幂级数复习总结
高数幂级数知识点

高数幂级数知识点高数幂级数是高等数学中一个重要的概念,通过幂级数可以对一些函数进行近似展开,并得到它们的一些性质以及在某个点附近的近似值。
一、高数幂级数的定义高数幂级数由一列项数不同的幂函数相加而成,通常形式如下: f(x) = a0 + a1(x -x0) + a2(x - x0)^2 + a3(x - x0)^3 + ... 其中,a0,a1,a2,a3等为常数,称为系数;x0为展开点,x为自变量。
二、高数幂级数的收敛域幂级数并不在所有点都收敛,而是在一定范围内收敛。
收敛域由展开点x0和幂级数的收敛半径r决定。
收敛半径可以通过柯西-阿达玛公式计算得到: R = 1 / lim sup |an|^(1/n) 其中,an为系数,n为项数。
当n趋向于无穷大时,计算结果即为收敛半径。
三、高数幂级数的求和公式当幂级数收敛时,我们可以通过求和公式计算幂级数的和。
常见的求和公式有以下几种: 1. 几何级数:当|q| < 1时,幂级数a + aq +aq^2 + aq^3 + ...收敛,且和为A = a / (1 - q)。
2. 指数级数:e^x = 1 + x / 1! + x^2 / 2! + x^3 / 3!+ ...,这是由指数函数的泰勒级数展开得到的幂级数。
3. 三角函数级数:sin(x) = x - x^3 / 3! + x^5 / 5! -x^7 / 7! + ...,cos(x) = 1 - x^2 / 2! + x^4 / 4! - x^6 / 6! + ...,这是由三角函数的泰勒级数展开得到的幂级数。
四、高数幂级数的应用高数幂级数在数学及其他学科中有着广泛的应用,包括但不限于以下几个方面: 1. 近似计算:通过幂级数可以对一些复杂的函数进行近似展开,从而得到它们在某个点附近的近似值。
这在计算机科学、物理学等领域中非常重要。
2. 函数性质研究:通过幂级数可以研究函数的性质,如判定函数的奇偶性、周期性等。
高一数学知识点:幂函数知识点_知识点总结

高一数学知识点:幂函数知识点_知识点总结在高一数学的学习中,幂函数是一个重要的知识点。
它不仅在数学理论中有着关键的地位,也在解决实际问题中发挥着重要作用。
接下来,让我们一起深入了解幂函数的相关知识。
一、幂函数的定义一般地,形如\(y =x^α\)(\(α\)为常数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。
这里需要注意的是,\(α\)可以是有理数,也可以是无理数。
例如,\(y = x^2\),\(y = x^{\frac{1}{2}}\),\(y = x^{ 1}\)等都是幂函数。
二、幂函数的图像幂函数的图像因其指数\(α\)的不同而具有不同的特征。
当\(α > 0\)时:1、\(α > 1\)函数\(y =x^α\)在\(0, +∞)\)上单调递增,且增长速度越来越快;在\((∞, 0)\)上函数无定义。
其图像类似于“一撇”,经过点\((1, 1)\)和\((0, 0)\)。
2、\(0 <α < 1\)函数\(y =x^α\)在\(0, +∞)\)上单调递增,且增长速度越来越慢;在\((∞,0)\)上函数无定义。
其图像类似于“上凸”的曲线,经过点\((1, 1)\)和\((0, 0)\)。
当\(α < 0\)时:函数\(y =x^α\)在\((0, +∞)\)上单调递减,且曲线向\(x\)轴、\(y\)轴无限接近,但永不相交。
在\((∞, 0)\)上函数无定义。
其图像类似于“下凸”的曲线,经过点\((1, 1)\)。
特别地,当\(α = 0\)时,函数\(y = x^0 = 1\)(\(x ≠0\)),是一条平行于\(x\)轴的直线(去掉点\((0, 1)\))。
三、幂函数的性质1、定义域幂函数的定义域与其指数\(α\)有关。
当\(α\)为正整数时,定义域为\(R\);当\(α\)为分数时,要考虑分母的奇偶性以及根号下式子的非负性来确定定义域。
2、值域幂函数的值域也与指数\(α\)有关。
幂级数的知识点总结

幂级数的知识点总结一、幂级数的定义与基本概念1. 幂级数定义幂级数是指形如 $\sum_{n=0}^{\infty} a_nx^n$ 的级数,其中 $a_n$ 是常数,$x$ 是变量。
我们将 $a_nx^n$ 称为幂级数的通项。
当 $x=0$ 时,幂级数收敛,此时幂级数的值为 $a_0$。
当 $x\neq0$ 时,幂级数可能发散,也可能收敛。
2. 幂级数的收敛半径幂级数的收敛半径是指所有幂级数都收敛的 $x$ 范围。
收敛半径 $R$ 的计算公式为\[R = \lim_{n\to\infty} \frac{|a_n|}{|a_{n+1}|}\]当 $R=0$ 时,幂级数只在 $x=0$ 处收敛;当 $R=\infty$ 时,幂级数在整个实数范围都收敛;当 $0<R<\infty$ 时,幂级数在 $(-R,R)$ 范围内收敛。
3. 幂级数的收敛域幂级数的收敛域是指其收敛的 $x$ 区间范围。
我们可以通过比较 $|x|<R$ 和 $|x|=R$ 以及$|x|>R$ 的情况来判断幂级数的收敛域。
二、幂级数的性质1. 幂级数的加法性与乘法性若 $\sum_{n=0}^{\infty} a_nx^n$ 和 $\sum_{n=0}^{\infty} b_nx^n$ 是两个幂级数,由于级数的加法与乘法遵循线性性质,因此这两个幂级数的和与乘积仍然是幂级数,它们的收敛性与原幂级数相同。
2. 幂级数的导数与积分幂级数在其收敛域内可以进行导数与积分运算,这是因为这些运算不会改变收敛性质。
具体来说,对于 $\sum_{n=0}^{\infty} a_nx^n$,它的导数等于 $\sum_{n=1}^{\infty}na_nx^{n-1}$,它的不定积分等于 $\sum_{n=0}^{\infty} \frac{a_n}{n+1}x^{n+1}+C$。
三、幂级数的收敛性与收敛域判断1. 幂级数的收敛性判定判断幂级数 $\sum_{n=0}^{\infty} a_nx^n$ 的收敛性时,我们可以使用比值判别法、根式定理、韦达定理等方法。
高考数学知识点 幂函数知识点_知识点总结

高考数学知识点幂函数知识点_知识点总结幂函数是高中数学中重要的知识点之一,它在高考数学考试中经常出现。
掌握幂函数的知识点对于顺利解决各类与幂函数相关的数学题目至关重要。
本文将对幂函数的相关知识点进行总结和归纳,帮助同学们理清思路,加强对该知识点的掌握。
一、幂函数的定义幂函数是指函数y = x^n,其中x为自变量,n为常数。
在幂函数中,x的指数是常数,y与x之间存在特定的关系。
二、幂函数的图像特点1. 当n为正整数时,幂函数的图像是以原点为中心的相似变换。
当n为正奇数时,函数具有奇对称性,图像关于坐标原点对称;当n为正偶数时,函数具有偶对称性,图像关于y轴对称,并且右侧都是正数部分;当n为正数时,函数图像都通过第一象限。
2. 当n为负整数时,幂函数的图像将关于x轴对称,并且经过第一象限和第三象限的两点。
3. 当n为0时,幂函数的图像为直线y = 1,是一个常数函数。
三、幂函数的性质1. 定义域:所有实数。
2. 值域:当n为正奇数时,函数的值域为(-∞, +∞);当n为正偶数时,函数的值域为[0, +∞);当n为负奇数时,函数的值域为(-∞, 0);当n为负偶数时,函数的值域为[0, +∞)。
3. 单调性:当n为正数时,幂函数在定义域上是递增函数;当n为负数时,幂函数在定义域上是递减函数。
4. 对称性:当n为正奇数时,幂函数的图像关于原点对称;当n为正偶数时,幂函数的图像关于y轴对称;当n为负整数时,幂函数的图像关于x轴对称。
5. 渐近线:当n为正数时,幂函数的图像与x轴无交点;当n为负整数时,幂函数的图像与y轴无交点。
四、幂函数的应用幂函数广泛应用于数学中的各种实际问题中,比如面积、体积、变量关系等。
在解决这些问题时,我们可以通过列方程、求导等方法将其转化为幂函数的求解过程。
例如,求解一个正方形的面积与边长之间的关系。
我们可以将正方形的面积设为y,边长设为x,那么根据正方形的性质可得 y = x^2,这就是一个幂函数的表达式,通过对该函数进行数学分析,我们可以得出边长与面积之间的关系,并解决相关的数学问题。
高考数学知识点幂函数知识点总结

高考数学知识点幂函数知识点总结幂函数是高考数学中的重要知识点之一。
它在求解各类问题中具有广泛的应用。
本文将对幂函数的定义、性质以及解题技巧进行总结,以帮助考生全面掌握相关知识。
一、幂函数的定义与性质1. 定义:幂函数是指形如f(x) = a^x的函数,其中a为实数且a>0且a≠1。
2. 幂函数的基本性质:(1) 当a>1时,幂函数是递增函数;(2) 当0<a<1时,幂函数是递减函数;(3) 幂函数的图象是关于y轴对称的;(4) 当x取整数时,幂函数的函数值为恒定值。
3. 幂函数的特殊情况:(1) 当a>1时,幂函数的图象在x轴正半轴上逼近y轴;(2) 当0<a<1时,幂函数的图象在x轴正半轴上逼近x轴;(3) 当a=1时,幂函数为常数函数。
二、幂函数的常见解题技巧1. 求解幂函数的零点:对于幂函数f(x) = a^x = 0,可以通过求解a^x = 0的条件来得到幂函数的零点。
由于指数函数a^x的定义域为实数集,而等式0^x没有意义,因此幂函数的零点不存在。
2. 求解幂函数的最值:当幂函数f(x) = a^x存在最值时,可以通过导数法求解。
具体步骤为:(1) 求得f'(x) = a^x * ln(a),其中ln(a)表示以e为底的对数;(2) 令f'(x) = 0,解得x = ln(a);(3) 将x = ln(a)带入幂函数,得到最值点或者端点的函数值;(4) 比较得到最值。
3. 幂函数与其他函数的复合:幂函数和其他常见函数的复合,如幂函数与线性函数、指数函数、对数函数的复合等,可以通过替换变量或者利用函数关系进行求解。
具体步骤需要根据题目的要求和已知条件进行灵活运用。
4. 幂函数在实际问题中的应用:幂函数在生活和工作中有广泛的应用,比如指数增长与衰减问题,利润与销售量关系的建模,物理中的涉及到指数增长和衰减的问题等,需要考生能够将幂函数与实际问题相结合,进行建模和求解。
幂级数求和函数方法概括与总结-幂级数总结

幂级数求和函数方法概括与总结-幂级数总结(总14页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除常见幂级数求和函数方法综述引言级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。
中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。
这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。
而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。
同时,他也开始讨论判断无穷级数的敛散性方法。
到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。
中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。
而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。
它在自然科学、工程技术和数学本身方面都有广泛的作用。
幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。
但很多人往往对这一内容感到困难。
产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。
事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。
一、幂级数的基本概念(一)、幂级数的定义[1]u x n 是定义在数集E上的一个函数列,则称1、设()(1,2,3)n12()()(),n u x u x u x x E ++++∈为定义在E 上的函数项级数,简记为1()n n u x ∞=∑ 。
大一高数幂级数知识点

大一高数幂级数知识点幂级数是数学分析中的一个重要概念,它在函数的分析和近似表示中扮演着重要的角色。
本文将介绍大一高数中与幂级数相关的知识点,包括幂级数的定义、收敛性判定、常见的幂级数函数以及求和方法等内容。
一、幂级数的定义和性质幂级数是一种形如∑(an*(x-a)^n)的级数,其中an为常数系数,x是变量,a是常数。
幂级数通常以x为自变量,可以展开为无穷项的多项式。
幂级数的定义如下:【数学公式】其中,an为幂级数的系数,x-a为幂级数的变量项,n为幂级数的指数。
幂级数的收敛区间是使得幂级数收敛的所有x值所构成的区间。
根据幂级数的性质,收敛区间的长度可以是0到正无穷大,也可以是无穷小到无穷大。
当x位于收敛区间时,幂级数才会收敛于一个确定的值。
二、收敛性判定对于给定的幂级数,我们需要判断其在某个特定点或区间是否收敛。
常用的收敛性判定方法有以下几种:1. 比值判别法:根据幂级数绝对值的比值是否小于1来判断其收敛性。
2. 根值判别法:根据幂级数绝对值的n次根是否小于1来判断其收敛性。
3. 阿贝尔定理:对于幂级数∑(anx^n),当x=a时,如果∑(an*a^n)收敛,则对任意|x-a|<|a|,幂级数都收敛。
三、常见的幂级数函数1. 指数函数:幂级数形如∑(x^n/n!),其收敛区间为(-∞, +∞),用以近似表示自然指数函数。
2. 正弦函数和余弦函数:幂级数形如∑((-1)^n*(x^(2n)/((2n)!)))和∑((-1)^n*(x^(2n+1)/((2n+1)!))),分别用以近似表示正弦函数和余弦函数。
3. 自然对数函数:幂级数形如∑((-1)^(n+1)*(x^n/n)),其收敛区间为(-1, 1],用以近似表示自然对数函数。
四、求和方法1. 逐项求和:对于给定的幂级数,可以按照幂级数的定义逐项求和,得到幂级数的和函数。
2. 求导和积分:对于已知的函数,可以通过求导和积分的方式得到其对应的幂级数表示。
级数(函数项级数、幂级数)复习总结

函数项级数、幂级数一、 函数项级数概念121()()()(),n n n u x u x u x u x ∞==++++∑0I x ∈定义区间前n 项部分和函数1()()n n k k S x u x ==∑和函数1()()n n S x u x ∞==∑,x ∈收敛域二、 幂级数及其收敛域0n nn a x ∞=∑收敛域/发散域图:注:条件收敛的点只可能出现在分界点上!概念:R :幂级数收敛半径收敛区间:),(R R -收敛域:⋃-),(R R 收敛端点如何求收敛半径?定理(Cauchy-Hadamard)若0n nn a x ∞=∑所有系数满足),1,0(,0 =≠n a n,1lim +∞→=n n n a a R ∑∞=0n n nx a 的收敛半径为R ,则∑∞=-00)(n n n x x a 的收敛域为⋃<-R x x ||0收敛端点。
1. 求n n x n n 202)!(!)2(∑∞=收敛半径。
2. 求∑∞=-+112)]13[ln(n n n x 的收敛域。
三、 和函数性质定理幂级数n n nx a ∑∞=0的和函数)(x S 在收敛域上连续;在收敛区间内可“逐项求导”和“逐项积分”,运算前后收敛半径相同,但收敛域可能改变。
逐项求导——1100)()()(-∞=∞=∞=∑∑∑='='='n n n n n n nn n x a n x a x a x S ,),(R R x -∈ 逐项积分——10000001d d d )(+∞=∞=∞=∑∑⎰⎰∑⎰+===n n n n x n n x n n n x x n a x x a x x a x x S ,),(R R x -∈● 注意点:n n n x a ∑∞=0,11-∞=∑n n n x a n 和101+∞=∑+n n n x n a 收敛半径相同,但端点处的敛散性可能改变。
逐项求导是特别注意0次项的求导!● 利用几何级数结论做题——xx n n -=∑∞=110,)1,1(-∈x 步骤:先求收敛半径,收敛域;在收敛区间内,利用和函数性质:逐项求导/逐项积分等求和函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 n1
nxn1 2n
,
x(2,2)
1x2arctxa,nx0
2. 设 f (x) x
, 将 f (x)展开成
1 ,
x 0
x 的幂级数 , 并求级数
(1) n n11 4n 2
的和.
解:
1 1 x2
(1)n x2n,
n0
x(1,1)
x
arctxan
0
1
1 x
2
d
x
• 数项级数 直接求和: 直接变换, 求部分和等 求和 间接求和: 转化成幂级数求和, 再代值
例3. 求幂级数 n 0(1)n(2nn 11)!x2n1的和函 . 数
法1 易求出级数的收敛域为( ,)
原式 1 2n 0( 1 )n(2n1 1 )!(x2n2) 12xn 0(2( n1)1n)!x2n1
1
dt t
1 x
x
1
t
t
d
t
0
0
(0x1)
ln1 (x)11ln(1x) x
1(11)ln(1x) x
即得
x n
n1 n(n 1)
1(11)ln(1x), x
0 x 1
显然 x = 0 时, 和为 0 ; x = 1 时, 级数也收敛 .
根据和函数的连续性 , 有
1 (1 1 )l( n 1 x ), 0 x 1 及 x 1 x
(0 x2 1) 2
显然 x = 0 时上式也正确, 而在 x 2 级数发散,
故和函数为
S(x)
2x2 (2x2)2
,
x (2,
2).
(2) 原式 n 11 nn11xn
x0
n1
x
t n1 d t
0
n1
1 x
x 0
t
n
d
t
x
t n1
d
t
1x
tn
d t
0 n1
x 0 n1
x
1
S(x)1sixnxcox,sx (, ) 22
练习: 例题 . 求下列幂级数的和函数:
(1) n 12n2n1x2(n1); (2)
xn
.
n1 n(n 1)
x≠0
解: (1)
原式 n 121n(x2n1) 1xn1(x22)n
1 x
1
x2
2
x2 2
x 2 x2
2 x2 (2 x2 )2
12n 11(14)nn2 x2n,
x[1,1]
(1)n
n11 4n2
1[ 2
f
(1)1]
4
1 2
2. 函数的傅里叶级数展开法
系数公式及计算技巧; 收敛定理; 延拓方法
练习:
例题. 设 f (x)是周期为2的函数, 它在 [,)
上的表达式为 f(x) e0x,,
x[,0) x[0,)
y
将其展为傅里叶级数 .
1
n 1
e
(1)n 1 n2
1
(cno x n ssinn )x
( x k ,k 0 , 1 , 2 , )
思考: 如何利用本题结果求级数 n 0e1(1n)n21的和 ?
提示: 根据付式级数收敛定理 , 当 x = 0 时, 有
e 1
2
1
n 1
e (1)n 1 1 n2
f(0)f(0) 2
k 1
k 1
lim
n
an1 an
,
limn
n
an
极限不存在
∴ 其收敛半径 RmR i1,n R 2} {1 4
二、幂级数和函数的求法
• 求部分和式极限
• 初等变换法: 分解、套用公式
• 映射变换法(在收敛区间内)
anxn
n0
难
逐项求导或求积分
S(x)
对和式积分或求导
a
n
xn
n0
求和
S * ( x)
S(x) 0 ,
x 0
1 ,
x 1
三、函数的幂级数和傅里叶级数展开法
1. 函数的幂级数展开法 • 直接展开法 — 利用泰勒公式 • 间接展开法 — 利用已知展式的函数及幂级数性质
1 1. 将函数 ( 2 x ) 2 展开成 x 的幂级数.
解:
1 (2x)2
1 2x
1ቤተ መጻሕፍቲ ባይዱ2
1 1
x 2
12
xn
1( x sinx) 2
1sinxxcoxs, x (, ) 22
法2 先求出收敛区间( , ), 设和函数为S(x),则
x
S(x)dx (1)n
n1
x
x2n1dx
0
n0
(2n1)!
0
1 (1)n x2n2
2 n0(2n1)!
x (1)n x2n1
2n0(2n1)!
x 2
sin
x
解: 因 lim un1(x) n un (x)
lim
n
n1 2n1
x
2(n1)
n 2n
x 2n
x2 2
当 x 2 1 , 即 2x 2时级, 数收敛; 2
当 x2时 ,一般项 un n不趋于0, 级数发散;
故收敛区间为 (2, 2).
例2. 求幂级 n 1[3 数 ( n1)n]nxn的收敛 . 半径
一、求幂级数收敛域的方法
• 标准形式幂级数: 先求收敛半径 R , 再讨论 xR 处的敛散性 . 通过换元转化为标准形式
• 非标准形式幂级数 直接用比值法或根值法
练习:
例题. 求下列级数的敛散区间:
(1) (11)n2 xn ;
n1
n
(2) n x2n .
2n
n 1
(1) (1 1)n2 xn
解答提示
o x
1
an
0excosnxdx1ex(ns1 in nn x2cons)x0
1e1 ( 1 n )n 2 1 (n0,1 ,2, )
bn10exsind xx1ex(sn i1 n xnn 2cons)x0
n1 1 e (n 2 1 )n (n1,2,)
f (x)e21
(1)n x2n1, n02n1
x[1,1]
于是
f (x) 1 (1)n x2n (1)n x2n2
n12n1
n02n1
f
(x)
1 (1)n x2n n12n1
(1)n x2n2 n02n1
1 (1)n x2n (1)n1 x2n
n12n1
n1 2n1
1n 1( 1 )n 2n 1 12n 1 1 x2n
解:
n1
n
n l i m nan
lim (11)ne n n
R 1 , 即1x1 时原级数收敛 .
e
ee
当 x 1 时, e
un
(1
1 n
e
)n
n
(11)n1e n
1
(1 1 ) n
10 (n) e
因此级数在端点发散
,
n
故收敛区间为(
1 e
,
1 e
).
(2)
n 1
n 2n
x2n
解: 分别考虑偶次幂与奇次幂组成的级数
k (x)
k 1
42k k1 2k
x2k ,
k
k 1
(x)
22k1 x2k1 k12k 1
nl im nn1((xx))
(4x)2,
R1
1 4
注意:
nl im nn1((xx))
(2x)2,
R2
1 2
∵ 原级数 = k ( x ) k (x)