TSP问题——实验报告
TSP问题求解实验报告

TSP问题求解(一)实验目的熟悉和掌握遗传算法的原理,流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。
(二)实验原理巡回旅行商问题给定一组n个城市和俩俩之间的直达距离,寻找一条闭合的旅程,使得每个城市刚好经过一次且总的旅行距离最短。
TSP问题也称为货郎担问题,是一个古老的问题。
最早可以追溯到1759年Euler提出的骑士旅行的问题。
1948年,由美国兰德公司推动,TSP成为近代组合优化领域的典型难题。
TSP是一个具有广泛的应用背景和重要理论价值的组合优化问题。
近年来,有很多解决该问题的较为有效的算法不断被推出,例如Hopfield神经网络方法,模拟退火方法以及遗传算法方法等。
TSP搜索空间随着城市数n的增加而增大,所有的旅程路线组合数为(n-1)!/2。
在如此庞大的搜索空间中寻求最优解,对于常规方法和现有的计算工具而言,存在着诸多计算困难。
借助遗传算法的搜索能力解决TSP问题,是很自然的想法。
基本遗传算法可定义为一个8元组:(SGA)=(C,E,P0,M,Φ,Г,Ψ,Τ)C ——个体的编码方法,SGA使用固定长度二进制符号串编码方法;E ——个体的适应度评价函数;P0——初始群体;M ——群体大小,一般取20—100;Ф——选择算子,SGA使用比例算子;Г——交叉算子,SGA使用单点交叉算子;Ψ——变异算子,SGA使用基本位变异算子;Т——算法终止条件,一般终止进化代数为100—500;问题的表示对于一个实际的待优化问题,首先需要将其表示为适合于遗传算法操作的形式。
用遗传算法解决TSP,一个旅程很自然的表示为n个城市的排列,但基于二进制编码的交叉和变异操作不能适用。
路径表示是表示旅程对应的基因编码的最自然,最简单的表示方法。
它在编码,解码,存储过程中相对容易理解和实现。
例如:旅程(5-1-7-8-9-4-6-2-3)可以直接表示为(5 1 7 8 9 4 6 2 3)(三)实验内容N>=8。
TSP实验报告

TSP实验报告(实验报告、研究报告)考核科⽬:算法分析与复杂性理论学⽣所在学院:计算机科学与技术学院学⽣所在学科:计算机应⽤技术姓名:学号:学⽣类别:研究⽣⼀、实验⽬的1.通过TSP算法的具体实现,加深对算法复杂分析的理解。
2.通过TSP算法的具体实现,提⾼对NP完全问题的认识。
3.通过TSP算法的具体实现,理解不确定性算法。
4.通过TSP算法的具体实现,理解不确定性算法。
⼆、实验环境实验平台:Visual C++编程语⾔:C++编程电脑配置:三、实验内容描述TSP(Travelling Salesman Problem)⼜称货郎担或巡回售货员问题,在运筹学、管理科学及⼯程实际中具有⼴泛的⽤途。
及⼯程实际中具有⼴泛的⽤途。
TSP问题是组合优化中的著名难题,⼀直受到⼈们的极⼤关注。
由于其NP难题性质,⾄今尚未完全解决。
此问题可以抽象描述为:给出⼀个n个顶点⽹络(有向或⽆向),要求找出⼀个包含所有n个顶点的具有最⼩耗费的环路。
其中,任何⼀个包含所有n个顶点的环路被称作⼀个旅⾏。
对于旅⾏商问题,顶点表⽰旅⾏商所要旅⾏的城市(包括起点)。
边上权值给出了在两个城市旅⾏所需的路程。
旅⾏表⽰当旅⾏商游览了所有城市后再回到出发点时所⾛的路线。
四、实验原理许多研究表明,应⽤蚁群优化算法求解TSP问题优于模拟退⽕法、遗传算法、神经⽹络算法、禁忌算法等多种优化⽅法。
为说明该算法,引⼈如下的标记: m表⽰蚁群中蚂蚁的数量;表⽰城市i和城市j之间的距离;表⽰t时刻位于城市i的蚂蚁数,显然应满⾜,表⽰t时刻在ij连线上的信息数量。
在算法的初始时刻,将m只蚂蚁随机地放到n座城市上,此时各路径上的信息量相等,设。
每只蚂蚁根据路径上保留的信息量独⽴地选择下⼀个城市。
在时刻t,蚂蚁k从城市i转移到城市j 的概率为其中,表⽰蚂蚁⾛下⼀步允许选择的所有城市,列表纪录了当前蚂蚁k所⾛过的城市,当所有n个城市都加⼊到中时,蚂蚁k便完成了⼀次循环,此时蚂蚁⾛所⾛过的路径便是问题的⼀个解。
实验六:遗传算法求解TSP问题实验3篇

实验六:遗传算法求解TSP问题实验3篇以下是关于遗传算法求解TSP问题的实验报告,分为三个部分,总计超过3000字。
一、实验背景与原理1.1 实验背景旅行商问题(Traveling Salesman Problem,TSP)是组合优化中的经典问题。
给定一组城市和每两个城市之间的距离,求解访问每个城市一次并返回出发城市的最短路径。
TSP 问题具有很高的研究价值,广泛应用于物流、交通运输、路径规划等领域。
1.2 遗传算法原理遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传机制的搜索算法。
它通过选择、交叉和变异操作生成新一代解,逐步优化问题的解。
遗传算法具有全局搜索能力强、适用于多种优化问题等优点。
二、实验设计与实现2.1 实验设计本实验使用遗传算法求解TSP问题,主要包括以下步骤:(1)初始化种群:随机生成一定数量的个体(路径),每个个体代表一条访问城市的路径。
(2)计算适应度:根据路径长度计算每个个体的适应度,适应度越高,路径越短。
(3)选择操作:根据适应度选择优秀的个体进入下一代。
(4)交叉操作:随机选择两个个体进行交叉,生成新的个体。
(5)变异操作:对交叉后的个体进行变异,增加解的多样性。
(6)更新种群:将新生成的个体替换掉上一代适应度较低的个体。
(7)迭代:重复步骤(2)至(6),直至满足终止条件。
2.2 实验实现本实验使用Python语言实现遗传算法求解TSP问题。
以下为实现过程中的关键代码:(1)初始化种群```pythondef initialize_population(city_num, population_size): population = []for _ in range(population_size):individual = list(range(city_num))random.shuffle(individual)population.append(individual)return population```(2)计算适应度```pythondef calculate_fitness(population, distance_matrix): fitness = []for individual in population:path_length =sum([distance_matrix[individual[i]][individual[i+1]] for i in range(len(individual) 1)])fitness.append(1 / path_length)return fitness```(3)选择操作```pythondef selection(population, fitness, population_size): selected_population = []fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]for _ in range(population_size):individual = random.choices(population, fitness_probability)[0]selected_population.append(individual)return selected_population```(4)交叉操作```pythondef crossover(parent1, parent2):index1 = random.randint(0, len(parent1) 2)index2 = random.randint(index1 + 1, len(parent1) 1)child1 = parent1[:index1] +parent2[index1:index2] + parent1[index2:]child2 = parent2[:index1] +parent1[index1:index2] + parent2[index2:]return child1, child2```(5)变异操作```pythondef mutation(individual, mutation_rate):for i in range(len(individual)):if random.random() < mutation_rate:j = random.randint(0, len(individual) 1) individual[i], individual[j] = individual[j], individual[i]return individual```(6)更新种群```pythondef update_population(parent_population, child_population, fitness):fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]new_population =random.choices(parent_population + child_population, fitness_probability, k=len(parent_population)) return new_population```(7)迭代```pythondef genetic_algorithm(city_num, population_size, crossover_rate, mutation_rate, max_iterations): distance_matrix =create_distance_matrix(city_num)population = initialize_population(city_num, population_size)for _ in range(max_iterations):fitness = calculate_fitness(population, distance_matrix)selected_population = selection(population, fitness, population_size)parent_population = []child_population = []for i in range(0, population_size, 2):parent1, parent2 = selected_population[i], selected_population[i+1]child1, child2 = crossover(parent1, parent2)child1 = mutation(child1, mutation_rate)child2 = mutation(child2, mutation_rate)parent_population.extend([parent1, parent2]) child_population.extend([child1, child2])population =update_population(parent_population, child_population, fitness)best_individual =population[fitness.index(max(fitness))]best_path_length =sum([distance_matrix[best_individual[i]][best_individual[i +1]] for i in range(len(best_individual) 1)])return best_individual, best_path_length```三、实验结果与分析3.1 实验结果本实验选取了10个城市进行测试,遗传算法参数设置如下:种群大小:50交叉率:0.8变异率:0.1最大迭代次数:100实验得到的最佳路径长度为:1953.53.2 实验分析(1)参数设置对算法性能的影响种群大小:种群大小会影响算法的搜索能力和收敛速度。
蚁群算法解决TSP问题实验报告--

智能系统实验报告一、实验题目TSP问题的蚁群算法实现二、实验目的1熟悉和掌握蚁群算法的基本概念和基本思想;2加深对蚁群算法的理解,理解和掌握蚁群算法的各个操作;3理解和掌握利用遗传算法进行问题求解的基本技能。
三、实验原理1、算法来源蚁群算法的基本原理来源于自然界蚂蚁觅食的最短路径原理,根据昆虫学家的观察,发现自然界的蚂蚁虽然视觉不发达,但它可以在没有任何提示的情况下找到从食物源到巢穴的最短路径,并且能在环境发生变化(如原有路径上有了障碍物)后,自适应地搜索新的最佳路径。
2、单个蚂蚁寻找路径正反馈:单个的蚂蚁为了避免自己迷路,它在爬行时,同时也会释放一种特殊的分泌物——信息素(Pheromone),而且它也能觉察到一定范围内的其它蚂蚁所分泌的信息素,并由此影响它自己的行为。
当一条路上的信息素越来越多(当然,随着时间的推移会逐渐减弱),后来的蚂蚁选择这条路径的概率也就越来越大,从而进一步增加了该路径的信息素浓度,这种选择过程称为蚂蚁的自催化过程。
多样性:同时为了保证蚂蚁在觅食的时候不至走进死胡同而无限循环,蚂蚁在寻找路径的过程中,需要有一定的随机性,虽然在觅食的过程中会根据信息素的浓度去觅食,但是有时候也有判断不准,环境影响等其他很多种情况,还有最终要的一点就是当前信息素浓度大的路径并不一定是最短的路径,需要不断的去修正,多样性保证了系统的创新能力。
正是这两点小心翼翼的巧妙结合才使得蚁群的智能行为涌现出来。
3、具体实现需要解决的两个首要问题(1)如何实现单个蚂蚁寻路的过程(2)如何实现信息素浓度的更新四、蚁群算法解决TSP 问题1、 相关变量的表示和计算(1)n 个城市相互之间的几何距离,i j d(2),t i j τ表示在t 时刻在城市i和j路线上残留的信息量,初始值为一个常数C (3)参数ρ表示信息量的保留度(4)在t+1时刻路径i ,j 上的信息量更新公式如下所示11,,,1,,1t t t i j i j i j mt k i ji jk τρττττ+++==+∆∆=∆∑,k 0k k i jQ L τ⎧⎫⎪⎪∆=⎨⎬⎪⎪⎩⎭第只蚂蚁经过i,j 时当不经过时 (5)i,j η表示i 和j 之间路径长度的反比与信息素量相除得到信息素浓度i,j ,1i jd η=(6)每个蚂蚁在当前节点选择可走的下一个点的时候有一个转移概率概率,信息素浓度越高,概率越大,,,s ,s,0k a i j i j k a k i i i j s allowed j allowed P ββτητη∈⎧⎫∈⎪⎪⎪⎪=⎨⎬⎪⎪⎪⎪⎩⎭∑其他(7),αβ参数用来实现对信息素浓度的调节,以实现对算法的优化。
数据结构实验报告-TSP问题

TSP问题一,实验目的熟悉图的数据结构,学会解决实际问题二,实验内容旅行商问题,即TSP问题(Travelling Salesman Problem)又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。
假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。
路径的选择目标是要求得的路径路程为所有路径之中的最小值。
三,设计与编码#include<iostream>using namespace std;const int MaxSize = 10;const int Max = 100;int Min(int arr[],int n);class MGraph{public:MGraph(char city[], int n, int e);~MGraph(){}void TSP(int v);private:char vertex[MaxSize];int arc[MaxSize][MaxSize];int vertexNum, arcNum;};int visited[MaxSize] = {0};int main(){char city[] = {'A','B','C','D','E'};MGraph MG(city, 5, 10);MG.TSP(0);return 0;}void MGraph::TSP(int v){cout << vertex[v]; visited[v] = 1;int i = 0,j = 0, s = 0;int log = 0;for(;log < vertexNum;log++){j = Min(arc[i],vertexNum);visited[j] = 1;cout << "->" << vertex[j];i = j;}}int Min(int *p,int n){int start = 0, min = p[0], k = 0;while(visited[start] == 1){start++;min = p[start];}for(;start < n;start++){if((visited[start] == 0) && (min >= p[start])){k = start;min = p[k];}}return k;}//构造函数MGraph::MGraph(char city[], int n, int e){vertexNum = n;arcNum = e;//存储顶点信息for(int i = 0; i < vertexNum; i++)vertex[i] = city[i];//初始化图的邻接矩阵for(int i = 0; i < vertexNum; i++)for(int j = 0; j < vertexNum; j++)arc[i][j] = 100;//存储图的边信息int i,j,weight;for(int k = 0; k < arcNum; k++){cout << "请输入边的两个顶点的序号及其权值:";cin >> i >> j >> weight;arc[i][j] = weight;arc[j][i] = weight;}}四,运行与测试五,总结与心得通过对实际问题的解决,巩固了课本知识,提高了编写代码的能力。
大气tsp监测实验报告

大气tsp监测实验报告1. 简介本实验旨在探究大气中总悬浮颗粒物(Total Suspended Particulate,TSP)的浓度,并通过实测数据对大气质量进行评估。
通过建立采样点位和使用合适的设备进行TSP的采样,可以对大气污染情况进行科学监测和分析。
2. 实验设计与方法2.1 选址为了全面了解所监测区域的空气质量情况,我们在城市、工业区、居民区等场所选取了不同的监测点位。
确保每个监测点位都能有效地代表其所代表的区域。
2.2 仪器与设备本实验使用了TSP采样器、空气采样泵和TSP采样头。
其中,TSP采样器能够将空气中的悬浮颗粒物收集下来,而空气采样泵则提供了充足的负压,确保样品能够被有效地吸附在采样头上。
2.3 采样方法1. 将TSP采样器安装在选定的监测点位上,保证其稳定性和通风情况。
2. 使用接通电源的空气采样泵,将采样泵连接到TSP采样器的进气口。
3. 调整空气采样泵的流量,使其达到所需的采样速率。
4. 开启采样器和采样泵,开始采样过程。
5. 采样时间约为24小时,确保足够的数据量用于分析。
6. 采样结束后,关闭采样器和采样泵,并将采样头从采样器中取出。
3. 数据处理与结果分析3.1 数据处理从所有采样点位中收集的数据被导入计算机进行处理和分析。
首先,将所得数据进行单位统一,并计算每个采样点位的TSP浓度。
然后,使用适当的统计方法计算各个点位的平均TSP浓度。
3.2 结果分析通过对所获得的数据进行统计和分析,我们得到了每个监测点位的TSP平均浓度。
通过对比这些数据,我们可以评估不同区域的大气污染程度以及其对人体健康的影响。
例如,在工业区域的监测点位,TSP浓度可能会明显高于居民区的监测点位。
这是因为工业区域通常有着工厂排放的大量颗粒物,这些颗粒物会污染大气并影响空气质量。
而居民区则相对没有这么多的工业排放源,因此其TSP浓度较低。
此外,通过实验,我们还可以比较不同季节或不同天气条件下大气中TSP的变化情况。
人工智能TSP旅行商问题实验报告

人工智能实验(一)实验报告班级姓名:学号:一实验题目图搜索与问题求解:本次实验主要用来熟悉图搜索技术在具体问题中的求解过程,下面主要以八数码问题展开,也可以以其它题目展开实验。
二实验目的1.熟悉和掌握启发式搜索的定义、估价函数和算法过程;2.理解和掌握启发式搜索过程,能够用选定的编程语言求解八数码问题,理解求解流程和搜索顺序;3.比较并分析图搜索策略的实质,通过实验理解启发式搜索的意义。
三实验要求1.自己定义启发式函数,能正确求解出从初始状态到目标状态的移动路线;2.要求界面显示初始状态、目标状态和中间搜索步骤;3.对不可达状态能进行正确识别;4.对所采用的启发式函数做出性能分析。
四数据结构struct Chess//棋盘{int cell[N][N];//数码记录数组int Value;//评估函数值Direction BelockDirec;//屏蔽方向struct Chess*Parent;//父节点};CLOSED表的动态数据结构(使用堆栈)来专门记录考查过的节点OPEN表的动态数据结构(使用堆栈)来专门登记当前待考查的节点五实验算法1.说明有解和无解如何判定:将九宫格中数字顺序排列后,形成一个包含0在内的9位数字序列,该字串可用来表示九宫格的当前状态,其中0表示空格所在位置。
当空格上下、左右移动时,易知序列的逆序值奇偶性不会发生改变。
由此可知,九宫问题的362,880种状态被分成逆序值为奇数和逆序值为偶数两部分,每一部分内任意两种状态相互可达。
在八数码问题中,有些状态之间是不可达的。
如果我们能在一开始先判断初始状态和目标状态之间是否可达,这样可以避免不可达状态之间的盲目求解。
两个状态之间是否可达可以通过两个状态逆序值的奇偶性进行判断。
我们把每个状态看作一个数列,然后计算数列的逆序值,若两个数列逆序值的奇偶性相同,则对应的两个状态是可达的,否则不可达。
(注:求逆序值不把空格算在内)。
如图2所示状态:23158467图2棋局示例它对应的数列是:23158467(不包括空格)。
遗传算法求解TSP问题报告

遗传算法求解TSP问题实验报告一、实验要求:以旅行商问题(TSP)为例做模拟进化搜索技术实验,并提交实验研究报告。
二、实验思路:bool fnCreateRandomGene(); //产生随机基因bool fnGeneAberrance(); //基因变异bool fnGeneMix(); //基因交叉产生新的个体测试并淘汰适应度低的个体bool fnEvalAll(); //测试所有基因的适应度int fnEvalOne(T &Gene); //测试某一个基因的适应度void Crossover( int nFatherA, int nFatherB);void fnDispProbability(); //显示每个个体的权值Crossover()——两染色体的交叉实现输入参数:1、nFatherA 父染色体A2、nFatherB 父染色体B3、nMode 交叉方式返回值:空注:现有交叉方式1、常规交叉方式,该方式比《现代计算方法》(邢文训等编著)p178给出的“非常规码的常规交配法”稍复杂些。
书中只随机选择一个交配位,两个后代交配位之前的基因分别继承双亲的交配位之前的基因。
本程序中,是随机选择两个不相同的交配位,后代在这两个交配位之间继承双亲在这两个交配位之间的基因如父A 1 2 3 | 4 5 6 7 | 8 9 10父B 4 7 8 | 3 2 5 9 | 1 6 10子A 8 3 2 | 4 5 6 7 | 9 1 10子B 1 4 6 | 3 2 5 9 | 7 8 102、贪心交叉方式(Greedy Crossover),具体算法可参见谢胜利,等.求解TSP问题的一种改进的遗传算法[J].计算机工程与应用,2002(8):58~245.三、实验代码:#include <fstream>#include<iostream>#include <vector>#include <algorithm>#include<math.h>#include <time.h>#include <stdlib.h>#include "def.h"#include "TSP.h"void main(){ifstream input_file;ofstream output_file;time_t time1,time2;int _GENERATION_AMOUNT;int times;int _CITY_AMOUNT=-1;int ii,j,k;std::vector<double> x;std::vector<double> y;char readfile[50];const char* writefile="tsp.txt";double tempx[10000],tempy[10000];cout<<"打开城市坐标文件:";cin>>readfile;input_file.open(readfile);if(!input_file){cout<<"打开错误!";return;}cout<<"读入城市坐标........"<<endl;while(1){if(!input_file.eof()){_CITY_AMOUNT++;input_file>>tempx[_CITY_AMOUNT]>>tempy[_CITY_AMOUNT];if(tempx[_CITY_AMOUNT]<0||tempy[_CITY_AMOUNT]<0){cout<<"文件格式有误!";return;}}elsebreak;}if( _CITY_AMOUNT==-1){cout<<"文件格式有误!";return;}input_file.close();_CITY_AMOUNT=_CITY_AMOUNT+1;x.reserve(_CITY_AMOUNT);y.reserve(_CITY_AMOUNT);lpCityDistance.reserve(_CITY_AMOUNT*_CITY_AMOUNT);for(k=0;k<_CITY_AMOUNT;k++){x[k]=tempx[k];y[k]=tempy[k];}cout<<"已存入的城市信息为:"<<endl;for(ii=0;ii<_CITY_AMOUNT;ii++)cout<<"第"<<ii+1<<"个城市"<<"("<<x[ii]<<","<<y[ii]<<")"<<endl;lpCityDistance.clear();for(k=0;k<_CITY_AMOUNT;k++){lpCityDistance[k*_CITY_AMOUNT+k]=0;for(j=k+1;j<_CITY_AMOUNT;j++){lpCityDistance[k*_CITY_AMOUNT+j]=lpCityDistance[j*_CITY_AMOUNT+k] =sqrt((x[k]-x[j])*(x[k]-x[j])+(y[k]-y[j])*(y[k]-y[j]));}}cout<<"输入进化代数:"<<endl;cin>>times;cout<<"输入种群大小:(大于城市个数小于10000)"<<endl;cin>> _GENERATION_AMOUNT;while(_GENERATION_AMOUNT>=10000||_GENERATION_AMOUNT<_CITY_AMOUNT){cout<<"种群数输入错误!请重新输入(大于城市个数小于10000)"<<endl;cin>> _GENERATION_AMOUNT;}Csga<_CONTAINER, _CONTAINER_P> CUnit(times,_GENERATION_AMOUNT,_CITY_AMOUNT); //初始化time1=time(NULL);//开始遗传算法if(!CUnit.fnCreateRandomGene()) //产生随机基因//产生随机的基因{exit(0);}//循环基因编译,杂交,淘汰过程CUnit.fnEvalAll(); //测试所有基因的适应度for ( int i = 0; i<times; ++i ){//CUnit.fnDispProbability();//显示每个个体的权值CUnit.fnGeneAberrance(); //基因变异//基因变异//CUnit.fnDispProbability();//显示每个个体的权值CUnit.fnGeneMix();//交叉产生新的个体测试并淘汰适应度低的个体//基因杂交CUnit.fnEvalAll(); //测试所有基因的适应度// 每隔_DISP_INTERV AL显示一次结果if ( (i+1)%_DISP_INTERV AL == 0 || i == 0){cout << "第" << i+1 << "代" <<endl;CUnit.fnDispProbability();CUnit.fnDispHistoryMin();}}CUnit.fnDispHistoryMin();time2=time(NULL);cout<<"\n\n计算用时为:"<<difftime(time2,time1)<<"s"<<endl;}四、实验结果:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TSP问题目录1实验目的 (1)2问题描述与分析 (1)3算法分析 (1)3.1回溯法 (1)3.2 动态规划 (1)3.3 模拟退火算法 (2)4程序设计 (2)4.1回溯法 (2)4.2动态规划算法 (3)4.3模拟退火算法 (4)5实验结果及分析 (5)6实验总结 (6)7源代码 (6)1实验目的1.使用搜索方法进行TSP问题的求解2.了解相关智能算法3.了解NP难问题的求解策略2问题描述与分析某售货员要到若干城市去推销商品,已知各城市之间的路程(或旅费)。
他要选定一条从驻地出发,经过每个城市一遍,最后回到驻地的路线,使总的路程(或旅费)最小。
分析:问题的本质是搜索问题,而且这个问题是NP完全问题,问题的复杂度指数增长,所以普通的搜索无法在有限的时间里完成搜索,尽管有各种优化的算法:启发式算法、深度优先搜索、动态规划、回溯等。
都无法改变复杂度。
实际上大多时候人们并不关心NP完全问题的最优解,只要得出一个近似的解就可以了,因此,人们发明了很多算法,例如粒子群算法、遗传算法、模拟退火算法,这一类算法被称为“智能算法”,但是,他们都无法求出最优解,仅能得到近似解,但这已经足够了。
在本次试验中,一共设计了三个算法:回溯法,动态规划,模拟退火算法。
3算法分析3.1回溯法回溯法采用深度优先方式系统地搜索问题的所有解,基本思路是:确定解空间的组织结构之后,从根结点出发,即第一个活结点和第一个扩展结点向纵深方向转移至一个新结点,这个结点成为新的活结点,并成为当前扩展结点。
如果在当前扩展结点处不能再向纵深方向转移,则当前扩展结点成为死结点。
此时,回溯到最近的活结点处,并使其成为当前扩展结点,回溯到以这种工作方式递归地在解空间中搜索,直到找到所求解空间中已经无活结点为止。
旅行商问题的解空间是一棵排列树.对于排列树的回溯搜索与生成1,2,……, n的所有排列的递归算法Perm类似,设开始时x=[ 1,2,… n ],则相应的排列树由x[ 1:n ]的所有排列构成.旅行商问题的回溯算法。
3.2 动态规划设s, s1, s2, …, sp, s是从s出发的一条路径长度最短的简单回路,假设从s到下一个城市s1已经求出,则问题转化为求从s1到s的最短路径,显然s1, s2, …, sp, s一定构成一条从s1到s的最短路径,所以TSP问题是构成最优子结构性质的,用动态规划来求解也是合理的。
推导动态规划方程假设从顶点s出发,令d(i, V’)表示从顶点i出发经过V’(是一个点的集合)中各个顶点一次且仅一次,最后回到出发点s的最短路径长度。
推导:(分情况来讨论)①当V’为空集,那么d(i, V’),表示从i不经过任何点就回到s了,如上图的城市3->城市0(0为起点城市)。
此时d(i, V’)=Cis(就是城市i 到城市s 的距离)、②如果V’不为空,那么就是对子问题的最优求解。
你必须在V’这个城市集合中,尝试每一个,并求出最优解。
d(i, V’)=min{Cik +d(k, V’-{k})}注:Cik表示你选择的城市和城市i的距离,d(k, V’-{k})是一个子问题。
综上所述,TSP问题的动态规划方程就出来了:3.3 模拟退火算法模拟退火算法是解决TSP问题的有效方法之一,其最初的思想由Metropolis在1953年提出,Kirkpatrick在1983年成功地将其应用在组合最优化问题中。
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
求解TSP的模拟退火算法模型可描述如下:解空间:解空间S是遍访每个城市恰好一次的所有路经,解可以表示为{w1,w2 ,……, wn},w1, ……, wn是1,2,……,n的一个排列,表明w1城市出发,依次经过w2, ……, wn城市,再返回w1城市。
初始解可选为(1,……, n) ; 目标函数:目标函数为访问所有城市的路径总长度; 我们要求的最优路径为目标函数为最小值时对应的路径。
新路径的产生:随机产生1和n之间的两相异数k和m,不妨假设k<m,则将原(w1,w2,…,wk,wk+1,…,wm,wm+1,…,wn 变为新路径:(w1,w2,…,wm,wk+1,…,wk,wm+1,…,wn)上述变换方法就是将k和m对应的两个城市在路径序列中交换位置,称为2-opt映射。
4程序设计4.1回溯法//基本思想:把求解最小值嵌入全排列算法中,对于每一种路径情况,计算其路径长度,然后求出最短路径。
void tsp(int i){int j;//一个全排列完成了if (i == n) {// 位于一个叶子的父节点// 通过增加两条边来完成旅行if (dist[temp_path[n-1]][temp_path[n]]!=0&&dist[temp_path[n]][1]!=0&& (cur_len+dist[temp_path[n-1]][temp_path[n]]+dist[temp_path[n]][1]<min_len||min_len ==0)) {// 找到更优的旅行路径for(j = 1; j <= n; j++)cur_path[j] = temp_path[j];min_len=cur_len+dist[temp_path[n-1]][temp_path[n]] + dist[temp_path[n]][1];} }//构造全排列的过程else {// 尝试子树for (j = i; j <= n; j++)//层中循环+层间递归,整体上是深度优先//能移动到子树x [ j ]吗?if (dist[temp_path[i-1]][temp_path[j]] !=0&&(cur_len+dist[temp_path[i-1]][temp_path[j]]<min_len||min_len == 0)) {//能搜索该子树Swap(&temp_path[i], &temp_path[j]);//第n层的一种情况cur_len += dist[temp_path[i-1]][temp_path[i]];tsp(i+1);//确定一层的某一种情况之后,马上以此情况为基础向下搜索cur_len -= dist[temp_path[i-1]][temp_path[i]];Swap(&temp_path[i], &temp_path[j]);//复原,然后再变成下一种情况}}}4.2动态规划算法基本思想:循环+递归,构造深度优先搜索,然后从后向前每次求解出局部的最短路径,最后合起来就是最短路径。
int SearchMinPath(int n){int CurrentMin = 1000; //int back=index;//int sign=0;if(index==N-1){return dist[n][0];}for(int i=1;i<N;i++){index=back;sign = 0;for(int j=0;j<back;j++){if(i==cur_path[j])sign = 1;}if(sign == 1)continue;cur_path[index++]=i;int temp = dist[n][i] + SearchMinPath(i);if(CurrentMin>temp){CurrentMin = temp;for(int m = 0;m<N-1;m++)exd_path[m]=cur_path[m];}}for(int j=0;j<N-1;j++)cur_path[j]=exd_path[j];return CurrentMin;}4.3模拟退火算法路径变换函数:void reversePath(int *path){int begin,end,len,i;begin = randi(0,n-1);end = randi(0,n-1);if(begin > end) swap(begin,end);len = end - begin + 1;for(i=0;i<len/2;i++)swap(path[begin+i],path[end-i]);}确定是否接受新的解:bool accept(int *curPath,int *exdPath){int curResult = result(curPath);int exdResult = result(exdPath);if(exdResult < curResult)return true;double probability = 0;if(t > 0.000001)probability = exp((curResult - exdResult) / t);if(probability > randf())return true;return false;}褪火过程:while(s!=2){bChange = false;for(i=0;i<L;i++){copyPath(exd_path,cur_path);reversePath(exd_path);if(accept(cur_path,exd_path)){copyPath(cur_path,exd_path);bChange = true;}}t = t * 0.9;if(bChange == false)s++;elses = 0;}5实验结果及分析输入的测试文件:上图是一个10×10的矩阵,代表任意两点之间的距离。
回溯法结果:动态规划运行结果:模拟退火运行结果:分析:以上三种方法,虽然最短长度相同,但路径不同,说明此输入情况有多条最短路径。
6实验总结通过实验基本了解TSP问题基本原理,掌握相关算法的实现!7源代码见随行附件!。