重复测量的数据方差分析

合集下载

重复测量数据方差分析

重复测量数据方差分析

实验设计
处理——A因素:g个水平 a1 , a2 ,ag 每个水平 n个 试验对象 时间——B因素:m个时点 b1 , b2 ,bm 试验数据Xijk i=1,2, … ,g j=1,2, … ,m k=1,2, … ,n 试验数据共gmn个
方差分析
b1 a1 a2 b2 „ bj
合计
X 221 X 222 Tij ( X ij ) X 22 n
77.0
80.4 65.0 77.0 66.8 71.0 72.6 73.4 78.0
75.2
81.2 63.2 73.8 64.4 68.2 72.8 73.4 76.4
77.4
79.6 63.4 72.5 60.8 70.2 72.6 72.2 74.8
32
33 34 35 36 37 38 39 40
一、重复测量资料的数据特征
目的:推断处理、时间、处理×时间作用于试
验对象的试验指标的作用。
资料特征:

处理因素 时间因素
g (≥1 )个水平,每个水平有n个
试验对象,共计 gn个试验对象。

同一试验对象在m(≥2 )个时
点获得m个测量值,共计gnm个测量值。

方法:方差分析
前后测量设计

前后测量设计资料是重复测量资料中最为常见 的资料类型,即g=1, m=2, 如表9-1。 和配对设计的数据形式相同,但两者属于完全 不同的实验设计类型。区别如下: 1. 是否随机分配处理(分组); 2. 差值的独立性问题; 3. 数据处理方式的差异。
受试 对象j
1 2
剂型 k
1 1
服药后测定时间i(周)
0 84.4 105.0 8 82.2 100.8 16 82.2 97.4 24 83.0 96.6

重复测量方差分析

重复测量方差分析

重复测量方差分析1. 引言重复测量方差分析(Repeated Measures Analysis of Variance, RM-ANOVA)是一种统计方法,用于分析在不同时间点或不同处理条件下对同一组个体或样本进行多次测量的数据。

通过比较不同时间点或处理条件下的测量结果,我们可以确定是否存在显著的差异,并了解时间或处理对测量结果的潜在影响。

本文档将介绍重复测量方差分析的基本原理、假设条件、计算方法和结果解读,并提供使用Markdown格式编写重复测量方差分析报告的示例。

2. 基本原理重复测量方差分析的基本原理是基于方差分析(ANOVA)方法,但相对于普通的单因素方差分析,重复测量方差分析考虑了测量数据间的相关性。

在重复测量设计中,同一个个体或样本在不同时间点或处理条件下进行多次测量,因此测量数据之间存在一定的相关性。

为了解决相关性的问题,重复测量方差分析使用了独特的矩阵分解方法,将总体方差分解为组内方差和组间方差。

通过计算组间方差与组内方差的比值,可以判断不同时间点或处理条件下的测量结果是否存在显著差异。

3. 假设条件在进行重复测量方差分析之前,需要满足以下假设条件:•正态性假设:每个时间点或处理条件下的测量结果应当服从正态分布。

•同方差性假设:每个时间点或处理条件下的测量结果应具有相同的方差。

•相关性假设:各个时间点或处理条件下的测量结果之间应具有一定的相关性。

如果数据不满足正态性、同方差性或相关性假设,需要采取适当的数据转换、方差齐性检验或相关性分析等方法进行处理。

4. 计算方法重复测量方差分析的计算方法可以通过计算F统计量来进行。

具体步骤如下:步骤1:计算总体方差首先计算总体方差SSTotal,即测量数据的总体波动情况。

步骤2:计算组间方差然后计算组间方差SSBetween,即不同时间点或处理条件下的测量结果之间的差异。

步骤3:计算组内方差接下来计算组内方差SSWithin,即测量数据在同一个时间点或处理条件下的波动情况。

重复测量设计的方差分析

重复测量设计的方差分析
区组内实验单位彼此不独立。
u 随机区组设计 ●处理因素在区组内随机分配; 每个区组内实验单位彼此独立。
第二节
重复测量数据 的两因素两水平分析
高血压患者治疗前后的舒张压(mmHg)
处理组 a1
对照组(安慰剂组)a2
顺序号 治疗前 治疗后 合计(Mj) 顺序号 治疗前 治疗后 合计(Mj)
●处理因素在区组内随b机1分配; b2
118
124
-6
132
122
10
134
132
2
114
96
18
118
124
-6
128
118
10
118
116
2
132
122
10
120
124
-4
134
128
6
1248
1206
42
124.8
120.6
4.2
7.90
9.75
8.02
三、重复测同相量一关受的设试。计者的(单血样因重素复测)量的结果是高度
受试者血糖浓度(mmol/L)
214
17
118
明“服8药”有效; 138
122
260
18
132
重复测量设计与随机区组设计区别
降压药9物与安慰剂间疗12效6差别无统计学1意08义;
234
19
120
注若意球事 对1项称0 1性、质单不因能素满实足1验2,重4则复方测差量分数析据的1分F0析值6是偏大的,2增3大0了犯第一类错2误0 的概率。 134
重复测量设计的方差分析
讲课内容
第一节 重复测量资料的数据特征 第二节 重复测量数据的两因素两水平分析

重复测量数据方差分析

重复测量数据方差分析

74.4
77.0
75.2 77.4
82.6
80.4
81.2 79.6
68.6
65.0
63.2 63.4
79.0
77.0
73.8 72.5
69.4
66.8
64.4 60.8
72.6
71.0
68.2 70.2
72.4
72.6
72.8 72.6
75.6
73.4
73.4 72.2
80.0
78.0
76.4 74.8
7.90
9.75 8.02
经检验处理组与对照组的差值 d 方差不齐(F S12 / S22 6.58 , P 0.01),不符合两均数比较 t 检验的前提条件。
设置对照旳前后测量设计
前后测量数据间存在明显差别时,并不能阐明这种差 别是由前后测量之间施加旳处理所产生,还是因为存 在于前后两次测量之间旳时间效应所致。
比较
表9-2 两种措施对乳酸饮料中脂肪含量旳测定成果(%)
编号
1 2 3 4 5 6 7 8 9 10
哥特里-罗紫法
0.840 0.591 0.674 0.632 0.687 0.978 0.750 0.730 1.200 0.870
脂肪酸水解法
0.580 0.509 0.500 0.316 0.337 0.517 0.454 0.512 0.997 0.506
受试 对象j
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
剂型 k
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
服药后测定时间i(周)

重复测量方差分析

重复测量方差分析

重复测量方差分析1.理论重复测量:指对同一批研究对象先后施加不同的实验(或在不同的场合)进行测量。

重复测量方差分析:研究在不同的实验或(不同场合)之间是否有差异,或条件和处理间交互项是否有差异。

变量应满足:因变量为连续型随机变量,因素为分类变量。

正态性:不同条件下的个体取自相互独立的随机样本,其总体需满足近似正态分布。

方差齐性:不同条件下的总体方差相等。

满足球形假设:因变量的方差-协方差矩阵满足球形交互项项两两比较结果需要借助语法。

图1交互项两两比较语法2.重复测量方差分析操作步骤操作步骤第一步:首先将数据导入spss中并进行赋值,后点击分析、一般线性模型、重复测量。

图2重复测量方差分析操作步骤第一步操作步骤第二步:进入图中对话框后首先定义主体因子名及实验次数点击添加,后添加测量名称(先在测量名称框中输入名称、后点击添加)点击定义。

图3定义因子操作步骤第三步:定义完成后进入图中对话框后、先将对应的变量放入对应的变量框中,点击事后比较将因子框内的因子放入事后比较框中,勾选假定等方差(LSD)、不假定等方差(塔姆黑尼),点击继续。

图4事后比较勾选操作步骤第四步:点击选项将因子框中的因子放入平均值框中,勾选描述统计、齐性检验,点击继续、确定。

图5选项勾选然后重复测量方差分析的主体间因子、描述统计、等同性检验、主体内效应检验、主体因子事后比较结果就出来了。

图6描述统计结果图7主体内效应操作步骤第一步:点击分析、一般线性模型、重复测量。

图8操作步骤第一步第二步:点击定义。

图9点击定义第三步:进入图中对话框后,点击粘贴。

图10点击粘贴第四步:进入语法编辑窗:在红色框内放入对应的语法(可参考图中语法进行编辑),后选中语法点击红色框内的绿色箭头。

图11语法编写5.交互项结果然后重复测量方差分析的主体因子和因子交互项的主体内因子、主体间因子、描述统计、博克斯等同性酱油结果就出来了。

图12描述统计主体内效应检验、主体内对比检验、误差方差的莱文等同性检验。

第十四章 重复测量的资料方差分析

第十四章  重复测量的资料方差分析

编号
治疗前
治疗后
差值
1
130
114
16
2
124
110
14
3
136
126
10
4
128
116
12
5
122
102
20
6
118
100
18
7
116
98
18
8
138
122
16
9
126
108
18
10
124
106
18
X
126.2
110.2
16.0
S
7.08
9.31
3.13
比较
表3-3 两种方法对乳酸饮料中脂肪含量的测定结果(%)
SS
MS
F
P
总变异
14 0.5328
处理间
2 0.2280 0.1140 11.88 <0.01
区组间
4 0.2284 0.0571 5.95 <0.05
误差
8 0.0764 0.0096
2.重复测量设计区组内即同一受试者 的重复测量数据是高度相关的。例如,计 算表 12-3 中各时间点数据间的相关系数 结果见表 12-6。
表12-4 表 12-3数据的方差分析表
变异来源 自由度 SS MS F
P
总变异
31 5.751
区组(受试者)
7
2.828 0.361 27.77 <0.01
放置时间
3
2.959 0.986 75.85 <0.01
误差
21 0.264 0.013
表12-7 表12-3数据“球对称”检验结果

重复测量资料的方差分析

重复测量资料的方差分析

ˆ ˆ ˆ2 2k 式中中的 s 是协方差矩阵中的第 k 行第 l 列元素, s = ( = (∑ s ) / a 是主对角线元素的平均值, s = (∑ s ) / a 是第 k 行的平均值。

ε ˆ 的取值在 1.0 与 1/(a -1)之间。

ε =ˆˆ ˆ分子自由度ν 1 =ν 1 ⨯ε 分母自由度ν 2 =ν 2 ⨯ε 。

具体计算时可用或ε 代替。

用 调整所得的ν 1 及ν 2 的 F 值查临界值表,得 F α (ν ' ,ν ' ) 。

由于ε≤ 1.0,所以调整后的重复测量资料方差分析重复测量(repeated measure )是指对同一观察对象的同一观察指标在不同时间 点上进行的多次测量,用于分析该观察指标在不同时间上的变化特点。

这类测量 资料在临床和流行病学研究中比较常见,例如,为研究某种药物对高血压病人的 治疗效果,需要定时多次测量受试者的血压,以分析其血压的变动情况。

1、 重复测量资料方差分析中自由度调整方法1.调整系数 ε 的计算有两个调整系数,第一个是 Greenhouse-Geisser 调整系数 ε (G - G ε ) ,计算 公式为ε =a 2(s kl - s 2) 2(a -1)[∑ ∑ (s kl ) 2 - (2a )(∑ (s 2 ) 2 ) + a 2 (s 2 ) 2 ]k l kkl 2 2 ∑∑ s k l 2 kl ) / a 2 是所有元素的总平均值, s 2 kk l2 2 ll2 2 kkll 第 2 个系数是 Huynh-Feldt 调整系数 ε (H - F ε ) 。

研究表明,当 ε 真值在 0.7 以上时,用 ε 进行自由度调整后的统计学结论偏于保守,故 Huynh 和 Feldt 提 出用平均调整值 ε 值进行调整。

ε 值的计算公式为ng (a - 1)ε - 2 (a - 1)[(n - 1)g - (a - 1)ε ]式中中的 g 是对受试对象的某种特征(如年龄或性别)进行分组的组数,n 是每组的观察例数。

统计学中的重复测量数据分析

统计学中的重复测量数据分析

统计学中的重复测量数据分析重复测量数据分析是统计学中一个重要的研究领域,它主要用于分析在同一个实验条件下、对同一取样单位进行多次测量所得的数据。

通过对这些重复测量数据进行分析,我们可以获得更准确的估计结果,更深入地了解数据的变化趋势,并进行有效的假设检验。

一、重复测量数据的特点及意义重复测量数据与单次测量数据相比,具有以下几个显著特点:1. 相关性:重复测量数据之间存在一定的相关性,因为它们来自同一个实验条件下的取样单位。

这种相关性需要在数据分析中予以考虑。

2. 可重复性:通过多次测量,我们可以更好地估计测量误差,并提高数据的可靠性和可重复性。

3. 变异度:重复测量数据可以帮助我们更全面地了解数据的变异度,从而更准确地评估实验结果的稳定性和一致性。

重复测量数据的分析有助于我们深入理解数据背后的规律和关系,更准确地判断实验结果的可靠性,并为进一步的统计推断提供基础。

二、可利用的重复测量数据分析方法在统计学中,有许多可利用的方法用于分析重复测量数据。

下面将介绍几种常见的方法:1. 方差分析(ANOVA):方差分析是一种用于比较多个组别间差异的统计方法。

对于重复测量数据,可以使用重复测量方差分析(Repeated Measures ANOVA)来比较多个时刻或处理条件下的测量值之间的差异。

通过分析组间和组内的方差,我们可以确定是否存在显著差异。

2. 相关分析:重复测量数据之间的相关性是分析的重要考虑因素之一。

通过计算相关系数,可以判断多次测量之间的相关程度,并评估相关性是否显著。

3. 重复测量线性模型:重复测量线性模型(Repeated Measures Linear Model)是一种常用的数据分析方法,它将重复测量数据建模为一个线性关系。

通过该模型,可以估计不同因素对测量结果的影响,并进行显著性检验。

4. 重复测量时间序列分析:对于具有时间序列性质的重复测量数据,可以采用时间序列分析方法。

通过建立合适的时间序列模型,可以对数据的趋势、季节性和周期性进行建模和预测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ˆ 49.534 1.266 X , 后舒张压 (Y ) 的回归方程为:Y
截距检验 P=0.014,回归系数检验 P 0.01。
单组前后测量设计与配对设计的区别区别
区别点 两实验单位 观测时间 试验数据与差值关系 分析指标 推断 配对设计 可随机分配 同期 独立 平均差值 组间差别 单组前后测量设计 N 两时间点 N 平均差值、相关回归 前后差别
结果,可以比较处理组间差别。
前后测量设计不能同期观察试验结果,虽
然可以在前后测量之间安排处理,但本质上比
较的是前后差别,推论处理是否有效是有条件
的,即假定测量时间对观察结果没有影响。
2. 配对 t 检验要求同一对子的两个实验 单位的观察结果分别与差值相互独立,差值服 从正态分布。
前后测量设计前后两次观察结果通常与
一、重复测量资料的数据特征
目的:推断处理、时间、处理×时间作用于试
验对象的试验指标的作用。
资料特征:

处理因素 时间因素
g (≥1 )个水平,每个水平有n个
试验对象,共计 gn个试验对象。

同一试验对象在m(≥2 )个时
点获得m个测量值,共计gnm个测量值。

方法:方差分析
前后测量设计

前后测量设计资料是重复测量资料中最为常见 的资料类型,即g=1, m=2, 如表9-1。 和配对设计的数据形式相同,但两者属于完全 不同的实验设计类型。区别如下: 1. 是否随机分配处理(分组); 2. 差值的独立性问题; 3. 数据处理方式的差异。
• •
每一根线代表1位病人
实例举例
血药浓度(μ mol/L)
180 150 120 90 60 30 0
图 10. 附 2
旧剂型 新剂型
4
8
时间(小时)
12
某药新旧剂型血药浓度随时间的变化
重复测量设计的优缺点
• 优点: 每一个体作为自 身的对照,克服了个 体间的变异。分析时 可更好地集中于处理 效应. 因重复测量设计 的每一个体作为自身 的对照,所以研究所 需的个体相对较少, 因此更加经济。 • 缺点: 滞留效应(Carry-over effect) 前面的处理效应有可能 滞留到下一次的处理. 潜隐效应(Latent effect) 前面的处理效应有可能 激活原本以前不活跃的效 应. 学习效应(Learning effect) 由于逐步熟悉实验,研 究对象的反应能力有可能 逐步得到了提高。
ቤተ መጻሕፍቲ ባይዱ
表9-3 高血压患者治疗前后的舒张压(mmHg) 处 理 组 对 照 组 顺序号 顺序号 差值 ( d ) 治疗前 治疗后 治疗前 治疗后 差值 ( d ) 1 130 114 11 118 124 2 124 110 12 132 122 3 136 126 13 134 132 4 128 116 14 114 96 5 122 102 15 118 124 6 118 100 16 128 118 7 116 98 17 118 116 8 138 122 18 132 122 9 126 108 19 120 124 10 124 106 20 134 128
差值不独立,大多数情况第一次观察结果与差
值存在负相关的关系,如表9-1中,治疗前舒
张压与差值的相关系数为-0.602。
3. 配对设计用平均差值推论处理的作用,而 前后测量设计除了分析平均差值外,还可进行相 关回归分析。
如由表 12-1 计算,治疗前后舒张压的相关系 数为 0.963,P<0.01,用治疗前舒张压 ( X ) 推论治疗
第九章
方差分析
一、 完全随机设计资料的方差分析 二、 随机区组设计资料的方差分析
三、 析因设计资料的方差分析
四、重复测量资料的方差分析
五、 多个样本均数的两两比较
六、方差分析前提条件和数据转换
• 学习要求:
1.掌握方差分析的基本思想; 2.掌握单因素、双因素方差分析的应用条件、
意义及计 算方法;
3.熟悉多个均数间两两比较的意义及方法;
差值 16 14 10 12 20 18 18 16 18 18 16.0 3.13
S
比较
表9-2 两种方法对乳酸饮料中脂肪含量的测定结果(%)
编 号 1 2 3 4 5 6 7 8 9 10
哥特里-罗紫法 0.840 0.591 0.674 0.632 0.687 0.978 0.750 0.730 1.200 0.870
脂肪酸水解法 0.580 0.509 0.500 0.316 0.337 0.517 0.454 0.512 0.997 0.506
差值 d 0.260 0.082 0.174 0.316 0.350 0.461 0.296 0.218 0.203 0.364
与配对设计设计的区别
1. 配对设计中同一对子的两个实验单位可 以随机分配处理,两个实验单位同期观察试验
二、设立对照的前后测量设计
表 9-1 中高血压患者治疗后的舒张压平均下 降 了 16 mmHg , 虽 然 经 配 对 t 检 验 :
t 16.18, P 0.01 ,也未必能说明治疗有效,因为
住院休息、 环境和情绪的改变同样可以使血压恢 复平稳。因此,确定疗效的前后测量设计必须增 加平行对照,如将 20 位轻度高血压患者随机分 配到处理组和对照组,试验结果见表 9-3。

表9-1 高血压患者治疗前后的舒张压(mmHg)
编 号 1 2 3 4 5 6 7 8 9 10
X
治疗前 130 124 136 128 122 118 116 138 126 124 126.2 7.08
治疗后 114 110 126 116 102 100 98 122 108 106 110.2 9.31
4.了解方差齐性检验和t’检验的意义及方法;
5.熟悉变量变换的意义和方法。
第四节 重复测量资料的方差分析
重复测量资料:
• 重复测量资料是同一受试对象的同一个观察指标在
不同时间点上进行多次测量所得的资料,常用来分 析该观察指标在不同时间点上的变化特点。这类资 料在临床试验和流行病学研究中较常见。 重复测量资料的反应变量(即被重复测量的观察指 标)可以为连续型(定量指标)或离散型(定性或 分类指标)。 连续型的重复测量资料较为常见,可以采用方差分 析方法进行处理,离散型重复测量资料比较少见, 分析方法更为复杂。此处我们主要讨论连续型重复 测量资料的统计学处理问题。
相关文档
最新文档