模拟电子技术基础总结

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章晶体二极管及应用电路

一、半导体知识

1.本征半导体

·单质半导体材料是具有4价共价键晶体结构的硅(Si)和锗(Ge)(图1-2)。前

者是制造半导体IC的材料(三五价化合物砷化镓GaAs是微波毫米波半导体器件和IC

的重要材料)。

·纯净(纯度>7N)且具有完整晶体结构的半导体称为本征半导体。在一定的温度下,

本征半导体内的最重要的物理现象是本征激发(又称热激发或产生)(图1-3)。本征激

发产生两种带电性质相反的载流子——自由电子和空穴对。温度越高,本征激发越强。

+载流子。空穴导电的本质是价电子依次填补本征晶·空穴是半导体中的一种等效q

+电荷的空位宏观定向运动(图1-4)。

格中的空位,使局部显示q

·在一定的温度下,自由电子与空穴在热运动中相遇,使一对自由电子和空穴消失

的现象称为载流子复合。复合是产生的相反过程,当产生等于复合时,称载流子处于平

衡状态。

2.杂质半导体

·在本征硅(或锗)中渗入微量5价(或3价)元素后形成N型(或P型)杂质半

导体(N型:图1-5,P型:图1-6)。

·在很低的温度下,N型(P型)半导体中的杂质会全部电离,产生自由电子和杂质

正离子对(空穴和杂质负离子对)。

·由于杂质电离,使N型半导体中的多子是自由电子,少子是空穴,而P型半导体

中的多子是空穴,少子是自由电子。

·在常温下,多子>>少子(图1-7)。多子浓度几乎等于杂质浓度,与温度无关;两

少子浓度是温度的敏感函数。

·在相同掺杂和常温下,Si 的少子浓度远小于Ge 的少子浓度。 3.半导体中的两种电流

在半导体中存在因电场作用产生的载流子漂移电流(这与金属导电一致);还存在因载流子浓度差而产生的扩散电流。

4.PN 结

·在具有完整晶格的P 型和N 型材料的物理界面附近,会形成一个特殊的薄层——PN 结(图1-8)。

·PN 结是非中性区(称空间电荷区),存在由N 区指向P 区的内建电场和内建电压;PN 结内载流子数远少于结外的中性区(称耗尽层);PN 结内的电场是阻止结外两区的多子越结扩散的(称势垒层或阻挡层)。

·正偏PN 结(P 区外接高于N 区的电压)有随正偏电压指数增大的电流;反偏PN 结(P 区外接低于N 区的电压),在使PN 结击穿前,只有其值很小的反向饱和电流S I 。即PN 结有单向导电特性(正偏导通,反偏截止)。

·PN 结的伏安方程为:/(1)T

v V S i I e

=-,其中,在T=300K 时,热电压26T V ;mV 。

·非对称PN 结有P N +结(P 区高掺杂)和PN +

结(N 区高掺杂),PN 结主要向低掺

杂区域延伸(图1-9)。

二、二极管知识

·普通二极管内芯片就是一个PN 结,P 区引出正电极,N 区引出负电极(图1-13)。 ·在低频运用时,二极的具有单向导电特性,正偏时导通,Si 管和Ge 管导通电压典型值分别是和;反偏时截止,但Ge 管的反向饱和电流比Si 管大得多(图1-15)。

·低频运用时,二极管是一个非线性电阻,其交流电阻不等于其直流电阻。

二极管交流电阻d r 定义:

1

D d D Q

di r dv -⎛⎫= ⎪

⎝⎭

·稳压管电路设计时,要正确选取限流电阻,使稳压管在一定的负载条件下正常工作。

二极管交流电阻d r 估算:d T D r V I ≈

·二极管的低频小信号模型就是交流电阻d r ,它反映了在工作点Q 处,二极管的微变电流与微变电压之间的关系。

·二极管的低频大信号模型是一种开关模型,有理想开关、恒压源模型和折线模型三种近似(图1-20)。

三、二极管应用

1.单向导电特性应用

·整流器:半波整流(图1-28),全波整流(图P1-8a ),桥式整流(图P1-8b ) ·限幅器:顶部限幅,底部限幅,双向限幅(图P1-9) ·钳位电路*

·通信电路中的应用*:检波器、混频器等 2.正向导通特性及应用

二极管正向充分导通时只有很小的交流电阻,近似于一个(Si 管)或(Ge 管)的恒压源。

3.反向击穿及应用

·二极管反偏电压增大到一定值时,反向电流突然增大的现象即反向击穿。 ·反向击穿的原因有价电子被碰撞电离而发生的“雪崩击穿”和价电子被场效激发而发生的“齐纳击穿”。

·反向击穿电压十分稳定,可以用来作稳压管(图1-33)。

4.高频时的电容效应及应用

·高频工作时,二极管失去单向导电特性,其原因是管内的PN 结存在电容效应(结电容)。

·结电容分为PN 结内的势垒电容T C 与PN 结两侧形成的扩散电容D C 。 ·T C 随偏压的增大而增大,D C 与正偏电流近似成正比。

·反偏二极管在高频条件下,其等效电路主要是一个势垒电容T C 。利用这一特性的二极管称为变容二极管。变容二极管在通信电路中有较多的应用。

第二章 双极型晶体三极管(BJT )

一、BJT 原理

·双极型晶体管(BJT )分为NPN 管和PNP 管两类(图2-1,图2-2)。

·当BJT 发射结正偏,集电结反偏时,称为放大偏置。在放大偏置时,NPN 管满足C B C V V V >>;PNP 管满足C B E V V V <<。

·放大偏置时,作为PN 结的发射结的VA 关系是:/BE T v V E ES i I e =(NPN ),

/EB T

v V E ES i I e =(PNP )。

·在BJT 为放大偏置的外部条件和基区很薄、发射区较基区高掺杂的内部条件下,发射极电流E i 将几乎转化为集电流C i ,而基极电流较小。

·在放大偏置时,定义了

CN

E i i α=

(CN i 是由E i 转化而来的C i 分量)极之后,可以导

出两个关于电极电流的关系方程:C E CBO i i I α=+

(1)C B CBO B CEO i i I i I βββ=++=+

相关文档
最新文档