《平行线性质的应用》课件

合集下载

七年级数学下册课件(北师大版)平行线的性质

七年级数学下册课件(北师大版)平行线的性质
A.35° B.40° C.45° D.50°
3 如图,在平行线a,b 之间放置一块直角三角板,三角板的 顶点A,B 分别在直线a,b上,则∠1+∠2的值为( A )
A.90° B.85° C.80° D.60°
4 如图,AB∥CD,点E 在线段BC 上,若∠1=40°,
∠2=30°,则∠3的度数是( A ) A.70° B.60° C.55° D.50°
2.3平行线的性质
第1课时





条件

线 同位角相等
的 内错角相等 判 定 同旁内角互补
结论 两直线平行
猜想:交换它们的条件与结论,是否成立?
两直线平行
同位角相等 内错角相等 同旁内角互补
知识点 1 “同位角”的性质
探究 如图,利用坐标纸上的直线,或者用直尺和三
角尺画两条平行线a∥b,然后, 画一条截线c 与这两条平行线
1 如图所示,AB∥CD,AC∥BD. 分别找出与∠1相等或互补的角.
解:如图,与∠1相等的角有∠3, ∠5,∠7,∠9,∠11,∠13,∠15; 与∠1互补的角有∠2,∠4,∠6,∠8,∠10,∠12, ∠14,∠16.
2 如图所示,要在一条公路的两侧铺设平行管道,已知 一侧铺设的角度为120°,为使管道对接,另一侧铺设 的角度大小应为( D ) A.120° B.100° C.80° D.60°
总结
解决学具操作题,关键是要掌握学具作为几何 图形具有的性质特征,以及学具作为特殊图形中特 殊内角的度数.
例2 如图,将一张长方形的纸片沿EF 折叠后,点D,C 分 别落在D′,C ′位置上,ED ′与BC 的交点为点G,若 ∠EFG=50°,求∠EGB 的度数.

课件《平行线的性质》精品PPT课件_人教版2

课件《平行线的性质》精品PPT课件_人教版2
A 解: ∵பைடு நூலகம்B ∥ CD(已知)
∴∠A+∠D=180°,∠B+∠C=180° (两直线平行,同旁内角互补) ∵ ∠A=100°,∠B=115° ∴∠D=180 °-∠A=180°-100°=80° ∠C= 180 °-∠B=180°-115°=65° ∴梯形的另外两个角分别是80° 、 65°.
C B
b
如果两直线不平行, 上述结论还成立吗?
总结归纳
一般地,平行线具有性质:
性质1:两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
a
1
应用格式:
∵a∥b(已知)
b
∴∠1=∠2 (两直线平行,同位角相等)
2 c
理解运用
1.如图,如果直线AB∥CD, ∠3 =45°,那
么∠4是多少度,为什么?
解: ∵a//b (已知),
∴ 1= 2 (两直线平行,同位角相等).
a ∵ 1+ 4=180°
(邻补角定义),
b
∴ 2+ 4=180°
(等量代换).
1 4 2
c
总结归纳 性质3:两条平行线被第三条直线所截,同旁内角互补。 简单说成:两直线平行,同旁内角互补.
应用格式:
a
∵a∥b(已知)
∴∠2+∠4=180 °
重点:探究平行线的性质。
∴梯形的另外两个角分别是80°、 65°.
如果直线AB ∥CD,那么∠1 =∠2吗? ∠3 =∠2吗?为什么?
如图,已知a//b,那么 2与 4有什么关系呢?为什么?
(
)
两直线平行,同位角相等
∴∠2+∠4=180 °
又∵ ∠1=∠3(对顶角相等),

平行线的性质 优秀课件ppt

平行线的性质    优秀课件ppt

素材:探索平行线的性质(播放状态下,点击画面操作)
探索平行线的性质.swf
当堂练习
1.如图,已知平行线AB、CD被直线AE所截
(1)从 ∠1=110o可以知道∠2 是多少度吗,为什么?
(2)从∠1=110o可以知道 ∠3是多少度吗,为什么?
(3)从 ∠1=110o可以知道∠4 是多少度吗,为什么?
又∵∠A=100°,∠C=110°(已知),
∴∠ 1 = 80 °, ∠ 2 = 70 °.
∴∠AEC=∠1+∠2= 80 °+ 70 ° = 150 °.
4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.
65
度数
78
c
观察 ∠1~ ∠8中,哪些是同位角?它们的度数 之间有什么关系?说出你的猜想:
a
21
34
b
65
78
c
猜想 两条平行线被第三条直线所截,同位角_相_等_.
再任意画一条截线d,同样度量各个角的度 数,你的猜想还成立吗?
d
a
b
如果两直线不平行,上述结论还成立吗?
总结归纳
一般地,平行线具有如下性质:
当堂练习
1.填空:如图,
(1)∠1=∠2 时,AB∥CD. (2)∠3= ∠5或∠4时,AD∥BC.
A 1 B
D
5 2
3 C
4 F
E
2.直线a,b与直线c相交,给出下列条件:
①∠1= ∠2;
②∠3= ∠6;
③∠4+∠7=180o; ④∠3+ ∠5=180°, c
其中能判断a//b的是( B )
A. ①②③④ B .①③④
3.如图,直线 a ∥ b,直线b垂直于直线c,那么直线a

平行线ppt课件

平行线ppt课件

02
平行线判定方法的 误用
提醒学生注意不同判定方法的使 用条件和限制,避免误用或混淆。
03
忽略平行线的存在 性
提醒学生在解题时,不要忽略题 目中可能存在的平行线,否则可 能导致解题错误。
拓展延伸内容推荐
平行线与相似三角形的关系
探讨平行线与相似三角形之间的联系,以及如 何利用平行线的性质解决相似三角形的问题。
交通信号灯
交通信号灯中的红灯、绿灯、黄灯等灯光的排列 也遵循平行线的原则,使得驾驶员和行人能够清 晰地辨认交通信号。
导向标志 道路两侧的导向标志牌上的文字、图案等也采用 平行线排列,方便驾驶员快速获取道路信息。
日常生活用品设计美学体现
家居用品
家居用品中的桌子、椅子、床等家具的设计中经常运用到平行线, 使得家具外观简洁大方,符合现代审美。
图形示例
判定步骤
首先确定两条被截直线和截线,然后 找出同旁内角并测量其角度之和是否 为180度,如果是,则两条直线平行。
在图形中,画出两条被第三条直线所 截的直线,并标出同旁内角。
实际应用场景分析
建筑设计中
在建筑设计中,平行线的概念经常被用来确保建筑物的稳定性和美观性。例如,在设计墙壁、 地板和天花板时,需要确保它们是平行的,以避免出现倾斜或不平整的情况。
在物理学中,平行线的概念被广泛应用于光 学、力学等领域的研究中,如光的反射、折 射等现象都与平行线密切相关。
计算机图形学
工程测量与建设
在计算机图形学中,平行线的绘制和处理是 图形渲染、图像处理等任务中的重要环节之 一。
在工程测量与建设中,平行线的运用可以确 保建筑物的精确度和稳定性,提高工程质量。
05
预备工作
建议学生提前预习相关知识点,回顾平行线的定义、性质及判 定方法,并尝试思考一些与平行线相关的实际问题,为下一讲 的学习做好准备。

苏教版四年级上册《认识平行线》课件

苏教版四年级上册《认识平行线》课件

画平行线的技巧
利用对称性质
在几何图形中,许多图形具有对称性。例如,矩形和正方形。利用这些图形的 对称性质,可以更容易地画出平行线。
使用量角器
如果需要精确地画出平行线,可以使用量角器。首先,确定要画的平行线与已 知直线之间的角度,然后使用量角器画出相同的角度,这样就可以画出平行的 直线。
平行线在生活中的应用
苏教版四年级上册 《认识平行线》课 件
汇报人: 202X-01-02
目录
• 平行线的定义与性质 • 平行线的画法与技巧 • 平行线的性质在几何图形中的应用 • 练习与巩固 • 总结与回顾
01
平行线的定义与性质
平行线的定义
平行线的定义
平行线的性质
在同一平面内,不相交的两条直线称 为平行线。
平行线具有传递性、同位角相等、内 错角相等、同旁内角互补等性质。
平行线的判定方法
1 2
同位角相等判定法
如果两条直线被一条横截线所截,同位角相等, 则这两条直线平行。
内错角相等判定法
如果两条直线被一条横截线所截,内错角相等, 则这两条直线平行。
3
同旁内角互补判定法
如果两条直线被一条横截线所截,同旁内角互补 ,即两个同旁内角的角度和为180度,则这两条 直线平行。
题目2
请判断以下哪些角是直角 ,哪些角是锐角或钝角, 并指出哪些角互为补角。
题目3
在同一平面内,如果两条 直线被第三条直线所截, 那么它们之间的交点数是 多少?
提升练习题
题目4
已知两条平行线被一条直 线所截,那么它们之间的 线段有什么特点?
题目5
在同一平面内,如果两条 直线平行,那么它们与第 三条直线的交点有什么规 律?
02

《平行线的判定定理》课件

《平行线的判定定理》课件

平行线的同旁内角互补定理
总结词
同旁内角互补是判断两直线平行的关键条件。
详细描述
当两条直线被第三条直线所截,如果同旁内角互补,则这两条直线平行。具体来 说,如果同旁内角之和等于180度,则这两条直线平行。
平行线的内错角相等定理
总结词
内错角相等是判断两直线平行的又一 重要条件。
详细描述
当两条直线被第三条直线所截,如果 内错角相等,则这两条直线平行。具 体来说,如果内错角相等,则这两条 直线平行。
平行线表示方法
用“//”表示两条直线平行。
平行线性质符号表示
同位角相等(∠1=∠2),内错角相等(∠3=∠4),同旁内角互补( ∠5+∠6=180°)。
平行线的性质
平行线的性质
同位角相等、内错角相等、同旁内角 互补。
平行线性质的应用
证明两直线平行、计算角度大小、解 决几何问题。
02
平行线的判定定理
键之一。
04
练习题与解析
基础练习题
01
基础练习题1:题目1 、2、3
02
基础练习题2:题目4 、5、6
03
基础练习题3:题目7 、8、9
进阶练习题
1 2
3
进阶练习题1
题目10、11、12
进阶练习题2
题目13、14、15
进阶练习题3
题目16、17、18
综合练习题
综合练习题1 综合练习题2 综合练习题3
题。
角的度量与计算
02
介绍角的度量单位和方法,以及如何进行角的计算。
复习与巩固
03
对本单元所学知识进行复习巩固,强化学生对平行线和相交线
知识的掌握。
THANKS

《相交线与平行线》课件

《相交线与平行线》课件
《相交线与平行线》PPT 课件
本课程将介绍相交线和平行线的定义、性质以及实际应用。通过本课程的学 习,您将对这些几何概念有更深入的了解。
相交线的定义和性质
什么是相交线
相交线是在平面上有一个 公共点的两条线段。
相交线的性质
相交线的两条直线之间会 形成一对垂直的角。
如何判断两条线是否 相交
可以通过检查线段是否有 公共点、检查线段的斜率 是否相等或使用交叉乘积 判断线段关系。
总结和回顾
相交线和平 行线的定义 和性质
如何判断两 条线是否相 交
相交线和平 行线的实际 应用
重要概念
如果两条线段的斜率相 等,它们就可能相交。
3 使用交叉乘积
通过计算线段的交叉乘 积可以判断线段之间的 关系。
相交线和平行线的实际应用
1
几何构图中的应用
平行线和相交线在绘制和构图几何图形时起到重要作用。Βιβλιοθήκη 2建筑设计中的应用
平行线和相交线在建筑设计中用于布局、平面图和立面图。
3
数学问题中的应用
平行线和相交线在解决数学问题时提供了一些有用的工具和线索。
平行线的定义和性质
什么是平行线
两条直线在平面上没有任何公 共点的线段被称为平行线。
平行线的性质
平行线之间的直线拓展无限延 伸,永远不会相交。
平行线的实际应用
平行线在几何构图、建筑设计 和数学问题中都有重要应用。
如何判断两条线是否相交
1 检查线段的公共点 2 检查线段的斜率
如果两条线段有公共点, 它们就相交。

平行线的性质和判定综合公开课课件

平行线的性质和判定综合公开课课件

参考文献与拓展阅读
《几何原本》
主要参考文献
《平行线的性质和判定》
《几何学基础》
《平行线的应用》
相关拓展阅读材料
《平行线的性质与 判定》教材
相关论文:平行线 的性质与判定研究
数学专著:平行线 理论与应用
网络资源:平行线 性质与判定的教学 视频和课件
感谢观看
汇报人:PPT
平行线的性质和判 定综合公开课课件
PPT,a click to unlimited possibilities
汇报人:PPT
添加目录标题 课件封面
课程介绍
平行线的性质
平行线的判定 综合应用
例题解析
总结与回顾
参考文献与拓 展阅读
添加章节标题
课件封面
课件标题
平行线的性质和判定综合公 开课课件
平行线的性质和判定综合公 开课教案
平行线的定义:在同一平面内,两条直线永不相交 平行线的性质:同位角相等、内错角相等、同旁内角互补 平行线的判定:同位角相等、内错角相等、同旁内角互补 平行线的性质定理的应用:解决几何问题,提高解题效率
平行线的判定方法
定义法:根据平行线 的定义进行判断
同一平面内:两条直 线在同一平面内不相 交,则它们平行
培养学生的几何思维和空间观 念
提高学生对数学的兴趣和热爱
课程内容
平行线的性质
平行线的判定
综合应用
公开课课件
教学方法
讲解与演示相结合
互动与讨论相结合
案例分析与练习相 结合
归纳总结与拓展延 伸相结合
授课时间
授课时长:45分 钟
授课时间:每周 五下午3:004:00
授课地点:学校 多媒体教室
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.如图,已知AB∥CD,OP,MN分别平分∠BOM ,∠OMD,OP,MN交于G点, 求证:MN⊥OP.
课堂小结:
• 1.两直线平行,同位角
,并且同
位角的角平分线

• 2. 两直线平行,内错角
,并且
内错角的角平分线

• 两直线平行,同旁内角角 并且同旁内角的角平分线
, 。
检测提升
谢谢
平行线性质的应用
本节课目标:
1、经历探究、分析、证明过程的书写 对“两直线平行,同位角的角平分线也 平行;内错角的角平分线也平行;同 旁内角的角平分线互相垂直”有一个深 层次的理解。 2、能够熟练的写出完整的证明过程。
1、如图所示,直线a,b被直线c 所截,且a∥b,则图中给出的八 个角有哪些数量关系。
1、如图所示,直线a,b被直线c 所截 ,当图中给出的八个角满
足什么样的数量关系时,可以 判定a∥b。
合作探究
1.如图,AB∥CD,直线EF交AB、CD于点E、 F.如果∠1= ∠ 2, ∠3= ∠4那么,EP与FQ平 行吗?为什么?
2.如图,AB∥CD,直线EF交AB、CD于点G、H.如 果GM平分∠BGF,HN平分∠CHE,那么,GM与 HN平行吗?为什么?
相关文档
最新文档