OLED简介
OLED显示技术介绍

OLED显示技术介绍OLED,即有机发光二极管(Organic Light Emitting Diode)技术,是一种集显示与发光功能于一体的新型显示技术。
相较于传统的液晶显示技术,OLED显示技术具有更高的对比度、更快的响应速度、更宽的视角范围以及更低的功耗,因此备受关注并广泛应用于各个领域。
OLED显示技术的基本原理是利用有机材料具有的电致发光性质。
有机材料通常是一种或多种有机化合物或含有有机基团的无机物。
在OLED 中,有机材料被分成多层,其中包括阴极、电子传输层、发光层和阳极。
当电流通过这些层时,电子从阴极注入发光层,在激发态的电子和空穴会再组合的过程中,产生能量释放,发出可见光。
通过控制每层材料的属性和组合方式,可以实现不同颜色的发光,形成彩色显示。
OLED显示技术相较于传统的液晶显示技术具有多个优势。
首先,OLED具有更高的对比度。
由于OLED自身发光,在黑色显示时可以实现真正的像素关闭,因此可以实现纯黑色的显示,对比度更高,显示效果更加逼真。
其次,OLED具有更快的响应速度。
由于OLED的发光原理,每个像素点的响应速度非常快,可以达到微秒级别的刷新速度,不会产生拖尾现象,极大地提高了动态显示的效果。
此外,OLED具有更宽的视角范围。
传统的液晶显示技术会有视角变色的问题,而OLED则可以在更大的视角范围内保持色彩和亮度的一致性,使得多个观察者都能够获得相同的显示效果。
最后,OLED的功耗更低。
由于OLED只有点亮的像素会消耗能量,而其他像素则完全不消耗能量,因此在黑色显示时OLED的功耗非常低,能够延长设备的续航时间。
OLED显示技术在各个领域都得到了广泛的应用。
在移动设备领域,OLED显示技术已经成为智能手机和平板电脑的主流显示技术。
OLED屏幕可以实现更薄、更轻的设计,提供更高质量的显示效果。
在电视领域,OLED显示技术也被广泛应用。
OLED电视的主要优势是提供更高的对比度和更宽的视角,使得观众可以获得更加逼真的观影体验。
OLED

分类
(一)从器件结构上进行分类 OLED,是一种有机电致发光器件,由比较特殊的有机材料构成的,按照其结构的不同可以将其划分为四种 类型,即单层器件、双层器件、三层器件以及多层器件。 (1)单层器件 单层器件也就是在器件的正、负极之间接入一层可以发光的有机层,其结构为衬底/ITO/发光层/阴极。在这 种结构中由于电子、空穴注入、传输不平衡,导致器件效率、亮度都较低,器件稳定性差。 (2)双层器件 双层器件是在单层器件的基础上,在发光层两侧加入空穴传输层(HTL)或电子传输层(ETL),克服了单层 器件载流子注入不平衡的问题,改善了器件的电压-电流特性,提高了器件的发光效率。 (3)三层器件 三层器件结构是应用最广泛的一种结构,其结构为衬底/ITO/HTL/发光层/ETL/阴极。这种结构的优点是使激 子被局限在发光层中,进而提高器件的效率。
电子产品领域中,OLED应用最为广泛的就是智能手机,其次是笔记本、显示屏、电视、平板、数码相机等 领域,由于OLED显示屏色彩更加浓艳,并且可以对色彩进行调教(不同显示模式),因此在实际应用中非常广 泛,特别是当今的曲面电视,广受群众的好评。
这里需要提一点VR技术,LCD屏观看VR设备有非常严重的拖影,但在OLED屏幕中会缓解非常多,这是因 为OLED屏是点亮光分子,而液晶是光液体流动。因此,在16年OLED屏幕正式超越了LCD屏,成为了手机界的 新宠儿。
(3)电子和空穴的再结合。当器件发光层界面处的电子和空穴达到一定数目时,电子和空穴会进行再结合并 在发光层产生激子。
(4)激子的退激发光。
显示技术
分类
优势
1、OLED显示技术依制程方式分为高分子制程及小分子制程两类,高分子制程(PLED)因不需薄膜制程,故 设备投资及生产成本均远低于TFT-LCD(类似CD—R以旋转涂布spin-coating方式涂模),较利于大尺寸显示器的 发展。但由于PLED每个颜色的衰减常数不同,因此产品多彩化不但困难,产品使用寿命也因而受到影响。小分 子有机电激发光元件虽在多彩化方面优于高分子有机电激发光元件,但设备投资及生产成本较高(因采加热蒸镀方 式蒸镀多层有机薄膜材料,为避免材料间的相互污染,故必须使用价格昂贵的多腔体的真空设备,且驱动电压大 及产出率较低。
OLED总结

OLED总结OLED(Organic Light Emitting Diode),有机电激发光体,是一种新型的显示技术,具有超薄、高亮度、高对比度、宽视角、功耗低等特点,被广泛应用于电视、手机、平板电脑等电子产品。
本文将对OLED技术进行详细总结。
首先,OLED是一种有机材料制成的电激发光体,在电场或电流作用下,有机材料会发光。
相比传统的液晶显示技术,OLED技术能够实现自发光,不需要背光源,因此OLED显示屏能够达到更高的对比度和更快的响应速度。
同时,OLED显示屏还可以实现较高的亮度,使得显示内容更加鲜艳生动。
其次,OLED显示屏具有超薄的特点。
OLED显示屏由于不需要背光源和液晶层,可以制作出非常薄的显示屏,适用于各种产品设计需求。
例如,手机的OLED显示屏可以更加轻薄,并且能够为用户提供更好的观看体验。
另外,OLED显示屏具有非常广泛的视角。
传统液晶显示屏的观看角度有限,当用户在偏离中心角度观看时,显示效果会明显下降。
而OLED显示屏则不受观看角度的限制,即使是偏离中心角度观看,也能够保持良好的显示效果,提供更广阔的视角范围。
此外,OLED技术可以实现高分辨率显示。
由于有机材料的特性,OLED显示屏可以制作得非常小,每个像素点可以非常密集地排列,从而实现高分辨率的显示效果。
例如,手机的OLED显示屏可以达到超高清的分辨率,使得显示内容更加细腻,更加清晰。
然而,OLED技术也存在一些挑战和限制。
首先,由于有机材料的组成,OLED显示屏存在着老化和亮度衰减的问题。
有机材料会随着时间的推移而逐渐降解,导致显示屏的寿命有限。
其次,OLED显示屏的制造成本较高,与传统液晶显示屏相比,价格更为昂贵。
最后,OLED显示屏在高亮度显示和长时间连续使用时,存在耗电量较大的问题。
综上所述,OLED技术是一种创新的显示技术,具有超薄、高亮度、高对比度、宽视角等特点,被广泛应用于电子产品领域。
随着技术的不断发展和成熟,OLED显示屏的寿命和制造成本将得到改善,相信在未来会有更广泛的应用和更好的发展。
OLED简介(共63张)

(3)研制彩色显示屏及相关驱动电路
(4)为了实现大面积显示,研发有源驱动的OLED显示器
第11页,共63页。
2.OLED显示(xiǎnshì)原理
第12页,共63页。
OLED属于载流子双注入型发光器件 发光机理:在外界电压驱动下,由电极注入的电子和
第17页,共63页。
C.层状阴极
由一层极薄的绝缘材料如LiF, Li2O,MgO, Al2O3等和外面一层较厚的Al组成,其电子注入性 能(xìngnéng)较纯Al电极高,可得到更高的发光效率 和更好的I-V特性曲线。
D.掺杂复合型电极
将掺杂有低功函数金属的有机层夹在阴极和有机发 光层之间,可大大改善器件性能
1) 阴极材料
为提高电子的注入效率,要求选用功函数尽可能低的材料做阴极, 功函数越低,发光亮度越高,使用寿命越长。 A.单层金属阴极 如Ag 、Al 、Li 、Mg 、Ca 、In等。
B.合金阴极
将性质活泼的低功函数金属和化学性能较稳定的高功函数金属一 起蒸发形成金属阴极、如Mg: Ag(10: 1),Li:Al (0.6%Li) 合 金电极,功函数分别为3.7eV和3.2eV。 优点:提高器件量子效率和稳定性; 能在有机膜上形成稳定坚固的金属薄膜。
(2) 小分子有机化合物,分子量为500-2000,能用真空 蒸镀方法成膜,按分子结构又分为两类: 有机小分子化合物和配合物。
第24页,共63页。
1) 有机小分子发光材料 主要(zhǔyào)为有机染料,具有化学修饰性强,选择范围广,易于提 纯,量子效率高,可产生红、绿、蓝、黄等各种颜色发射峰等优点, 但大多数有机染料在固态时存在浓度淬灭等问题,导致发射峰变宽 或红移,所以一般将它们以低浓度方式掺杂在具有某种载流子性 质的主体中,主体材料通常与ETM和HTM层采用相同的材料。掺 杂的有机染料,应满足以下条件: a. 具有高的荧光量子效率 b. 染料的吸收光谱与主体的发射光谱有好的重叠,即主体与染料能 量适配,从主体到染料能有效地能量传递; c. 红绿兰色的发射峰尽可能窄,以获得好的色纯; d. 稳定性好,能蒸发。
OLED屏简介演示

封装
对OLED屏幕进行封装,以保护其内部结构 和功能。
蒸镀、印刷等主流工艺技术
蒸镀工艺
在高真空环境下,通过加热使有机材料蒸发,并在基板上形成薄膜。这种工艺能够精确控制膜厚和组成,适用于 小尺寸高分辨率OLED屏幕的生产。
印刷工艺
采用喷墨打印、微接触印刷等技术,将有机材料直接打印在基板上。这种工艺具有成本低、适用于大面积生产的 优点,但精度和膜厚控制相对较差。
04
OLED屏的市场现状与趋势
OLED屏市场规模与增长
快速增长
近年来,OLED屏幕市场规模持续快速增 长,受益于消费电子、汽车等行业的旺 盛需求。
VS
市场份额
OLED屏幕在显示技术市场中所占份额逐 年增加,逐渐成为一种主流的显示技术。
பைடு நூலகம்
OLED屏在各个领域的应用现状
消费电子
OLED屏幕在智能手机、电视、可穿戴设备等消费电子领域得到广 泛应用,为用户提供卓越的视觉体验。
• 手机屏幕:OLED屏幕已成为高端手机的首 选屏幕,如AMOLED屏幕广泛应用于三星、 苹果等品牌手机。
• 可穿戴设备:由于OLED屏幕薄型轻便,适合用于 智能手表、健身手环等可穿戴设备。
应用领域
• 电视:OLED电视以其出色的画质、高对比度 和宽广视角,逐渐受到消费者的青睐。
02
OLED屏的分类与特点
OLED屏生产的核心技术与挑战
核心技术
包括薄膜沉积技术、图案化技术、封装技术等,这些技术决定了OLED屏幕的性能、寿命和成本。
挑战
在生产过程中,需要解决诸如膜厚控制、精度保证、良品率提高等问题。此外,OLED屏幕的材料选 择和环保性也是持续关注的焦点,如何降低生产成本而不损失性能,同时确保环保要求,是OLED屏 生产面临的重要挑战。
OLED介绍

OLED介绍OLED是有机发光二极管(Organic Light Emitting Diode)的简称,是一种利用有机小分子或聚合物材料制成的发光器件。
与传统的液晶显示屏(LCD)相比,OLED显示屏具有更广的视角,更高的对比度和更快的响应速度。
OLED的工作原理是在两个电极之间夹层有机材料层中形成发光。
在OLED中,当电流通过有机材料时,它们开始发光。
有机材料分为有机小分子和有机聚合物两种类型,这两种材料在不同的领域有着各自的应用。
OLED显示屏的优势之一是它的灵活性。
与LCD相比,OLED显示屏可以制成柔性屏幕,因为OLED材料可以在柔软的基底上制成薄膜。
这为未来更加创新和多样化的显示设备提供了更大的可能性。
OLED显示屏还具有更高的对比度。
对比度是指显示屏的亮度范围,即黑与白之间的亮度差异。
OLED显示屏在黑色和白色之间的对比度非常高,使显示图像更加鲜明和清晰。
此外,OLED显示屏的响应速度也比LCD更快。
响应速度是指屏幕上图像切换时的时间延迟。
当切换显示图像时,OLED显示屏可以更快地响应,减少了图像残影和模糊。
OLED显示屏应用非常广泛。
在智能手机、平板电脑和电视上,人们可以看到OLED显示屏的身影。
它们提供了更好的图像质量,更鲜艳的颜色和更高的动态范围。
除了消费电子产品,OLED显示屏还应用于汽车领域。
许多新款汽车配备了OLED显示屏作为仪表盘显示和娱乐系统,在夜间行驶中提供更好的可视性和安全性。
尽管OLED显示屏在许多方面优于LCD,但它仍然面临一些挑战。
首先是成本问题,OLED显示屏的制造成本相对较高,导致产品价格上升。
其次,OLED材料的使用寿命较短,会导致显示屏寿命不长。
然而,随着技术的不断进步和应用的扩大,OLED显示屏有望在未来取得更大的突破和进展。
研究人员致力于提高OLED材料的稳定性和寿命,以及降低制造成本。
随着更多的创新和发展,OLED显示屏将继续在各个领域发挥重要作用。
OLED屏简介
随着OLED技术的不断进步,大尺 寸OLED电视也逐渐进入市场,为 消费者提供了更多选择。
显示器领域
专业设计
OLED显示器具有高分辨率、精准色 彩还原和低延迟等特点,适合专业设 计领域使用。
图形工作站
OLED显示器能够满足图形工作站对于 高画质和高性能的需求。
手机领域
高端手机市场
OLED屏幕在手机市场主要用于高端机型,提供更好的显示效 果和节省电量的特性。
由于其宽视角的特性,OLED显示 屏适合在多人场合下使用,如会议 、展示等,方便大家共享信息。
适合不同环境
无论是在明亮的户外还是昏暗的室 内,OLED显示屏都能保持出色的显 示效果。
响应速度
1 2
快速响应
OLED显示屏的响应速度非常快,对于动态图像 和视频的呈现非常出色,不会出现拖影和模糊的 现象。
06
详细描述
OLED的每个像素都可以独立控制, 从而实现高对比度和宽视角,无论从 哪个角度看都能保持一致的色彩和亮 度。
详细描述
OLED的响应速度极快,适合用于动态图像和 高帧率视频的显示,能够提供流畅的视觉体验 。
02
OLED显示屏特性
色彩表现
色彩鲜艳
OLED显示屏能够呈现出非常鲜艳的 色彩,因为每个像素都可以独立发光 ,不需要依赖背光,所以色彩饱和度 更高。
OLED屏简介
汇报人: 2024-01-08
目录
• OLED技术概述 • OLED显示屏特性 • OLED屏的应用领域 • OLED屏的未来发展 • OLED屏的挑战与解决方案
01
OLED技术概述
OLED定义
总结词
有机发光二极管
详细描述
oled有机发光层结构
oled有机发光层结构
摘要:
1.OLED 简介
2.OLED 的基本结构
3.OLED 的发光材料
4.OLED 的优势与应用前景
5.中国在OLED 领域的发展
正文:
一、OLED 简介
OLED,即有机发光二极管(Organic Light-Emitting Diode),是一种采用有机材料作为发光层的显示技术。
相较于传统的LCD 显示技术,OLED 具有诸多优势,如超薄、节能、低成本和环保等,被认为是未来极具潜力的平板显示产品。
二、OLED 的基本结构
OLED 的基本结构包括阳极、阴极和有机发光层。
阳极负责注入空穴,阴极负责注入电子,当电子和空穴在有机发光层中相遇时,会产生光子,从而实现发光。
三、OLED 的发光材料
OLED 的发光材料主要包括有机磷光材料、有机荧光材料和无机磷光材料。
这些材料在电流作用下会发光,不同材料的发光颜色和效率各不相同。
四、OLED 的优势与应用前景
OLED 技术具有诸多优势,如超薄、节能、低成本和环保等,使其在平板显示领域具有广泛的应用前景。
目前,OLED 技术已成功应用于手机、电视、显示器等领域,未来还可能拓展到柔性显示、透明显示等新兴领域。
五、中国在OLED 领域的发展
我国对OLED 产业的发展给予了高度重视,认为其符合国家大力发展平板显示行业的政策导向。
目前,我国在OLED 领域取得了一定的技术突破,并有望在开发初期的新应用领域取得领先地位。
同时,中国大陆对OLED 产业的投资也在不断加大,以推动产业的快速发展。
总之,OLED 作为一种新兴的显示技术,具有广阔的应用前景。
OLED简介
3.3OLED器件发光机制
发光过程通常由4个阶段完成: (1)在外加电场作用下载流子的注入:电子和空穴分别从阴极和阳极向夹在电极之间的有机功 能薄膜注入
(2)载流子传输:注入的电子和空穴分别从电子输送层和空穴输送层向发光层迁移
(3)激子的形成和迁移:电子和空穴复合产生激子,激子在电场作用下迁移,能量传递给发光 分子,并激发电子从基态跃迁到激发态 (4)电致发光:激发态能量通过辐射跃迁产生光子
3.5 OLED全彩化技术
3.5.2 彩色滤光片法
制作方法: 将三种发光层叠在一起,使红、绿、蓝混色产生白光,或是互补色产生白光, 再使用彩色滤光片滤出三色光。
优势 发光层的制备不需要掩膜 开口率不受RGB图形的影响
技术难点 • 彩色滤光片使色彩减弱2/3,需要高 效且稳定的白色光源 • 彩色滤光片增加了成本,生产效率 降低 • 白色光谱影响色域大小
3.5 OLED全彩化技术
目前OLED全彩化方法可分成五种,分别是(a)RGB像素并置法、(b)彩色滤光片 法、(c)色转化法、(d)微共振腔调色法、(e)多层堆叠法。
3.5 OLED全彩化技术
3.5.1 RGB像素并置法
制作方法: 在蒸镀红、蓝、绿其中一种有机材料时,利用遮罩将另外两个像素遮蔽,然 后利用高精度的对位系统移动遮罩或者基板,再继续下一像素的蒸镀。 优势 色彩饱和度高 发光效率高 材料成本低 技术难点 • 掩膜的热胀冷缩影响对位系统 的精准度 • 掩膜开口阻塞及污染问题RGB 三原色发光寿命的差异 • 对位系统的精准度
制作工艺
旋涂(Spin-coat) 喷墨打印(ink-jet printing)
2.OLED基本结构
LCD 背光源与色阻结合控制发光 电压驱动,液晶控制发光强度
OLED简介
1988年C.Adachi等人首次提出了将空穴传输层、电子传输 层和发光层分开的三层结构,获得了高亮度和长寿命的蓝 光器件; 1998年,美国普林斯顿大学的Forrest小组首次提出将磷光 染料应用于有机电致发光器件,这样就突破了器件内量子 效率低于25%的限制,理论上使内量子效率达到了100%, 从而开创了有机磷光电致发光的新领域。
天津工业大学
单线态和三线态: 大多数分子含有偶数电子,在基态时,这些电子成对地存在于各个原子或分子 轨道中,成对自旋,方向相反,电子净自旋等于零:S=½+(-½)=0,其多重性 M=2S+1=1 (M 为磁量子数),因此,分子是抗(反)磁性的,其能级不受外界磁 场影响而分裂,称“单线态”;当基态分子的一个成对电子吸收光辐射后,被 激发跃迁到能量较高的轨道上,通常它的自旋方向不改变,即ÄS=0,则激发态 仍是单线态,即“单线(重)激发态”; 如果电子在跃迁过程中,还伴随着自旋方向的改变,这时便具有两个自旋不配 对的电子,电子净自旋不等于零,而等于1: S=1/2+1/2=1 其多重性: M=2S+1=3,即分子在磁场中受到影响而产生能级分裂,这种受激态称为“三线 (重)激发态”。 “三线激发态” 比 “单线激发态” 能量稍低。当激发态的分子通过振动驰豫— 内转换—振动驰豫到达第一单线激发态的最低振动能级时,第一单线激发态最 低振动能级的电子可通过发射辐射(光子)跃回到基态的不同振动能级,此过 程称为 “荧光发射”。如果荧光几率较高,则发射过程较快,需10-8秒。 第一电子三线激发态最低振动能级的分子以发射辐射(光子)的形式回到基态 的不同振动能级,此过程称为 “磷光发射”。发生过程较慢 约 10-4~10秒。
天津工业大学
高性能彩色化OLED:现代社会信息的传输速度越来越快, 人们需要一种高质量的显示画面,这就需要OLED在这方面 发展; 有源矩阵OLED显示器(AMOLED):该种器件更适合于制备 大面积显示器件,其能耗更低; 用于普通照明的OLED:据测算,OLED耗能仅相当于白炽 灯的20%,而且更环保;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)不能与发光层形成复合物
(6)良好的成膜特性和稳定性
ETM一般采用具有大的共扼平面的芳香 族化合物 如8-羟基喹啉铝(AlQ),1, 2,4一 三唑衍生物(1,2,4Triazoles,TAZ),PBD,Beq2, DPVBi等,它们同时又是好的发光材料。
(1) 红光材料 主要有:罗丹明类染料,DCM,DCT,DCJT,DCJTB, DCJTI和TPBD等 (2) 绿光材料 主要有:香豆素染料Coumarin6(Kodak公司第一个采 用),奎丫啶酮(quinacridone, QA)(先锋公司专利), 六苯并苯(Coronene),苯胺类(naphthalimide). (3) 蓝光材料 主要有:N-芳香基苯并咪唑类;1,2,4-三唑衍生物 (TAZ)(也是ETM材料);1,3-4-噁二唑的衍生物 OXD-(P-NMe2)(高亮度;1000cd/m2);双芪类 (Distyrylarylene);BPVBi(亮度可达6000Cd/m2)。
2)电子输运材料(ETM) 现在采用的器件结构中电子传输层与发光层大多是合 并的,因此专门用于电子传输的有机材料不多。 这类材料在分子结构上表现为缺电子体系,具有较强 的电子接受能力,可以形成稳定的负离子。 优秀的电子传输材料应具备如下特性: (1)较高的电子迁移率
(2)相对较高的电子亲和能力,有利于电子注入
1990年英国剑桥大学的Friend等人成功的开发出以涂布 方式将多分子应用在OLED上,即Polymer(多聚物, 聚和物) LED,亦称PLED。不但再次引发第二次研究热 潮,更确立了OLED在二十一世纪产业中所占的重要地位
OLED技术具有下列优越的使用特性
1.自发光器件,高亮度,高发光效率 2.全固态组件,抗震性好,能适应恶劣环境 3.可以做得很薄―厚度为目前液晶的1/3 4.高对比度 5.微秒级反应时间 6. 超广視角 7.低功率消耗 8.可使用溫度范围大 9.可曲挠面板
C.层状阴极 由一层极薄的绝缘材料如LiF, Li2O,MgO, Al2O3等和外面一层较厚的Al组成,其电子注入 性能较纯Al电极高,可得到更高的发光效率和更 好的I-V特性曲线。 D.掺杂复合型电极 将掺杂有低功函数金属的有机层夹在阴极和有机 发光层之间,可大大改善器件性能
2) 阳极材料 为提高空穴的注入效率,要求阳极的功 函数尽可能高。作为显示器件还要求阳 极透明,一般采用的有Au、透明导电聚 合物(如聚苯胺)和ITO导电玻璃,常 用ITO玻璃。
2) 配合物发光材料 金属配合物介于有机与无机物之间,既有有机 物的高荧光量子效率,又有无机物的高稳定性, 被视为最有应用前景的一类发光材料。 常用金属离子有;Be2+ Zn2+ Al3+ Ca3+ In3+ Tb3+ Eu3+ Gd3+等 主要配合物发光材料有:8-羟基喹啉类,10羟基苯并喹啉类,Schiff碱类,-羟基苯并噻 唑(噁唑)类和羟基黄酮类等
(2)2002-2005年: 成长阶段 这个阶段人们将能广泛接触到带有OLED的产品,包括车 载显示器,PDA、手机、DVD、数码相机、头盔用微显 示器和家电产品。产品正式走入市场,主要是进入传统 LCD、VFD等显示领域 仍以无源驱动、单色或多色显示、10英寸以下面办为主, 但有源驱动的、全彩色和10英寸以上面板也开始投入使 用。
(2)载流子迁移:注入的电子和空穴分别从电子输送 层和空穴输送层向发光层迁移 (3)载流子复合:电子和空穴复合产生激子 (4)激子迁移:激子在电场作用下迁移,能量传递给 发光分子,并激发电子从基态跃迁到激发态 (5)电致发光:激发态能量通过辐射跃迁产生光子
3.OLED分类
2、阴极隔离柱技术
为了实现无源矩阵OLED的高分辨率和彩色化, 更好地解决阴极模板分辨率低和器件成品率低等 问题,人们在研究中引入了阴极隔离柱结构。 即在器件制备中不使用金属模板,而是在蒸镀有 机薄膜和金属阴极之前,在基板上制作绝缘的间 壁,最终实现将器件的不同像素隔开,实现像素 阵列
Nhomakorabea
(3)2005年以后:OLED的成熟阶段 随着OLED产业化技术的日渐成熟,OLED将全面出击显示 器市场并拓展属于自己的应用领域。其各项技术优势将得 到充分发掘和发挥。 初步估计,除了传统领域外,OLED的各项技术将在以下4 个领域得到巨大发展: 1.3G通信终端 2.壁挂电视和桌面电脑显示器 3.军事和特殊应用 4.柔软显示器
2 载流子输送材料 1)空穴输送材料(HTM)
要求HTM有高的热稳定性,与阳极形成小的势垒,能真 空蒸镀形成无针孔薄膜。最常用的HTM均为芳香多胺类 化合物 ,主要是三苯胺衍生物。 TPD:N,N′-双(3-甲基苯基)-N,N′-二苯基-1,1′二苯基-4,4′-二胺 TPD的玻璃化温度只有60度左右,稳定性不好 NPD: N,N′-双(1-奈基)-N,N′-二苯基-1,1′-二苯 基-4,4′-二胺 NPB是目前商用的空穴传输材料
1) 有机小分子发光材料 主要为有机染料,具有化学修饰性强,选择范围广,易于 提纯,量子效率高,可产生红、绿、蓝、黄等各种颜色发 射峰等优点,但大多数有机染料在固态时存在浓度淬灭等 问题,导致发射峰变宽或红移,所以一般将它们以低浓度 方式掺杂在具有某种载流子性质的主体中,主体材料通常 与ETM和HTM层采用相同的材料。掺杂的有机染料,应满 足以下条件: a. 具有高的荧光量子效率 b. 染料的吸收光谱与主体的发射光谱有好的重叠,即主体 与染料能量适配,从主体到染料能有效地能量传递; c. 红绿兰色的发射峰尽可能窄,以获得好的色纯; d. 稳定性好,能蒸发。
在隔离柱制备中,绝缘的无机材料、有机聚合物材料和光刻 胶等材料都被广泛采用,目前采用有机绝缘材料和光刻胶的 OLED隔离柱制备工艺比较成熟。隔离柱的形状是隔离效 果关键。
倒梯形隔离柱结构
倒梯形隔离柱结构中,使用了绝缘缓冲层来解决同一像素 间的短路问题,同时使用倒立梯形的隔离柱来解决相邻像 素间的短路问题。由于倒立结构的存在,可以比较好地发 挥绝缘柱的遮蔽效果,从而有利于实现批量生产 隔离柱的作法: (1)在透明基片上旋涂第一层光敏有机绝缘材料,厚度 为0.5~5um,一般为光敏型PI、前烘后曝光,曝 光图形为网状结构或条状结构,线条的宽度由显示分辨率 即像素之间间隔决定,显影后线宽为10~50um,然 后进行后烘。 (2) 在有机绝缘材料上旋涂第二层光敏型有机绝缘材 料,膜厚为0.5~5um,一般为光刻后线条横截面能 形成上大下小倒梯形形状的光刻胶中的一种,一般为负型 光刻胶,前烘后对第二层有机绝缘体材料进行曝光,曝光 图形为直线条,显影后的线宽为5~45um
第六章 有机发光二极管显示 (OLED)
一、有机发光二极管显示简介
有机发光显示器(OLED),是以有机薄 膜作为发光体的自发光显示器件。 原理是:通过正负载流子注入有机半导体 薄膜后复合产生发光 OLED已成为当今超薄、大面积平板显示 器件研究的热门
1.有机二极管发光显示发展过程
1963年Pope发表了世界上第一篇有关OLED的文献,当 时使用数百伏电压,加在有机芳香族Anthracene(葸) 晶体上时,观察到发光现象。但由于电压过高,发光效 率低,未得到重视。 直到1987年伊士曼柯达公司的C.W. Tang及Steve Van Slyke等人发明以真空蒸镀法制成多层式结构的的OLED 器件后,研究开发才活越起来。 同年,英国剑桥大学卡文迪许实验室的Jeremy Burroughes证明高分子有机聚合物也有电致发光效应。
目前国际上OLED技术发展有以下几个重要趋势:
(1) 开发新型高效稳定得OLED有机材料,进一步提 高器件性能
(2)改善生产工艺,提高器件稳定性和成品率,以保 证产品推向市场后的竞争力
(3)研制彩色显示屏及相关驱动电路
(4)为了实现大面积显示,研发有源驱动的OLED显 示器
2.OLED显示原理
OLED属于载流子双注入型发光器件 发光机理:在外界电压驱动下,由电极注入的电 子和空穴在有机材料中复合放出能量,并将能量 传递给有机发光物质的分子,后者受到激发,从 基态跃迁到激发态,当受激分子从激发态回到基 态时辐射跃迁产生了发光现象。
发光过程通常由5个阶段完成
(1)在外加电场作用下载流子的注入:电子和空穴分 别从阴极和阳极向夹在电极之间的有机功能薄膜注入
OLED用材料主要有电极材料,载流子输送材料 和发光材料。
1电极材料 1) 阴极材料 为提高电子的注入效率,要求选用功函数尽可能低的材料 做阴极,功函数越低,发光亮度越高,使用寿命越长。 A.单层金属阴极 如Ag 、Al 、Li 、Mg 、Ca 、In等。 B.合金阴极 将性质活泼的低功函数金属和化学性能较稳定的高功函数 金属一起蒸发形成金属阴极、如Mg: Ag(10: 1),Li:Al (0.6%Li) 合金电极,功函数分别为3.7eV和3.2eV。 优点:提高器件量子效率和稳定性; 能在有机膜上形成稳定坚固的金属薄膜。
根据材料不同OLED可以分为两大类: 聚合物器件(PLED)和小分子器件 OLED按照驱动方式不同也可分为两种: 有源驱动(AM-OLED)方式和无源驱动方 式(PM-OLED) 随着OLED技术的发展,产生了很多新的分类 方法或新型器件:柔韧性OLED(Flexi ble OLED),顶部发射OLED(TO P emitting OLED),磷光OL ED(PH OLED)、微显示OLED、白 光OLED、层叠结构OLED等