电流检测最的三个最基础知识点
流量检测仪表基础知识讲义

第四章流量检测仪表1.概述〔流量的概念和单位、流量检测方法及流量计分类〕在生产过程中,为了有效地进行操作、操纵和监督,需要检测各种流体的流量。
物料总量的计量依旧经济核算和能源治理的重要依据。
流量检测仪表是开展生产,节约能源,先进产品质量,提高经济效益和治理水平的重要工具,是工业自动化仪表与装置中的重要仪表之一。
流体的流量是指在短临时刻内流过某一流通截面的流体数量与通过时刻之比,该时刻足够短以致可认为在此期间的流淌是稳定的。
此流量又称瞬时流量。
流体数量以体积表示称为体积流量,流体数量以质量表示称为质量流量。
流量的表达式为:式中为体积流量,单位;为质量流量,;V为流体体积,m3;M为流体质量,Kg;t为时刻;为流体密度,;为流体平均流速,;为流通截面面积,。
在某段时刻内流体通过的体积或质量总量称为累计流量或总流量,它是体积流量或质量流量在该段时刻的积分。
流量检测方法能够回为体积流量检测和质量流量检测两种方式,前者测得流体的体积流量值,后者能够直截了当测得流体的质量流量值。
测量流量的仪表称为流量计,测量流体总量的仪表称为计量表或总量计。
流量计通常由一次装置和二次仪表组成。
一次装置安装于流道的内部或外部,依据流体与之相互作用关系的物理定律产生一个与流量有确定关系的信号,这种一次装置亦称流量传感器。
二次仪表那么给出相应的流量值大小。
流量计的种类繁多,各适合于不同的工作场合。
按检测原理分类的典型流量计列在见下表。
流量计的分类2.容积式流量计容积式流量计是直截了当依据排出体积进行流量累计的仪表,它利用运动元件的往复次数或转速与流体的连续排出量成比例对被测流体进行连续的检测。
容积式流量计能够计量各种液体和气体的累积流量,由于这种流量计能够周密测量体积量,因此其类型包括从小型的家用煤气表到大容积的石油和天然气计量仪表,广泛地用作治理和贸易的手段。
容积式流量计由测量室、运动部件、传动和显示部件组成。
它的测量主体为具有固定标准容积的测量室,测量室由流量计内部的运动部件与壳体构成。
电工常识应知应会知识点

电工常识应知应会知识点一、知识概述《电工常识应知应会知识点》①基本定义:电工常识就是咱们干电工活或者了解电路相关知识得知道的一些普通知识。
比如说电流、电压是啥,电路怎么连接这些最最基础的东西。
②重要程度:在电工这门学科里,电工常识就是基础中的基础啊。
就跟咱们盖房子打地基一样,要是不懂这些常识,后面更复杂的电工工作就根本无从下手啦。
③前置知识:需要懂点数学的基本运算吧,毕竟有时候要计算电压、电流、电阻啥的关系。
再就是得对一些基本的物理现象有点概念,像什么是导体、绝缘体。
④应用价值:要是家里突然灯不亮了,懂点电工常识,咱们就能自己简单检查检查,看看是不是保险丝烧了还是灯丝坏了。
在工厂里面,电工师傅靠这些常识才能保证各种电器设备正常运行,不然就乱套了。
二、知识体系①知识图谱:电工常识就像电工知识大树的树根,各种各样的电工知识都是从这个基础上发展起来的。
例如电器设备的维修、电路设计啥的,都是以这些常识为开始的。
②关联知识:和电磁学知识是分不开的。
像电动机工作原理那里就有电磁感应,这得有电工常识的基础才能理解吧。
还有跟电子元件的知识也有关联,电阻、电容这些电子元件的工作都离不开基本的电工常识里的电流电压啥的原理。
③重难点分析:掌握的难点在于理解很多抽象概念,比如电流看不见摸不着却能让电器工作。
重点就是把那些基本概念像电压、电流还有电阻之间相互关系搞明白。
就像欧姆定律,要真正理解透彻怎么回事不容易,但是理解好了那很多电工问题就简单了。
④考点分析:在电工考试里那可太重要了。
比如简单的考电压的单位、电流的方向这种基础概念。
也会出一些简单的计算,如根据电压和电阻求电流。
还可能出一些分析电路故障的题,前提就是对电工常识里电路连接啥的非常熟悉。
三、详细讲解【理论概念类】①概念辨析:电流:简单说就是电子在导体里的流动。
就像一群小蚂蚁搬家一样,电子从负极往正极跑,这一跑就形成了电流。
电压:可以想象成一种力量,把电子从一个地方往另一个地方赶。
电气设备基础及巡检要点

电气设备基础及巡检要点电气设备是现代社会中不可或缺的一部分,它们为我们的生活提供了便利和安全。
为了确保电气设备的正常运行和使用的安全性,对于电气设备的基础知识以及巡检要点有必要进行了解和掌握。
一、电气设备的基础知识:1.电流:电气设备中的电力是通过电流传输的,电流的单位是安培(A)。
2.电压:电压是电气设备中的电力传输的推动力,电压的单位是伏特(V)。
3.电阻:电阻是电流在电气设备中流动时所遇到的阻力,电阻的单位是欧姆(Ω)。
4.电功率:电功率是电气设备中电能的消耗速率,电功率的单位是瓦特(W)。
5.频率:频率是指电压周期性变化所需要的时间,频率的单位是赫兹(Hz)。
二、电气设备巡检要点:1.外观检查:巡检时要检查电气设备外观是否有明显的破损、变形或者腐蚀等现象,同时要确保设备安装是否稳固。
2.电缆和线路检查:检查电缆和线路是否有损坏,如有发现损坏应及时更换或修复,同时检查接线盒和接线端子的连接是否松动。
3.仪表和保护装置检查:定期对仪表和保护装置进行检测和校准,确保其工作准确可靠。
4.电气设备的温度检查:对于高功率电器设备,应检测其温度是否正常,如温度过高可能会导致设备损坏或者无法正常工作。
5.电气设备的绝缘检查:使用适当的测试仪器对电气设备的绝缘进行检查,确保设备的绝缘性能良好,避免发生漏电等安全事故。
6.接地检查:检查电气设备的接地是否良好,确保设备的接地电阻符合要求。
7.运行状态检查:巡检时要观察电气设备的运行状态是否正常,如设备是否发出异常声响、电流是否稳定等。
8.消防安全检查:对于电气设备周围的消防安全措施进行检查,确保设备周围的消防设施完备。
9.操作记录和维护记录的检查:对于电气设备的操作记录和维护记录进行检查,确保设备的管理和维护工作得到有效执行。
以上是电气设备基础知识及巡检要点的简要介绍,电气设备的巡检工作是保障设备安全运行和延长设备寿命的重要环节,通过定期巡检和维护可以及时发现和解决问题,确保电气设备的正常运行和使用。
电工理论基础知识

电工理论基础知识(汇编)一、应知应解定律、定义1、欧姆定律:在一段不含电动势只有电阻的电路中,流过电阻R 的电流 I 与电阻两端电压U 成正比,与电阻成反比,这个结论叫做部分电路欧姆定律,用公式表示为 I=U/R 或 U=IR ,欧姆定律揭示了电路中的电压、电流和电阻三个基本物理量之间的关系,实际应用中,只要知道其中任意两个量,就可以通过欧姆定律计算出第三个量,需要特别提出,欧姆定律是电工学、电子学中最基本的定律,也是最重要的定律,是维修电工必须熟练掌握的知识点,应用欧姆定律,通过电压、电流、电阻三个物理量状态来分析电路,解决维修电工在实际操作中遇到的问题,具有特别重要的指导意义。
2、电功:在负载两端接上电源,电场力使电荷移动形成电流,电场力做了功,也叫电流做功,这就是电功。
电流做功的过程就是电能转变成其他形式能量的过程,例如电流通过灯泡将电能转换成光能、热能;电流通过电动机,将电能转制成机械能等等。
如果负载电阻两端所加电压为U,在时间 t 内通过负载电阻的电量为Q,产生的电流为 I,根据电压定义式 U=W/Q 则有 W=QU ,又因为 Q=It ,所以,W=UIt ,式中, U 的单位为伏( V),I 的单位为安( A),t 的单位为秒( s),电功 W 的单位为焦( J)。
3、电功率:电流在单位时间内所做的功叫电功率。
如果在时间t 内,电流通过负载所做的功为W,则电功率P=W/t,若负载电阻值为R,加在其两端的电压为U,通过的电流为 I,可得 P=UI=I 2R=U 2/R。
式中, U 的单位为伏( V ),I 的单位为安( A),R 的单位为欧(Ω),电功率 P 的单位为瓦( W)。
功率的单位还有毫瓦(mW)和千瓦(kw ),它们之间的换算关系是1W=1000mW;1kW=1000W ,在电力工程中常用的电功率单位叫做度(kWh),1 度等于 1 千瓦小时,即: 1 度=1千瓦·小时××6J。
维修电工基础知识

维修电工基础知识电工是一项关乎安全和可靠性的重要工作。
在维修电器设备时,了解一些基础知识对于保证工作的顺利进行至关重要。
本文将介绍一些维修电工的基础知识,包括电路基础、电器元件、故障排除等内容。
一、电路基础1. 电流和电压电流是电子在电路中运动的方式,通常用安培(A)来表示。
而电压则是电流的驱动力,单位是伏特(V)。
电流和电压之间的关系可以用欧姆定律来描述,即电流等于电压除以电阻。
2. 电阻和功率电阻是电流在电路中遇到的阻碍,通常用欧姆(Ω)来表示。
功率是电流在电路中消耗的能量,单位是瓦特(W)。
功率可以通过电流的平方乘以电阻来计算。
3. 串联和并联在电路中,元件可以串联或并联连接。
串联连接是将多个元件依次排列在一起,形成一个闭合的路径。
而并联连接是将多个元件同时连接到相同的两个节点上。
串联和并联会对电流和电压产生不同的影响,因此在维修电器时需要了解电路的连接方式。
二、电器元件1. 电阻器电阻器是用来限制电流流动的元件,常被用于调整电路的电阻值。
维修电工需要了解不同类型的电阻器,并会检测和更换损坏的电阻器。
2. 电容器电容器是储存电荷的元件,常被用于平滑电流或者延迟电流变化。
在维修电工过程中,电容器的正常工作状态和更换方法需要掌握。
3. 电感器电感器是储存磁场能量的元件,常被用于滤波和抑制电磁干扰。
了解电感器的原理和工作状态,在维修电器时可以更好地判断故障原因。
4. 开关和断路器开关用于控制电路的通断,断路器则是在电路过载或短路时自动断开电路以保护电器设备。
了解不同类型的开关和断路器,并能够正确操作和维修它们是电工必备的知识。
三、故障排除1. 维修工具维修电器需要使用一些常见的工具,如万用表、电压表、电流表等。
在故障排除时,正确使用这些工具可以更快地诊断问题。
2. 故障检测故障排除的第一步是检测故障点。
可以通过观察、闻听和触摸等方式来确定故障的位置和性质。
一旦确定了故障点,就可以采取相应的修复措施。
电流测量方法

电流测量方法电流是电路中的重要参数,测量电流是电工和电子工程师在日常工作中经常需要进行的操作。
正确的电流测量方法能够保证电路工作的正常运行,同时也能确保工作人员的安全。
在本文中,我们将介绍几种常见的电流测量方法,以及它们的优缺点和适用范围。
首先,最常见的电流测量方法之一是使用电流表。
电流表是一种专门用于测量电流的仪器,它可以直接连接到电路中,通过电流表的指针或数字显示屏来显示电流数值。
电流表通常有两种类型,分别是模拟电流表和数字电流表。
模拟电流表通过指针指示电流数值,而数字电流表则通过数字显示屏来显示电流数值。
电流表的优点是测量精度高,测量范围广,操作简单,但是需要断开电路才能进行测量,因此在一些特殊情况下并不适用。
其次,另一种常见的电流测量方法是使用电流互感器。
电流互感器是一种通过感应电流产生电压信号的装置,它可以将电路中的电流转换为电压信号输出,然后通过电压表或数据采集系统进行测量。
电流互感器的优点是测量过程不需要断开电路,对被测电路的影响很小,适用于大电流测量,但是需要外部电源供电,且测量精度受到外部磁场和温度的影响。
另外,还有一种电流测量方法是使用霍尔传感器。
霍尔传感器是一种利用霍尔效应测量电流的装置,它可以将电路中的电流转换为霍尔电压输出,然后通过电压表或数据采集系统进行测量。
霍尔传感器的优点是测量精度高,对被测电路的影响很小,但是需要外部电源供电,且测量范围受到器件本身特性的限制。
综上所述,不同的电流测量方法各有优缺点,选择合适的测量方法需要根据具体的测量要求和实际情况来决定。
在实际工作中,我们可以根据需要灵活选择电流表、电流互感器或霍尔传感器等不同的测量方法,以确保电流测量的准确性和可靠性。
希望本文所介绍的电流测量方法能够对您有所帮助,谢谢阅读!。
初中物理电学部分知识点及公式总结

精品基础教育教学资料,仅供参考,需要可下载使用!中考专题复习初中物理电学部分知识点及公式总结1、电流、电压、电阻、电功、电功率在串联、并联电路的中的规律:(☆☆☆☆☆) 电流:◆串联电路中电流处处相等。
I=I 1=I 2◆并联电路中总电流等于各支路电流之和。
I=I 1+I 2并联电路分流,该支路电流的分配与各支路电阻成反比。
即:1221R RI I = I 1R 1=I 2R 2 电压:◆串联电路中总电压(电源电压)等于各部分电路两端电压之和。
U=U 1+U 2 串联电路分压,各用电器分得的电压与自身电阻成正比。
即: ◆并联电路中各支路电压和电源电压相等。
U=U 1=U 2电阻:◆串联电路中总电阻等于各串联电阻之和。
总电阻要比任何一个串联分电阻阻值都要大。
(总电阻越串越大)R=R 1+R 2◆并联电路中总电阻的倒数等于各并联分电阻的倒数和。
总电阻要比任何一个并联分电阻阻值都要小。
(总电阻越并越小)R=R 1R 2/R 1+R 2(上乘下加)或:总电阻的倒数等于各支路的电阻倒数之和。
即:◆因此几个电阻连接起来使用,要使总电阻变小就并联;要使总电阻变大就串联。
◆如果n 个阻值都为 R 0 的电阻串联则总电阻R=nR 0◆如果n 个阻值都为 R 0 的电阻并联则总电阻 R=R 0/n2121R R U U =n 21R 1R 1R 1R 1++=总电功:◆串联电路:总电功等于各个用电器的电功之和。
即:W 总=W 1+W 2+…Wn电流通过各个用电器所做的电功跟各用电器的电阻成正比,即:2121R R W W = ◆并联电路:总电功等于各个用电器的电功之和。
即:W 总=W 1+W 2+…Wn电流通过各支路在相同时间内所做的电功跟该支路的电阻成反比。
即:1221R R W W = 电功率:◆串联电路:总电功率等于各个用电器实际电功率之和。
即:P 总=P 1+P 2+…P n 各个用电器的实际电功率与各用电器的电阻成正比,即:◆并联电路:总电功率等于各个用电器的电功率之和。
大二电化学基础知识点总结

大二电化学基础知识点总结电化学是物理化学的一个重要分支,研究了电学和化学之间的相互关系,涉及电解池的构建、电荷传递、电流测量和反应动力学等方面。
下面将对大二电化学基础知识点进行总结。
一、电解池电解池是电化学实验中基本的设备,由阳极和阴极以及电解质溶液组成。
阳极是电子流出电解池的地方,发生氧化反应,通常是正极性电极;阴极是电子流入电解池的地方,发生还原反应,通常是负极性电极。
二、电荷传递电荷传递是电解池中最重要的过程之一。
它包括两种类型的传递:电子传递和离子传递。
电子传递是指电解质溶液中的离子通过电极表面的电子进行氧化还原反应。
离子传递是指离子在电解质溶液中通过迁移速率进行的。
电荷传递的速率与电流强度成正比。
三、电流测量电流是电化学实验中重要的物理量之一,用于测量反应过程中的电子流动。
电流的测量通常使用电流计,它的原理是根据静电感应的效应来测量电流通过导体的大小。
四、反应动力学反应动力学是研究电化学中反应速率和反应机制的科学。
反应速率取决于电荷传递过程、溶液中的电导率以及反应物浓度。
反应动力学可以用实验数据和数学模型来描述。
五、电极反应电极反应是电化学中发生在电解池中的氧化还原反应。
在阳极,一般是发生氧化反应;在阴极,则发生还原反应。
电极反应是电池工作的基础,也是电化学研究的核心内容。
六、标准电极电势标准电极电势是衡量氧化还原反应进行方向性和速率的指标。
它是在标准状态下,即温度为25°C、压力为1个大气压时,电极与H+离子浓度为1 mol/L的溶液之间的电位差。
七、电化学细胞电化学细胞是由两个半电池构成,其中一个半电池发生氧化反应,另一个半电池发生还原反应。
电化学细胞可以将化学能转化为电能或者反之。
八、电解过程电解是指通过外加电流将化学反应逆转,实现非自发反应。
在电解过程中,阳极发生氧化反应,阴极发生还原反应。
电解可以用于实现金属电镀、电解制氢等重要应用。
九、氧化还原反应氧化还原反应是电化学中最为基础且重要的反应类型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电流检测最的三个最基础知识点目前,电流检测的阻值非常低,其主要用于测量流经其山的电流。
通过该电阻的电流主要是通过电阻两端的电压反映出来,所以通过应用公式I=V/R该公式是由某著名学校的老师乔治·西蒙·欧姆提出的:即电阻上的电流与电压成正比。
上面简单的介绍就当作抛砖引玉了,本文的主题——电阻选择、高边或低边监测以及检测放大器的选择——都是以这个电气工程基本公式为基础的。
电流检测监控有助于提高一些系统的效率,减少损失。
例如,许多手机实现了电流检测监控,提高电池寿命,同时提高可靠性。
如果电流消耗太大,手机可以做出决定,降低CPU频率来减少电池负载以此延长电池寿命,同时防止手机过热来增加稳定性。
甚至有手机应用程序可以访问电流检测并且对优化手机的性能做出决策。
除了电流检测监控使用了一个电阻,另外两个不太常用的方法也使用了电阻。
其一是使用霍尔效应传感器来测量产生通量场的电流。
虽然这是非侵入性的,并且具有非插入损耗的优点。
它相对来说有点贵,并且要求一个相对大的PCB基板。
另一种方法,使用变压器测量感应的交流电流,也属于面积和成本密集型;并且同时只对交流电流有用。
本文将介绍使用一个电阻进行电流检测监控的三个基本方面:1、选择一个低阻值精度采样电阻。
如果说基板是基于“位置,位置,位置”,然而选择一个电阻就是基于“精度,精度,精度”原则。
2、选择一个检测放大器芯片。
当感应到在小于1欧姆电阻,电压很小的变化也会产生一个很大的结果。
检测放大器将电压变化放大,使无意义的事情变的更有意义。
3、检测电阻的“位置,位置,位置”。
这个若检测参考电源,称为高边检测,或者如果连接地,又叫作低边检测。
精密电流传感应用程序不再是自制食物电路;制造商已经做了所有的研究和现代设计的大部分工作。
电阻选择选择电阻值,精度和物理尺寸都取决于预期的电流测量值。
电阻值越大,测量可能就越精确,但大的电阻值也会导致更大的电流损失。
对于低功率电池驱动的设备,必须减少损失,电阻大约一毫米的长度值并且带有成百上千欧姆的电阻经常被使用。
对于一个或更多的放大器的更高电流,电阻可以使用更大的阻值,这将得到更准确的测量与可接受的损失。
尽管电阻器通常认为是一个简单的二端设备,为准确测量当前的四端电阻比如Vishay WSK系列,在每个电阻的末端都使用了二端。
这为二端提供了应用电路的电流路径,和另一对感测放大器的电压检测路径。
这四端设置,也称为开尔文传感,确保在每个连接尽可能最小的阻力,确保感测放大器的测量电压就是电阻两端的的实际电压并且包括小电阻的组合连接。
这将使得更加容易相互连接并且减少电阻温度系数造成的影响(TCR)。
TCR是一个电阻随着温度的升高而阻值增加的效果。
电源接到检测电阻上通常都会使电阻加热并且可能连接到100°C或者远远高于该温度的环境温度下。
尽管检测电阻设计成具有非常低的TCR,但是有线或PCB布线连接起来组合的TCR可能使阻值增加5%到10%。
开尔文传感通过改进传感系统温度的稳定性大大降低了TCR的影响。
WSK0612带1.0%误差的电阻可以处理一瓦特的电量并且在小型的DC/DC转换器和一些电池充电器中比较常见。
WSK2512系列误差为0.5%的电阻主要应用于笔记本电源和仪器应用。
Vishay WSK2512可以处理一瓦特并且误差可以精确到0.5%并且电阻可以从0.025Ω小到如0.0005Ω的都有。
图1:Vishay WSK0612电流检测电阻和尺寸。
另一个检测电阻的重要标准就是随着温度改变的稳定性在Vishay WSLS和WSLP系列也突显出来。
这些都是长寿电阻并且在工作温度范围内其阻值波动幅度低至0.25%,并且通常用于开关电源和线性电源以及功率放大器中作为电流检测电阻。
在处理非常低阻值低电阻过程中有一个不寻常的问题可能会碰到,那就是热EMF。
热EMF是一个非常小的电压,占1000分之一伏特,这是存在导体中的温度微小差异引起的。
热EMF的常规使用是建立一个热电偶,其中微电压和温度成正比;但是热EMF在我们的电流检测电阻中是不允许出现的,并且可能会导致不准确的读数。
Vishay WSL 和WSR电阻系列提供了许多性能优势,包括被专门设计来减少热EMF.图2绘制了Vishay WSL供电金属条状电阻和其两个竞争对手之间的一个比较图。
该态势图表明WSL系列有一个低至3µv /°C的热EMF 而竞争对手却高达±25µV/°C。
图2:Vishay 50毫欧WSL2512供电条状电阻和其竞争对手技术的热EMF特征进行比较在图2的其中两个电阻中都是金属条状技术,第三个是低阻值的厚膜电阻。
所有的电阻都是50 mΩ标称电阻。
正如上图展示的,如果不考虑热EMF就会导致不准确的读数。
某些应用程序有高功率的要求,使用半瓦或更多来强制通过电阻。
Vishay WSLP2010 WSLP2512可以分别处理2.0和3.0瓦。
WSHM2818 具有7.0瓦高功率密度电流检测电阻,主要是为高压电流检测应用比如wattage DC/DC 转换器,桌面PC电源,以及无刷直流电机控制。
对于高温应用,1瓦特的Vishay WSLT 和WSR系列可以承受温度高达275摄氏度。
检测监控-高边或者低边?电流分流器监控集成电路,同时也叫电流检测放大器,精确测量待测电阻两端的微小电压。
防止检测放大器干扰被测电压,这些集成电路具有很高的输入阻抗。
然而,在选择并联显示器之前,必须做出一个明智的决定,那就是是否要将电流检测电阻放置在负载的电源电压轨上(高边监控)。
或者负载的地面点(低边监控),每一种都有其优点和缺点。
图3:高边检测vs低边检测低边检测通常是最便宜和最简单的方式来实现,因为如果检测电阻的一端在地面系统,并且负载的另外一端在那些电流待测的负载的地面,然后电阻两端的电压相对系统地面可以通过一个简单的引用同一个系统的运放将其放大。
然后该放大电压通过模数转换器(ADC)进行测量。
但是,低边检测的缺点与其自身的优点有关,那就是放置一个电阻在负载到地的路径。
这种电阻放置导致负载的地面浮动电压略高于系统地面。
这种安排的最常见的问题是潜在的接地回路问题。
因为负载与系统中的其他负载不是在同一个参考地上。
该系统可以开发一个可听噪音,如哼哼,甚至对附近的设备产生干扰,包括音频和视频的干扰。
另外,低边检测不能够检测错误条件,比如在地面路径的一个短路或者开路,由于连接问题或外界干扰引起的。
由于这个原因,低边检测的意义在于处理大电流,一个孤立的负载,或其他情况下,系统不受地面路径影响。
高边检测是用于当一个并联电阻成列放置在系统电源和负载之间。
这个配置对电流的变化更加敏感并且对系统地添加了免干扰功能。
其主要缺点是由于分流电阻不是在系统地面上,差动电压必须被测量出来,因为它需要精确匹配合适的差分放大器。
然而,它的缺点是消除了一个来自德州仪器的精密电流分流监控器。
电流分流监控器选择电流分流监控器的几个因素:共模范围:该规范定义了放大器对地的输入允许直流电压范围。
电流分流监控器通常指定接受共模电压比芯片供电电压高。
比如说。
德州仪器的INA225电流分流监控器和TI的INA300电流检测比较器可以接受的DC电压是从0v到36V。
他们两者都是非常灵活的,并且可以用于高边或者低边监控。
INA225拥有I²C 接口,允许一个微控制器去读被监控的电流根据被测的电压和功耗。
TI 的INA282拥有一个非常宽的共模-14 v + 80 v的范围以及一个只有1.5 µV/°C低的偏置漂移。
偏置电压:这是在放大器输入端测量电压,假设正极和负极输入是基本一样的电压。
理想情况下这个电压是零,但实际上它总是一个非零电压。
小的偏移电压会导致巨大的错误,它可以增加芯片寿命和动态温度。
德州仪器的INA230双向电流分流监控器拥有一个低至50µV的偏置电压当其温度范围是-40 + 125°C时。
然而,对于最好的精度,这个TI的INA226在现在的市场上是一款最高精度的电流检测监控器,其偏置电压是只有10µV 并且一个共模范围达到36V。
他们两者都实现了一个I²C 系列接口以方便大多数微控制器接口。
共模抑制比(CMRR):这个规范是一个放大器检测和拒收信号的能力出现在两个差分输入。
电路板上的放大器的物理位置可能会导致噪声耦合到输入上由于热噪声,高频信号,或者高电流,从而诱导磁电流耦合。
德州仪器的大部分电流分流监控器有一个经典的共模抑制比高达140dB,包括INA226,INA210,和INA282。
由于电流分流监控器有太多的选择,目标电路究竟该使用哪一个?正如本文所讨论,选择是与系统有关的。
电流分流电阻和监控器现在被用于这些以前并不需要进行电流监测,但是现在需要提高电池效率的应用。
其中例子包括仪表,无线充电电源,平板电脑和手机、工业自动化、医疗设备供电,电池和太阳能系统。
总结电流监控的需求随着系统努力变得更加有效率而越来越重要,尤其是关于电池驱动的设备。
电流监测监控可以显著提高系统优势,越仔细的选择合适的组件就越可能延长电池寿命和许多电子系统的寿命。