基于电能计量芯片HLW8012的计量插座方案
高精度、双通道的免校准计量芯片HLW8112

高精度、双通道的免校准计量芯片HLW8112未来几年,更多的家电产品将要步入智能化,而随着物联网的快速发展,基于数字化、物联网和大数据的智能家电将是未来的趋势。
智能家电发展主要有三个阶段,分别为联网控制阶段、局部智能阶段与生态智能阶段。
现在市面上的智能家电产品还处于联网控制阶段,比如WIFI电视、WIFI热水器等。
但部分大型品牌厂家已经开始尝试实现局部智能,比如具有PM2.5检测和用电计量功能的智能空调,具有水质检测、功率检测和滤芯寿命检测的智能净水器等。
智能家电产品升级除了满足基础功能和智能联网需求外,更重要的还有安全需求。
深圳市合力为科技推出的计量芯片HLW8112,是专为家电企业量身定做的一款产品,除了基础的用电量和功率检测外,还具有漏电检测功能,可以解决家用电器的用电安全问题,在家用电器使用过程中可以提前发现异常状态并报警,在漏电状态下可以快速切断电源,使得家电设备更加安全可靠。
下图是HLW8112的性能参数,HLW8112可以在3.3V电源下正常工作,目前市面上主流的计量芯片工作电压是5V。
它具有两路电流采样通道,当一路用于检测用电设备的漏电功能,另一路可以检测用电设备的功率大小、用电量和过载判断,并可以通过中断引脚对漏电和过载状态进行输出。
VDD IAP IAN SPIEN INT2IBP CLKI IBN VP GND VREF SDO/TXSCLK SCSN SDI/RXINT1家电产品在长期使用后,随着器件老化,会出现耗电量增加,甚至漏电,会造成安全隐患。
HLW8112在单通道基础上增加一路电流检测通道用于检测设备漏电状况。
下图是HLW8112的应用电路,A 通道用于检测负载设备的功率、电压、电流和用电量,通过UART 或SPI 接口传输数据至MCU ,通过INT1引脚对过载和过压等异常状态进行指示。
B 通道通过电流互感器对负载设备进行漏电检测,当负载设备发生漏电时,会及时判断出危险状态,通过INT2快速切断设备电源。
双通道、带漏电检测的高精度电能计量芯片HLW8112

双通道、带漏电检测的高精度电能计量芯片HLW8112物联网的英文名称为“Internet of things ”,顾名思义,就是“物物相连的网络”,它通过传感器、控制器等设备按照协议把任何物品相连接,从而实现信息交换和通讯。
据预测,未来5年,差不多所有人们能够看见的东西都将被纳入物联网,合力为科技一直专注于电“计量”领域的产品研发,此次继HLW8012和HLW8032产品之后,又推出一款新型计量芯片HLW8110/HLW8112,可以满足不同用户在细分场合的性能要求。
应用场景HLW8112适用于WIFI 插座、计量电表、LED 路灯、充电桩、智能家电和PDU 设备等领域。
Metering meter电表Charging pile充电桩PDU equipmentPDU 设备Wifi Plug智能插座LED LampLED 路灯Smart home equipment智能家电1 IAP IAN CFIBPHLW8112SSOP1623413141516IBN 5VP 6789101112HLW8112 --- 漏单检测功能、双路测量、中断输出HLW8112采用SSOP16封装,可以在3.3V 和5V 两种电源下工作,可选UART 或SPI 输出方式,最小测量电流4mA 。
HLW8112具有A 和B 两路通道,B 通道可以用作漏电检测通道,当漏电时,可以通过中断输出口进行快速响应。
HLW80122014.01HLW80322016.12HLW81102018.2•SOP8封装•工作电压:5V •单路测量通道•内置振荡器•通讯方式:高频脉冲•最小测量电流:30mA•SOP8封装•工作电压:5V •单路测量通道•内置振荡器•通讯方式:UART •最小测量电流:30mA•SOP8封装•工作电压:3.3V/5.V •单路测量通道•内置振荡器•通讯方式:UART,速率可调•过零检测•过载检测•最小测量电流:4mAHLW81122018.2•SOP8封装•工作电压:3.3V/5.V •双路测量通道•内置振荡器•通讯方式:UART/SPI •过零检测,中断输出•过载检测,中断输出•漏电检测,中断输出•最小测量电流:4mAHLW8112典型原理图上图是HLW8112的应用电路,A通道用于检测负载设备的功率、电压、电流和用电量,通过UART或SPI接口传输数据至MCU,通过INT1引脚对过载和过压等异常状态进行指示。
功率计量芯片HLW8012

SEL 是输入端口,CF、CF1 输出的脉冲占空比为 50%。
REV 1.1
5/9
HLW8012
2.6 极限额定值
数字电源 模拟电源 VDD to GND V1P, V1N, V2P 模拟输入电压 数字输入电压 数字输出电压 工作环境温度 存储温度
参数
符号 VDD VDD
引脚序号 1 2,3 4 5 6 7,
引脚名称 VDD V1P,V1N V2P GND CF CF1
8
SEL
表1 HLW8012 引脚说明 输入/输出 芯片电源 芯片电源
说明
输入 输入 芯片地
电流差分信号输入端,最大差分输入信号为±43.75mV 电压信号正输入端。最大输入信号±700mV 芯片地
输出 输出
数显表等。
1.2 芯片结构描述
HLW8012 的功能框图如图 1 所示
VDD
Internal Clock
Power On Reset
V1P V1N
PGA
V2P
PGA
1k
GND
ADC ADC
Sigma_I Sigma_V
Active Power I_rms V_rms
calculation
Reference Voltage
1.1 芯片主要特性功能............................................................................................................. 2 1.2 芯片结构描述..................................................................................................................... 2 1.3 芯片引脚说明..................................................................................................................... 3 2 芯片特性说明................................................................................................................................. 4 2.1 推荐工作条件..................................................................................................................... 4 2.2 模拟特性............................................................................................................................. 4 2.3 内置参考电压..................................................................................................................... 5 2.4 数字特性............................................................................................................................. 5 2.5 开关特性............................................................................................................................. 5 2.6 极限额定值......................................................................................................................... 6 3 芯片应用......................................................................................................................................... 7 3.1 HLW8012 典型应用 ............................................................................................................ 7 3.2 CF、CF1 的频率.................................................................................................................. 7 3.3 芯片的启动阈值与潜动预防............................................................................................. 8 3.4 内置振荡器......................................................................................................................... 8 3.5 内置基准源......................................................................................................................... 8 4 HLW8012 封装 ................................................................................................................................ 9
HLW8032计量芯片的双路电能测量与控制

H L W 8032计量芯片的双路电能测量与控制*王大珅1,贾敏瑞2(1.天津医科大学生物医学工程与技术学院,天津300070;2.天津工业大学信息化中心)*基金项目:天津市教委社会科学重大项目(2017J W Z D 28)㊂摘要:针对现今高校集体宿舍的用电特点,研究了基于H L W 8032计量芯片的双路电能测量与控制系统,对集体宿舍中空调和其他负载分别进行电能监测和管理㊂本系统具有测量精度高㊁通信电路简单㊁稳定性强等优点,可以实现现代化用电管理,保障集体宿舍用电安全㊂关键词:H L W 8032;电能采集;双路测量中图分类号:T P 31 文献标识码:AR e s e a r c h o n D o u b l e -c h a n n e l E l e c t r i c E n e r g y Me a s u r e m e n t a n d C o n t r o l B a s e d o n H L W 8032W a n g Da s h e n 1,J i a M i n r u i 2(1.B i o m e d i c a l E n g i n e e r i n g a n d T e c h n o l o g y ,T i a n j i n M e d i c a l U n i v e r s i t y C o l l e g e ,T i a n ji n 300070,C h i n a ;2.I n f o r m a t i o n C e n t e r ,T i a n j i n P o l y t e c h n i c U n i v e r s i t y)A b s t r a c t :A c c o r d i n g t o t h e c u r r e n t e l e c t r i c i t y c h a r a c t e r i s t i c s o f c o l l e g e d o r m i t o r i e s ,a d o u b l e c h a n n e l e l e c t r i c e n e r g y me a s u r e m e n t a n d c o n t r o l s y s t e m b a s e d o n t h e H L W 8032i s d e s i g n e d .T h e s y s t e m c a n m o n i t o r a n d m a n a g e t h e e l e c t r i c e n e r g y of t h e a i r c o n d i t i o n e r a n d o t h -e r l o a d s i n t h e d o r m i t o r y .T h e s y s t e m h a s t h e a d v a n t ag e s o fhi g h m e a s u r e m e n t a c c u r a c y ,s i m p l e c o mm u n i c a t i o n c i r c u i t ,a n d s t r o n g s t a b i l -i t y .I t c a n r e a l i z e m o d e r n p o w e r m a n a g e m e n t a n d e n s u r e t h e s a f e t y of p o w e r u s e i n d o r m i t o r i e s .K e yw o r d s :H L W 8032;e l e c t r i c e n e r g y a c q u i s i t i o n ;d o u b l e -c h a n n e l m e a s u r e m e n t 0 引 言随着社会发展和生活水平的提高,高校住宿条件不断改善,许多高校为学生在宿舍内安装了空调,高校集体宿舍的用电需求大幅增加㊂在集体宿舍用电管理中,保障用电安全是重中之重,现代化的管理方式可以有效提高用电管理的工作效率㊂学生在宿舍中使用电热壶㊁电吹风㊁电磁炉等宿舍违禁电器容易引发火灾,危害学生的人身安全,所以在高校统一配备的大功率电器(如空调等)正常运转的情况下保障用电的安全成为用电管理的重点和难点㊂基于H L W 8032功率计量芯片的双路电能测量系统针对现代高校宿舍的用电特点,实现了集体宿舍智能化用电管理,保障了学生的用电安全㊂1 总体设计结合现在高校集体宿舍的用电特点,本系统以实现双路信号独立采集和控制为目的,将每间宿舍内的空调和其他负载设计为独立线路分别进行电能管理和监测㊂总体图1 总体框架设计图设计框架如图1所示㊂电能测量和控制系统由主控制模块㊁电能计量模块㊁智能断电模块㊁屏幕显示模块等组成,并可根据实际需要扩展其他功能模块,以实现整个公寓中各宿舍的电量信息采集㊁自动识别违禁电器并断电保护以及特定时间段功率控制等用电安全管理功能㊂系统显示屏幕显示各路负载的功率㊁电压㊁电流㊁使用电能总量,方便查看宿舍内各路负载电能使用情况,有助于用电管理和用户查询㊂2 硬件设计系统使用电能计量芯片H L W 8032进行电能采集,H L W 8032芯片通过内部集成的模/数转换器将电流值和电压值模拟量转换为数字量输出,通过光电耦合电路隔离后与M C U 进行通信㊂M C U 通过公式计算出电压有效值㊁电流有效值和有功功率值的大小㊂主控制模块选用宏晶科技有限公司生产的T C 8A 8K 64S 4A 12,该单片机无需外部晶振和外部复位,拥有12位15通道高速A D C ,内部有22个中断源,4级中断优先级,具有存储单元㊁时钟电路㊁硬件复位电路㊁数/模转换电路等硬件资源,其电路结构简单㊁易开发㊁生产成本低㊂该芯片提供4路U A R T 串行接口,可获得串行通信接口,与显示屏进行通信㊂T C 8A 8K 64S 4A 12对采集的电能数据进行处理,G P I O 口输出不同的电平控制继电器的吸合来控制电路切与闭合,判断控制各路负载的电路通断㊂显示屏幕通过R S 232串口与主控制模块T C 8A 8K 64S 4A 12通信,读取电能表数据并显示㊂基于H L W 8032的双路电能测量与控制系统连接图如图2所示㊂图2 系统连接图2.1 电能计量模块系统电能计量模块使用高精度的电能计量芯片H L W 8032,该芯片精度可达2%,具有免校准功能,能够测量线电压和电流,采集负载电路参数,并计算有功功率㊂该芯片内部集成了两个模/数转换器和一个高精度的电能计量内核,提供一个U A R T 接口,采用异步串行通信方式,用两个单向引脚进行数据通信㊂电流信号通过锰铜电阻采样后接入到H L W 8032,电压信号通过电阻网络后输入到H L W 8032㊂H L W 8032芯片I P 和I N 引脚与采样电阻相连,将获取的电流信号通过芯片内部的A D C 转换为M C U 可读取的电流值㊂P F ㊁T X引脚直接与M C U 相连,M C U 读取采集到的设备信息,通过公式计算出电压有效值㊁电流有效值和有功功率值的大小㊂电能计量模块原理图如图3所示㊂图3 电能计量模块原理图2.2 智能断电模块为了保障用电安全,学校往往规定电热壶㊁电吹风㊁电饭锅等电器为宿舍禁用电器㊂对于使用空调的宿舍,需要将空调电路负载和其他电器负载进行区分识别恶性负载㊂这些电器类似于纯抗阻负载,可用功率因数法进行识别㊂当纯抗阻负载工作时,功率因数约等于1[2]㊂对于类似纯抗阻负载,根据功率因数可对危险电器进行判别㊂空调等大功率电器电路可以通过设置电路的最大功率㊁最大电流来进行恶性负载检测㊂当功率㊁电流超过设置值时,对电路进行断电处理㊂当发现违规用电现象后,应立即进行断电处理进行保护㊂继电器是具有隔离功能的自动开关元件,依据M C U 的G P I O 口输出电平控制继电器的吸合来图4 继电器控制电路图控制电路㊂继电器控制电路如图4所示,M C U 输出低电平时,三极管Q 1导通,继电器R L 1触点吸合;M C U 输出为高电平时,三极管Q 1断开,继电器R L 1断电断开,实现对电路的控制和保护㊂2.3 隔离通信模块H L W 8032提供U A R T 接口,实现与M C U 的数据通信㊂T X 引脚从H L W 8032发送数据,R X 引脚从M C U 接收数据㊂由于电能计量芯片外接220V 电源,系统使用光图5 光电耦合隔离电路图电耦合电路将HW L 8032输出进行强弱电隔离,实现隔离通信,电路原理图如图5所示㊂光耦隔离器实现信号单向传输,将M C U 与外界信号进行数字化电气隔离,可以提高系统的可靠性㊁稳定性,加强抗干扰能力[3]㊂3 软件设计3.1 系统软件设计系统开启后,各端口初始化,采集宿舍空调线路和其他负载线路的电量数据,电能采集模块将采集到的电流和电压数据传送到主控制模块,进行数据分析处理,并通过公式计算出电压㊁电流和功率值㊂根据功率因数判断是否存在安全隐患或使用违规电器㊂若功率值接近于1,继电器断开,电路断开;否则,将电量数据信息进行传送,在屏幕显示㊂系统程序设计流程图如图6所示㊂3.2 电量采集模块软件设计H L W 8032提供一个U A R T 接口,T X 引脚用于从H L W 8032发送数据,数据以低位(L S B )优先发送,R X引图6 系统程序设计流程图脚用于接收来自微控制器的数据,可与外部M C U 进行数据通信[4]㊂主控制M C U 串口R X 引脚与H L W 8032的T X 引脚相连读取采集到的信息,通过计算得到电路的电流值㊂电能计量模块连接示意图如图7所示㊂电量数据采集测量中断服务程序流程图如图8所示㊂图7电能采集模块连接示意图图8 电量数据采集测量中断服务程序流程图H L W 8032每发送一次完整数据为24字节,从寄存器1(S t a t e R E G )开始发送,到寄存器11(C h e c k S u m R E G )结束,一组数据共11个寄存器,24字节数据㊂H L W 8032的U A R T 接口以4800b ps 的固定频率工作,发送数据的间隔时间为50m s [4]㊂M C U 通过串口读取到H L W 8032的寄存器数据后,根据式(1)~式(3)可得出电压㊁电流和功率值㊂有效电压=电压参数寄存器电压寄存器ˑ电压系数ˑ1000(1)有效电流=电压参数寄存器电压寄存器ˑ电流系数ˑ0.001(2)有功功率=电压参数寄存器电压寄存器ˑ电流系数ˑ电压系数(3)地址,只有在需要时才会将函数拷贝到内存㊂因此,使用期间发现问题和不足时,只需要用新的动态库覆盖旧的动态库即可,不需要复杂的操作,方便后期的移植㊁更新和维护㊂4 测试结果使用上文提出的方法在系统内进程数量正常时进行测试,根据后台打印信息来查看应用程序所得到的温度值,结果如图4所示㊂图4 测试结果此次测试在C P U 负载50%左右的情况下,每3秒采集一次温度㊂由结果可以看出,在读数发生错误时,会将上一次读到的温度打印出来,交给应用程序,解决温度的跳变问题,使得用户的使用体验更佳㊂5 结 语此方法可以有效解决偶尔出现的温度跳变问题,在C P U 负载不超过70%的情况下可以保证98%的正确率,并且采用动态库的方式便于发现B U G 之后的修改维护问题,减少应用程序的代码冗余㊂但是仍然存在一些问题,在C P U 繁忙时,很难保证读到的基准值是正确的,有可能会导致读到的两个基准值都是错误的,从而使得后面所上报温度全部为错㊂对于此问题,打算在程序中加入自动纠错处理,在错误数超过一定情况下重新进行初始化来调整基准值,保证基准值是正确的,并且可以对程序进行部分优化,使得在读温度时减少C P U 的占用率以提高整体工作效率[3]㊂参考文献[1]王腾飞.对计算机嵌入式实时操作系统的研究及分析[J ].科技创新与应用,2020(36):6667.[2]李欣,白兴武.基于L i n u x 的嵌入式实时操作系统任务调度算法优化[J ].自动化与仪器仪表,2020(9):4851.[3]王博文.单总线通信技术在手持报警仪调校中的应用[J ].计算机与现代化,2019(8):5762.张旭伟(工程师),主要从事系统测试方面的研究㊂通信作者:张旭伟,w h y w h yk i s s s @s i n a .c o m ㊂(责任编辑:薛士然 收稿日期:2021-01-25)4 系统连接实物图基于H L W 8032的双路电能测量与控制系统连接实物图如图9所示㊂图9 系统连接实物图5 结 语本设计针对安装空调的高校集体宿舍进行独立双路电能采集和控制,可对宿舍中的空调专线控制,或对特定时段进行功率控制,可灵活管理用电㊂选用S T C 8A 8K 64S 4A 12芯片和H L W 8032电能计量芯片,具有测量精度高㊁稳定性强和M C U 通信电路简单等特点,可以保障用电安全,智能节能用电,提高管理效率㊂参考文献[1]江苏国芯科技有限公司.S T C 8系列单片机技术参考手册[E B /O L ].[202102].h t t p ://w w w.s t c m c u .c o m.[2]赵晓阳.学生公寓防限电装置及违规负载的识别[J ].科技创新与应用,2015(8):3940.[3]陆泉森,李军,鲍鸿.光耦隔离技术在智能测控系统中的应用[J ].机械与电子,2008(2):5356.[4]合力为科技.H L W 8032用户手册,2019.王大珅(硕士研究生),主要研究方向为通信工程等㊂通信作者:王大珅,w d s @t m u .e d u .c n㊂(责任编辑:薛士然 收修改稿日期:2021-02-03)。
计量芯片HLW8112典型应用设计

计量芯片HLW8112典型应用设计1芯片介绍1.1芯片描述HLW8112是一款高精度的电能计量IC,它采用CMOS制造工艺,主要用于单相应用。
它能够测量线电压和电流,并能计算有功功率,视在功率和功率因素。
该器件内部集成了三个∑-Δ型ADC和一个高精度的电能计量内核。
第二路通道可同时测量零线电流,支持窃电检测和漏电检测。
各输入通道都支持灵活的PGA 设置,因此HLW8112适合与不同类型的传感器使用,如电流互感器(CT)和低阻值分流器。
HLW8112可以通过多种通讯接口访问片内寄存器,包括SPI和UART。
HLW8112包含两个可配置的脉冲输出引脚,可以通过INT1和INT2引脚获取过流、过压、过零和漏电检测等功能。
HLW8112电能计量IC采用3.3V或5.0V电源供电,内置振荡器,采用16脚SSOP 封装。
1.2特性描述✓免校准功能✓宽工作电压,支持3.3V和5.0V电源供电✓测量有功功率、视在功率、电压和电流有效值✓在5000:1的动态范围内,有功电能的测量误差<0.1%✓在3000:1的动态范围内,有功功率的测量误差<0.1%✓在1000:1的动态范围内,有效电压的测量误差<0.1%✓在1000:1的动态范围内,有效电流的测量误差<0.1%✓提供有功功率过载信号指示✓提供电压信号的过零检测、过压指示和欠压指示✓提供电流信号的过零检测,过流指示✓UART/SPI通讯方式✓SSOP16封装1.3应用领域✓智能家电设备✓漏电检测设备✓计量电表✓计量插座✓ WIFI 插座 ✓ 充电桩 ✓ PDU 设备✓ LED 照明 ✓ 交通路灯1.4 芯片管脚VDD IAP IAN SPIEN INT2IBP CLKI IBN VP GND VREF SDO/TXSCLK SCSN SDI/RXINT12 硬件设计2.1 原理图设计HLW8112在HLW8110单通道基础上增加一路电流检测通道用于检测设备漏电状况。
2-可预警的智慧安全计量芯片HLW8112

可预警的智慧安全计量芯片HLW8112安全知识行业规定:安全电压为不高于36V,持续接触安全电压为24V,安全电流为10mA。
电击对人体的危害程度,主要取决于通过人体电流的大小和通电时间长短。
电流强度越大,致命危险越大;持续时间越长,死亡的可能性越大。
能引起人感觉到的最小电流值称为感知电流,交流为1mA,直流为5mA;人触电后能自己摆脱的最大电流称为摆脱电流,交流为10mA,直流为50mA;在较短的时间内危及生命的电流称为致命电流,致命电流为50mA。
在有防止触电保护装置的情况下,人体允许通过的电流一般为30mA。
人体对电流的反映:8~10mA 手摆脱电极已感到困难,有剧痛感(手指关节)20~25mA 手迅速麻痹,不能自动摆脱电极,呼吸困难50~80mA 呼吸困难,心房开始震颤90~100mA 呼吸麻痹,三秒钟后心脏开始麻痹,停止跳动现有产品现有漏电保护器漏电动作电流为30ma,漏电动作时间小于等于0.1S,所以漏电器是完全可以起到保护作用的。
这个参数是确保人发生触电事故后,身体不会产生病理和生理反应。
漏电保护器按不同方式分类来满足使用的选型。
如按动作方式可分为电压动作型和电流动作型;按动作机构分,有开关式和继电器式;按极数和线数分,有单极二线、二极、二极三线等等。
下面按动作灵敏度和按动作时间分类:按动作灵敏度可分为:1、高灵敏度:漏电动作电流在30mA以下;2、中灵敏度:30~1000mA;3、低灵敏度:1000mA以上。
按动作时间可分为:1、快速型:漏电动作时间小于0.1s;2、延时型:动作时间大于0.1s,在0.1-2s之间;3、反时限型:随漏电电流的增加,漏电动作时间减小。
当额定漏电动作电流时,动作时间为0.2s~1s;1.4倍动作电流时为0.1s-0.5s;4.4倍动作电流时为小于0.05s。
所以为了达到安全用电的标准,实际产品应该优于上述条件,漏电电流的检测反应时间应小于50mS ,甚至可以达到30mS 以内, 从以上的条件可以看出,漏电保护器至少需要能够分辨出30mA 的电流,反应时间需要达到50mS ,在设计时,一般需要留有溢值,则产品的内部分辨率至少可以分辨出10-15mA 电流,反应时间需要提高到10-30mS 。
自带串口,免校准的小封装功率计量芯片HLW8032(修订版)

自带串口,免校准的小封装功率计量芯片HLW8032关键词功率计量、电能计量芯片、物联网、HLW8032、HLW8012摘要随着物联网的高速发展,物联网产品由相对单一的智能插座产品过渡到智能家电产品上,使得智能化的小家电产品开始丰富起来,于是智能家居厂商和小家电厂家将传统家电产品升级成智能家电,而传统家电产品又绕不同开对“电”的应用,从而对电能计量的应用有了新的要求,深圳市合力为科技有限公司正是由于认识到家电行业的转变,在产品上做了新革新,推出的一款适用于物联网智能家居领域的电能计量IC - HLW8032,HLW8032是在HLW8012的基础上进行迭代的新版本,在硬件上可以实现PIN TO PIN的兼容。
HLW8032不止适用于小家电产品,还适用于智能插座、智能LED照明和充电桩等领域。
HLW8032简介HLW8032是一款高精度的单相电能计量IC,它能够测量线电压和电流,并能计算有功电能、有功功率,视在功率和功率因素。
HLW8032采用UART口通讯方式,波特率为4800bps,工作电压为5V且内置了3.579M晶振,工作电流只有4mA,采用SOP8封装。
HLW8032的芯片管脚图如下:IP IN PF TX图 1 HLW8032芯片管脚图下表为HLW8032的引脚描述:表 1 引脚功能描述HLW8032的PIN6为TX输出引脚,接入MCU的RX引脚,TX脚每50ms发送一组24byte的数据。
HLW8032的PF管脚是功率脉冲管脚,输出有功功率脉冲。
下表是HLW8032和上一代产品HLW8012的功能对比表,从表中可以看出两者的主要功能别在于通讯方式的不同。
表 2 性能对比表HLW8032应用下图是HLW8012的典型应用电路,从图中可以看出,外围电路只有简单的几个元器件,实现了电压通道和电流通道的采样。
HLW8032除了在与MCU的接口与HLW8012有不同之处,其余外围应用电路和HLW8012完全一致,所以外围应用电路上也与HLW8012完全兼容。
基于电能计量芯片HLW8012的计量插座方案

基于电能计量芯片HLW8012计量插座方案【摘要】计量插座是一种插座转换装置,可以显示电量、功率、电压、电流、时钟等参数,是针对于家庭电器节能要求而设计。
本文主要讲述计量插座的主要功能、硬件原理图等。
该计量插座可以对单相交流用电的电器进行电量、功率、电压及电流等参数的测量。
此方案采用HLW7031作为控制MCU,以专用电能计量芯片HLW8012为电量采集器件,HT1621为LCD驱动芯片,DS1302作为时钟记录芯片。
【关键词】计量插座,电能计量,功率计量,节能插座,智能插座,HLW8012,智能家电【正文】一、计量插座原理计量插座需要测量功率、电量、电流和电压等参数,同时计量插座产品内部空间小,本次设计使用电能计量芯片HLW8012作为各个电参数的测量器件。
因为HLW8012可以测量功率、电量、电流和电压值,内置晶振、参考源,SOP8封装,外围电路简单,在满足性能要求的同时,可以做到体积更小。
●HLW8012主要特性(1)高频脉冲CF,指示有功功率,在1000:1范围内达到±0.3%的精度(2)高频脉冲CF1,指示电流或电压有效值,使用SEL选择,在500:1范围内达到±0.5%的精度(3)内置晶振、2.43V电压参考源及电源监控电路(4)5V单电源供电,工作电流小于3mA●HLW8012输入输出VIPSELCFCF1输出电流/电压值/电压值图1 HLW8012芯片引脚图(1)V1P,V1N输入电流采样信号:峰峰值V P-P:±43.75mV,最大有效值:±30.9mV。
(2)V2P输入电压采样信号:峰峰值V P-P:±700mV,最大有效值:±495mV。
(3)高频脉冲CF(PIN6):指示功率,计算电能;输出占空比为1:1的方波。
(4)高频脉冲CF1(PIN7):指示电流或电压有效值,SEL选择;输出占空比为1:1的方波。
计量插座实际上是一个插座转接设置,电器通过计量插座之后再连接到电网。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于电能计量芯片HLW8012计量插座方案
【摘要】
计量插座是一种插座转换装置,可以显示电量、功率、电压、电流、时钟等参数,是针对于家庭电器节能要求而设计。
本文主要讲述计量插座的主要功能、硬件原理图等。
该计量插座可以对单相交流用电的电器进行电量、功率、电压及电流等参数的测量。
此方案采用HLW7031作为控制MCU,以专用电能计量芯片HLW8012为电量采集器件,HT1621为LCD驱动芯片,DS1302作为时钟记录芯片。
【关键词】
计量插座,电能计量,功率计量,节能插座,智能插座,HLW8012,智能家电
【正文】
一、计量插座原理
计量插座需要测量功率、电量、电流和电压等参数,同时计量插座产品内部空间小,本次设计使用电能计量芯片HLW8012作为各个电参数的测量器件。
因为HLW8012可以测量功率、电量、电流和电压值,内置晶振、参考源,SOP8封装,外围电路简单,在满足性能要求的同时,可以做到体积更小。
●HLW8012主要特性
(1)高频脉冲CF,指示有功功率,在1000:1范围内达到±0.3%的精度
(2)高频脉冲CF1,指示电流或电压有效值,使用SEL选择,在500:1范围内达到±0.5%的精度(3)内置晶振、2.43V电压参考源及电源监控电路
(4)5V单电源供电,工作电流小于3mA
●HLW8012输入输出
VIP
SEL
CF
CF1输出
电流/电压值
/电压值
图1 HLW8012芯片引脚图
(1)V1P,V1N输入电流采样信号:峰峰值V P-P:±43.75mV,最大有效值:±30.9mV。
(2)V2P输入电压采样信号:峰峰值V P-P:±700mV,最大有效值:±495mV。
(3)高频脉冲CF(PIN6):指示功率,计算电能;输出占空比为1:1的方波。
(4)高频脉冲CF1(PIN7):指示电流或电压有效值,SEL选择;输出占空比为1:1的方波。
计量插座实际上是一个插座转接设置,电器通过计量插座之后再连接到电网。
MCU从电能计量模块获取用电器的电量、功率、电压、电流等参数,从时钟模块获取当前时钟,MCU将这些数据通过LCD驱动芯片显示在LCD屏上。
MCU可以打开或关闭插座孔的电源,通过按键直接操作或设置定时自动操作,电源的打开与关闭是通过MCU控制继电器的闭合与切断实现。
时钟设置是通过按键进行设置,可以设置日期、小时、分、秒,自动设置星期。
可以设置一星期内哪几天定时打开或关闭插座孔的电源,实现无人自动控制插座孔的电源。
一般在出厂前会设置好时间。
计量插座结构框图如图2所示。
图2 计量插座方案结构框图
二、计量插座硬件设计
计量插座硬件设计相对应于结构框图,有6部分模块电路:电源管理电路、电能计量电路、显示模块电路、继电器控制电路、时钟电路及按键。
所有电能计量测量,电压、电流通道的采样方式有2种:互感器采样方式(隔离采样)、电阻采样方式(非隔离采样)。
互感器采样方式成本高,本设计使用电阻采样方式。
1、电源管理电路
使用LNK304设计的AC-DC非隔离电源,L与N分别是交流火线与零线,以零线作为地线。
此电路无需变压器,稳压5V,可以提供150mA左右的电流,能够保证在AC85V~265V的交流范围内,实现稳定的电压输出,纹波也很小,在50mV左右。
此电源为所有模块提供工作电压。
图3 AC-DC 非隔离电源
2、电能计量电路
电能计量电路使用HLW8012实现,功率、电压、电流等数据通过CF 、CF1引脚以脉冲的方式输出。
CF 脚输出的脉冲频率大小即表示有功功率值,CF 输出的脉冲个数表示的是用电量的信息。
当SEL 为高电平时,CF1输出的脉冲频率表示电压有效值,当SEL 为低电平时,CF1输出的是电流有效值。
HLW8012集成内置振荡器、参考电源,外围简单,包括电流、电压的采样。
图4 电能计量电路
电流信号是通过锰铜电阻(R29,2m Ω)对负载的电流进行采样,信号量小于30.9mV ;电压信号是通过电阻网络(R21, R22, R23, R24, R26)对交流电压进行分压采样,信号量小于495mV 。
锰铜电阻的接法:一端与GND 连接,另一端与负载连接。
MCU 使用HLW7031,CF 、CF1引脚连接HLW7031外部中断引脚,SEL 引脚连接普通IO 口。
CF 引脚用于测量功率,电量值,
CF1引脚配合SEL 引脚用于测量电压、电流有效值。
MCU 通过测量CF 、CF1引脚的脉冲周期,计算功率、电压、电流、电量等参数。
图5 MCU 与电能计量芯片连接
3、显示模块电路
显示模块使用HT1621作为显示驱动,HT1621可以驱动4*32段,工作电压为5V ,可以满足不同屏的要求,同时HT1621可以驱动无源蜂鸣器,用于提示按键或者警告。
MCU 将需要显示的数据发送到HT1621完成显示。
图6 显示驱动电路
4、时钟模块电路
时钟模块选用实时时钟芯片DS1302,一种高性能、低功耗、带RAM 的电路,它可以对年、月、日、周日、时、分、秒进行计时,具有闰年补偿功能。
采用三线接口与CPU 进行同步通信。
使用5V 供电,
DS1302
的VCC1端接3V 锂电池,在断电时也能正确记录时间。
图7 实时时钟电路
5、继电器控制电路
为了方便电源电路的设计,选用5V 的继电器,控制负载的火线闭合与关断。
继电器的闭合与关断通过MCU 控制三极管来实现。
二极管D4防止继电器反向电动势对三极管Q1的损坏。
图8 继电器控制电路
6、按键电路
按键电路部分一共有3个按键:开/关键,向上,向下键。
开/关键可以控制继电器的闭合与关断;向上,向下键主要用于设置日期、小时、分、秒,设置定时时间。
图9 按键电路
7、PCB Layout 注意事项
(1)芯片电源引脚处的去耦电容尽量靠近芯片的引脚。
(2)电压通道电阻分压网络,应呈阶梯式分布,逐渐降压,从输入端高压直至计量芯片的取样电压,注意电阻之间的爬电距离。
(3)电流采样电阻的地线应和其它地线分开布线,以最短路径走线到主板参考地线输入端(如零线),减少对采样信号的干扰。
(
4)采样信号线走线要平行且靠近,尽量缩短布线,减小对采样信号的干扰。
(5)芯片的地线要能够快速回到电源输入端压敏电阻的地上,减小地线对计量芯片的干扰。
(6)电源走线不要走成环形,环形的电源走线容易受外界的电磁场干扰。
(7)电压取样布线要和锰铜取样布线隔一定距离,以免相互干扰。
(8)所有引线不宜太长,尤其是PCB装配固定后,所有引线不能直接接触计量芯片及其它外围电路。
确实无法避免时,所有导线应分组加黄蜡套管,提高绝缘度。
三、计量插座软件设计
1、计量插座主流程图
图10 基于HLW8012的计量插座主流程图
上电初始化之后,开始功率、电流、电压脉冲的周期测量,如果测量完成之后,进行功率、电流、电压计算;如果是正在校准,需要将校准数据保存到EEPROM;按键处理主要包括开或关电源,设置定时自动操作时间;定时处理在定时到设置时间时自动操作;显示处理在LCD屏上显示功率、电量、电流、电压、时钟等数据。
2、中断服务子程序流程图:测量脉冲周期的程序。
图11 外部中断服务子程序
图12 定时中断服务子程序
以上是中断服务子程序中运行的内容,多脉冲测量的周期计算、功率值、电压值、电流值等都在大循环程序中运行。
四、结束语
计量插座设计可以在提高电器使用方便性的同时,减少了电器的待机功率,实现节能目的。
随后出现的WIFI智能插座、433无线插座、蓝牙智能插座、Zegbee智能插座等都是在此计量插座的基础上衍变而来,随着智能硬件的发展,计量插座衍变出来的产品将会更多。