------竖直平面内的变速圆周运动
例1 下列关于离心现象的说法正确的是( ) A.当物体所受的离心力大于向心力时产生离心现 象 B.做匀速圆周运动的物体,当它所受的一切力都 突然消失后,物体将做背离圆心的圆周运动 C.做匀速圆周运动的物体,当它所受的一切力都
突然消失后,物体将沿切线做匀速直线运动 D.做匀速圆周运动的物体,当它所受的一切力都 突然消失后,物体将做曲线运动 【解析】向心力是根据效果命名的,做匀速圆周 运动的物体所需要的向心力是它所受的某个力或 几个力的合力提供的,因此,它并不受向心力的 作用.它之所以产生离心现象是由于F合=Fn<mω2r,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、第六章 圆周运动易错题培优(难)1.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )A .a 、b 所受的摩擦力始终相等B .b 比a 先达到最大静摩擦力C .当2kgLω=a 刚要开始滑动 D .当23kgLω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即kmg +F =mω2•2L ①而a 受力为f′-F =2mω2L ②联立①②得f′=4mω2L -kmg综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有2kmg+kmg =2mω2L +mω2•2L解得34kgLω=选项C 错误;D. 当b 恰好达到最大静摩擦时202kmg m r ω=⋅解得02kgLω=因为32432kg kg kgL L L >>,则23kgLω=时,b 所受摩擦力达到最大值,大小为kmg ,选项D 正确。
故选BD 。
2.如图所示,小球A 可视为质点,装置静止时轻质细线AB 水平,轻质细线AC 与竖直方向的夹角37θ︒=,已知小球的质量为m ,细线AC 长L ,B 点距C 点的水平和竖直距离相等。
装置BO 'O 能以任意角速度绕竖直轴O 'O 转动,且小球始终在BO 'O 平面内,那么在ω从零缓慢增大的过程中( )(g 取10m/s 2,sin370.6︒=,cos370.8︒=)A .两细线张力均增大B .细线AB 中张力先变小,后为零,再增大C .细线AC 中张力先不变,后增大D .当AB 中张力为零时,角速度可能为54g L【答案】BCD 【解析】 【分析】 【详解】AB .当静止时,受力分析如图所示由平衡条件得T AB =mg tan37°=0.75mg T AC =cos37mg=1.25mg若AB 中的拉力为0,当ω最小时绳AC 与竖直方向夹角θ1=37°,受力分析如图mg tan θ1=m (l sinθ1)ωmin 2得ωmin =54g l当ω最大时,由几何关系可知,绳AC 与竖直方向夹角θ2=53°mg tan θ2=mωmax 2l sin θ2得ωmax 53g l所以ω取值范围为54g l 53g l绳子AB 的拉力都是0。
由以上的分析可知,开始时AB 是拉力不为054g l 53glAB 的拉力为0,角速度再增大时,AB 的拉力又会增大,故A 错误;B 正确;C .当绳子AC 与竖直方向之间的夹角不变时,AC 绳子的拉力在竖直方向的分力始终等于重力,所以绳子的拉力绳子等于1.25mg 54gl53glAC 上竖直方向的拉力不变,水平方向的拉力增大,则AC 的拉力继续增大;故C 正确; D .由开始时的分析可知,当ω54g l 53g lAB 的拉力都是0,故D 正确。
故选BCD 。
3.如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的物体A 和B ,A 和B质量都为m .它们分居在圆心两侧,与圆心距离分别为R A =r ,R B =2r ,A 、B 与盘间的动摩擦因数μ相同.若最大静摩擦力等于滑动摩擦力,当圆盘转速加快到两物体刚好还未发生滑动时,下列说法正确的是( )A .此时绳子张力为T =3mg μB .此时圆盘的角速度为ω=2grμ C .此时A 所受摩擦力方向沿半径指向圆外 D .此时烧断绳子物体A 、B 仍将随盘一块转动 【答案】ABC 【解析】 【分析】 【详解】C .A 、B 两物体相比,B 物体所需要的向心力较大,当转速增大时,B 先有滑动的趋势,此时B 所受的静摩擦力沿半径指向圆心,A 所受的静摩擦力沿半径背离圆心,故C 正确; AB .当刚要发生相对滑动时,以B 为研究对象,有22T mg mr μω+=以A 为研究对象,有2T mg mr μω-=联立可得3T mg μ=2grμω=故AB 正确;D .若烧断绳子,则A 、B 的向心力都不足,都将做离心运动,故D 错误. 故选ABC.4.如图,质量为m 的物块,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是( )A .滑块对轨道的压力为2v mg m R+B .受到的摩擦力为2v m RμC .受到的摩擦力为μmgD .受到的合力方向斜向左上方【答案】AD 【解析】 【分析】 【详解】A .根据牛顿第二定律2N v F mg m R-=根据牛顿第三定律可知对轨道的压力大小2NN v F F mg m R'==+ A 正确;BC .物块受到的摩擦力2N ()v f F mg m Rμμ==+BC 错误;D .水平方向合力向左,竖直方向合力向上,因此物块受到的合力方向斜向左上方,D 正确。
故选AD 。
5.如图所示,一个竖直放置半径为R 的光滑圆管,圆管内径很小,有一小球在圆管内做圆周运动,下列叙述中正确的是( )A .小球在最高点时速度v gRB .小球在最高点时速度v 由零逐渐增大,圆管壁对小球的弹力先逐渐减小,后逐渐增大C .当小球在水平直径上方运动时,小球对圆管内壁一定有压力D .当小球在水平直径下方运动时,小球对圆管外壁一定有压力 【答案】BD 【解析】 【分析】 【详解】A .小球恰好通过最高点时,小球在最高点的速度为零,选项A 错误;B .在最高点时,若v gR <2v mg N m R-=可知速度越大,管壁对球的作用力越小; 若v gR >,轨道对小球的作用力方向向下,有2v N mg m R+=可知速度越大,管壁对球的弹力越大。
选项B 正确;C .当小球在水平直径上方运动,恰好通过最高点时,小球对圆管内外壁均无作用力,选项C 错误;D .当小球在水平直径下方运动时,小球受竖直向下的重力,要有指向圆心的向心力,则小球对圆管外壁一定有压力作用,选项D 正确。
故选BD 。
6.如图所示,两个可视为质点的、相同的木块A 和B 放在转盘上,两者用长为L 的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K 倍,A 放在距离转轴L 处,整个装置能绕通过转盘中心的转轴O 1O 2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是( )A .当23KgLω>时,A 、B 相对于转盘会滑动 B 223Kg KgL Lω<C .ω在223Kg KgL L ω<<B 所受摩擦力变大 D .ω223Kg KgL Lω<A 所受摩擦力不变 【答案】AB 【解析】 【分析】 【详解】A .当A 所受的摩擦力达到最大静摩擦力时,A 、B 相对于转盘会滑动,对A 有21Kmg T m L ω-=对B 有212Kmg T m L ω+=⋅解得123KgLω=当23KgLω>时,A 、B 相对于转盘会滑动,故A 正确; B .当B 达到最大静摩擦力时,绳子开始出现弹力222Kmg m L ω=⋅解得22KgLω=当223Kg KgL Lω<<时,绳子具有弹力,故B 正确; C .当ω在02KgLω<<范围内增大时,B 所受的摩擦力变大;当2KgLω=时,B 受到的摩擦力达到最大;当ω在223Kg KgL Lω<<范围内增大时,B 所受摩擦力不变,故C 错误;D .当ω在203KgLω<<范围内增大时,A 所受摩擦力一直增大,故D 错误。
故选AB 。
7.如图所示,一个边长满足3:4:5的斜面体沿半径方向固定在一水平转盘上,一木块静止在斜面上,斜面和木块之间的动摩擦系数μ=0.5。
若木块能保持在离转盘中心的水平距离为40cm 处相对转盘不动,g =10m/s 2,则转盘转动角速度ω的可能值为(设最大静摩擦力等于滑动摩擦力)( )A .1rad/sB .3rad/sC .4rad/sD .9rad/s【答案】BC 【解析】 【分析】 【详解】根据题意可知,斜面体的倾角满足3tan 0.54θμ=>= 即重力沿斜面的分力大于滑动摩擦力,所以角速度为零时,木块不能静止在斜面上;当转动的角速度较小时,木块所受的摩擦力沿斜面向上,当木块恰要向下滑动时11cos sin N f mg θθ+= 2111sin cos N f m r θθω-=又因为滑动摩擦力满足11f N μ=联立解得1522rad/s 11ω=当转动角速度变大,木块恰要向上滑动时22cos sin N f mg θθ=+2222sin cos N f m r θθω+=又因为滑动摩擦力满足22f N μ=联立解得252rad/s ω=综上所述,圆盘转动的角速度满足522rad/s 2rad/s 52rad/s 7rad/s ω≈≤≤≈ 故AD 错误,BC 正确。
故选BC 。
8.如图所示,半径分别为R 和2R 的甲、乙两薄圆盘固定在同一转轴上,距地面的高度分别为2h 和h ,两物块a 、b 分别置于圆盘边缘,a 、b 与圆盘间的动摩擦因数μ相等,转轴从静止开始缓慢加速转动,观察发现,a 离开圆盘甲后,未与圆盘乙发生碰撞,重力加速度为g ,最大静摩擦力等于滑动摩擦力,则( )A .动摩擦因数μ一定大于32R hB .离开圆盘前,a 所受的摩擦力方向一定指向转轴C .离开圆盘后,a 运动的水平位移大于b 运动的水平位移D .若52Rhμ=,落地后a 、b 【答案】ABD 【解析】 【详解】A .由题意可知,两物块随圆盘转动的角速度相同,当最大静摩擦力提供物体向心力时,此时的角速度为物体随圆盘做圆周运动的最大角速度,为临界角速度,根据牛顿第二定律得2b b b 2m g m R μω=解得b 物体滑离圆盘乙的临界角速度为b ω=同理可得,a 物块的临界角速度为a ω=由几何知识知,物体a 滑离圆盘时,其位移的最小值为min x ==由题意知,其未与圆盘乙相碰,根据平抛运动规律可知a a min x R t R x ωω=⋅=>= 解得32R hμ>所以A 正确;B .离开圆盘前,a 随圆盘一起做匀速圆周运动,由静摩擦力来提供向心力,所以a 所受的摩擦力方向一定指向转轴,B 正确;C .由于b a ωω<所以一定是b 物块先离开圆盘,离开圆盘后,物块做平抛运动,对b 物体的水平位移为b b b 2x v t R ω===同理可得,a 物体的水平位移为a a a a x v t R t R ωω''==⋅==故离开圆盘后a 的水平位移等于b 的水平位移,所以C 错误; D .当52R hμ=时a 的落地点距转轴的距离为221a 11x R x R =+=同理,b 的落地点距转轴的距离为222b (2)14x R x R =+=故121114x x = 所以D 正确。