变量间的相互关系

合集下载

用图像表示变量间的关系

用图像表示变量间的关系

⑥ 90
60 ②


20 24 时间/分
判断速度随时间的变化情况:
怎样看图:
从左往右若图象上升,表明速度增大;
若图象下降,表明速度减小;
若图象与横轴平行;则表明速度保持不变,
尝试
探究 洪峰公司根据工作需要,准备租一辆面包车,
经考察,个体车与出租车公司的月租金计算方法如图所示,请 你根据图中提供的信息,与同伴讨论一个租车方案,
__关__系_式__法__
给定一个变量的值可求出另一个变量的值
__图__象__法_
能够直观地看出变量间的变化__趋__势_
在图象中
上升线------表示因变量随自变量的增大而增大; 水平线-----表示因变量随自变量的增大而不变; 下降线------表示因变量随自变量的增大而减小, 以上三点是打开“解决图象类问题”的一把万能钥匙 ,
y元
200 150 100 50
0
乙 1 当每月通话时间为多少时,两
A

公司的收费相同 2 当每月通话时间在什么范围
时, t/分钟 应选择乙公司 100 200 300 3 当每月通话时间在什么范围
时,
应选择
甲公司
变量之间关系的三种表示方法
变量之间关系的表示 __列__表__法_
特征 能看出两个变量之间的_变__化__关系
随堂练习:
1.柿子熟了,从树上落下来.下面的那一幅图可以 大致刻画出柿子下落过程中 即落地前 的速度的 变化情况




0
时间
1
0
时间
2


正确
0 3
时间
速 度
0 4 时间

两个连续变量之间的相关关系

两个连续变量之间的相关关系

两个连续变量之间的相关关系两个连续变量之间的相关关系,即指两个随机变量之间的相关性。

它是衡量两个连续变量之间相互依赖程度的重要指标。

在数据分析、统计学以及机器学习等领域,相关性分析是一项基础而重要的任务。

一、计算相关性系数在统计学中,通常通过相关系数来衡量两个连续变量之间的相关关系。

相关系数通常是在-1到1之间取值,其中-1表示完全的负相关关系,即两个变量之间有完全相反的关系;1则表示完全的正相关关系,即两个变量之间具有完全相同的变化趋势;而0则表示两个变量之间没有线性关系。

计算相关系数的方法有多种,其中比较常用的是皮尔逊相关系数和斯皮尔曼等级相关系数。

皮尔逊相关系数适用于连续型变量,并且假设变量服从正态分布。

斯皮尔曼等级相关系数则适用于序数型数据以及不满足正态分布的变量。

在这里以皮尔逊相关系数为例进行说明。

二、使用Python计算相关性系数在Python中,统计分析库numpy和pandas都提供了计算相关性系数的函数。

numpy提供的pearsonr函数可以计算两个变量之间的皮尔逊相关系数以及相关性显著性;而pandas提供的corr函数可以计算两个DataFrame对象中所有列的相关系数矩阵。

下面通过一个例子来说明如何使用Python计算相关系数。

```pythonimport numpy as npimport pandas as pd# 构造样本数据x = np.array([1, 2, 3, 4, 5])y = np.array([2, 4, 6, 8, 10])# 计算皮尔逊相关系数correlation, p_value = np.corrcoef(x, y)[0][1],scipy.stats.pearsonr(x, y)[0]print(f"皮尔逊相关系数: {correlation:.4f} (p-value:{p_value:.4f})")# 构造DataFrame对象df = pd.DataFrame({'x': [1, 2, 3, 4, 5], 'y': [2, 4, 6, 8, 10]})# 计算相关系数矩阵corr_matrix = df.corr()print(f"相关系数矩阵: \n{corr_matrix}")```以上代码首先构造了两个变量x和y,分别表示1到5的整数和2到10的偶数。

用图象表示的变量间关系(绝对经典)

用图象表示的变量间关系(绝对经典)

度更快?
80
(3)当小明到达终点时,小亮所跑 60
的路程是多少?
40
小明 小亮
(4)小明和小亮到达终点后如果 20
各自继续以原速度往前跑,他们 能否相遇?利用图象加以解释.
0
2 4 6 8 10 12 12.5
(1)小明和小亮的百米成绩各是多少?(2)两人的速度各是多少?谁的速度更 快?(3)当小明到达终点时,小亮所跑的路程是多少?(4)小明和小亮到达终点 后如果各自继续以原速度往前跑,他们能否相遇?利用图象加以解释.
A
S D
4
B
P
C
图(1)
0
4 图(2)
6x
如图一,在长方形MNPQ中,动点R从点N出发,沿
路程相同的情况发生,所以两人不会
相遇.
0 2 4 6 8 10 12 12.5
如图(1),在长方形ABCD中,AB=2,动点P从点B出发,
沿路线B→C→D作匀速运动,图(2)是此运动过程中,
三角形PAB的面积S与点P运动的路程x之间的关系图
D 象,则BC+CD的长为 A.3 B.4 C.5 D.6
1.一个变化过程中,有变量和常量。 2.两个变量: 自变量和因变量,表示的意义,书写形式 3.变量间的关系表示法 第一表格法 第二关系式法 (1)利用公式(2)根据表格(3)实际问题 第三图像法
第三章变量之间关系
用图象表示的变量间关系
知识点1用图象表示两个变量之间的关系
1.图象法:是指用图象来表示两个变量之间 关系的方法。 2.图象的基本特征:横轴(x轴)上的点表示自 变量,纵轴(y轴)上的点表示因变量.图象上 的每个点表示自变量和因变量之间的相互 关系. 3.优点:能直观、形象地反映因变量随着自 变量变化的趋势

变量间的相互关系

变量间的相互关系

从上表发现,对某个人不一定有此规律,但对很多个体放在 一起,就体现出“人体脂肪随年龄增长而增加”这一规律. 表中各年龄对应的脂肪数是这个年龄人群的样本平均数. 我们也可以对它们作统计图、表,对这两个变量有一个直观上 的印象和判断.
下面我们以年龄为横轴,
脂肪含量为纵轴建立直 40
角坐标系,作出各个点,35
求回归直线方程的步骤:
第一步:列表 xi, yi, xi yi
n
n
n
第二步:计算: x,y, xi2, yi2, xiyi
i1
i1
第三步:代入公式计算b,a的值 xi yi xi•yi
i1
第四步:列出直线方程。
画图1
例2 观察两相关量得如下数据:
i 1 2 3 4 5 6 7 8 9 10
x -1 -2 -3 -4 -5 5 3 4 2 1
i 1 2 3 4 5 6 7 8 9 10
xi
10 4
18 0
19 0
17 7
14 7
13 4
15 0
19 1
20 4
121
yi
10 0
20 0
21 0
18 5
15 5
13 5
17 0
20 5
23 5
125
xi yi
10 40 0
36 00 0
39 90 0
32 74 5
22 78 5
18 09 0
n
2 2 回归直线:观察散点图的特征,如果各点大致分布在一条直线的附近,就称两个变量之
2
(x x) x nx i 间具有线性相关的关系,这条直线叫做回归直线。
i
i1
i1

变量之间的关系有哪三种

变量之间的关系有哪三种

变量之间的关系有哪三种
变量之间的关系可用表格,函数关系式,图象法三种方法表示。

变量之间的关系是相关关系。

相关关系是客观现象存在的一种非确定的相互依存关系,即自变量的每一个取值,因变量由于受随机因素影响,与其所对应的数值是非确定性的。

相关分析中的自变量和因变量没有严格的区别,可以互换。

变量相关关系:当一个或几个相互联系的变量取一定的数值时,与之相对应的另一变量的值虽然不确定,但它仍按某种规律在一定的范围内变化。

变量间的这种相互关系,称为具有不确定性的相关关系。

当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,我们称这种关系为确定性的函数关系。

马赫的要素一元论把科学和认识所及的世界归结为要素的复合,又把要素解释为感觉,认为这个世界以人的感觉为转移。

他指出,人的感觉是相同的,对于同一对象,不同的人乃至同一个人在不同的情况下会有不同的感觉,因此,世界上事物的存在只是相对的。

变量间的相关关系及独立性检验

变量间的相关关系及独立性检验
非线性相关关系可以是单调递增、单调递减、先增后减、先减后增等多种 类型。
判断两个变量之间是否存在非线性相关关系可以通过绘制散点图或计算非 线性相关系数等方法来进行。
相关系数及其计算
相关系数是衡量两个变量之间相关关系的统计量,其计算方法有多种,其中最常用的是皮尔逊相关系 数和斯皮尔曼秩相关系数。
皮尔逊相关系数使用积差法计算,其值介于-1和1之间,用于衡量线性相关关系的强度和方向。斯皮尔 曼秩相关系数则用于衡量等级数据之间的相关性。
变量间的相关关系及独立性检验
目录
• 变量间的相关关系 • 变量间的独立性检验 • 变量间的因果关系推断 • 相关性与独立性的区别与联系
01
变量间的相关关系
线性相关关系
线性相关关系是指两个或多个变量之间存在一种可以用直 线表示的依赖关系。当一个变量发生变化时,另一个变量 也会随之发生相应的变化。
独立性检验
常用于验证两个变量之间是否存在直 接的因果关系,例如在经济学中检验 货币政策是否对经济增长有影响,或 者在心理学中检验某种疗法是否对心 理健康有影响。
THANKS。
因果关系推断的方法
基于理论的推断
01
根据相关学科的理论和知识,推断变量之间的因果关
系。
基于相关关系的推断
02 通过分析变量之间的相关系数、相关图等,推断变量之间的因果关系。基于实验的推断03
通过实验的方式,控制其他变量的影响,观察单一变
量的变化对结果变量的影响,从而推断因果关系。
因果关系推断的局限性
相关性与独立性的联系
相关性和独立性是描述变量间关系的 两种不同角度,有时一个变量可能既 与另一个变量相关,又与第三个变量 独立。
在某些情况下,相关性和独立性可能 相互转化,例如当引入第三个变量时 ,两个原本独立的变量可能变得相关 。

(9)第9章 相关分析

(9)第9章  相关分析



列边缘分布
列观察值的合计数的分布 例如,四个分公司接受调查的人数分别为 100 人, 120 人, 90人,110人
2. 条件分布与条件频数


变量 X 条件下变量 Y 的分布,或在变量 Y 条件下 变量 X 的分布 每个具体的观察值称为条件频数
9 - 17
社会 统计学
条件频数
观察值的分布
期望频数的分布
(例题分析)
一分公司 二分公司 三分公司 四分公司
赞成该 方案
实际频数 期望频数
实际频数 期望频数
68 66
32 34
75 80
75 40
57 60
33 30
79 73
31 37
反对该 方案
9 - 23
2
社会 统计学
列联表 (独立性)检验
判断两个分类变量之间是否存在联
系。对父母的孝敬程度是否与孩子的
9 - 32
社会 统计学
相关系数
(原理分析)
一个简化的 22 列联表
因素 Y y1 y2 合计
9 - 33
因素 X x1 x2
合计
a c a+c
b d b+d
a+b c+d n
社会 统计学
相关系数
(原理分析)
列联表中每个单元格的期望频数分别为 (a b)(a c) (a c)(c d ) e11 e21 n n (a b)(b d ) (b d )(c d ) e12 e22 n n 将各期望频数代入 的计算公式得
9 - 30
社会 统计学


利用2的相关测量

变量间的相互关系

变量间的相互关系




ˆ b
( x x)( y y) x y n x y
i 1 i i
n
n
( x x)
i 1 i
n

2
i 1 n
i
i
x
i 1
2 i
nx
2
,
ˆx ˆ y b a
例1:观察两相关变量得如下表:
x y
解:
-1 -9
-2 -7
-3 -5
-4 -3
-5 -1
(2)当x=5时, y=30.3676≈30.37。
小结
1、现实生活中存在许多相关关系:商品销售与 广告、粮食生产与施肥量、人体的脂肪量与年 龄等等的相关关系. 2、通过收集大量的数据,进行统计,对数据 分析,找出其中的规律,对其相关关系作出 一定判断. 3、由于变量之间相关关系的广泛性和不确定 性,所以样本数据应较大,才有代表性.才能对 它们之间的关系作出正确的判断.
25 脂肪含量
如图:
20 15 10 5 年龄
O
20 25 30 35 40
45 50 55 60 65
我们再观察它的图像发现这些点大致分布在一条 直线附近,像这样,如果散点图中点的分布从整体上看 大致在一条直线附近,我们就称这两个变量之间具有 线性相关关系,这条直线叫做回归直线,该直线叫回归 直线方程。 脂肪含量
Ù
= bx + a
7.回归方程被样本数据惟一确定,各样本点 大致分布在回归直线附近.对同一个总体, 不同的样本数据对应不同的回归直线,所以 回归直线也具有随机性.
8.对于任意一组样本数据,利用上述公式都 可以求得“回归方程”,如果这组数据不具 有线性相关关系,即不存在回归直线,那么 所得的“回归方程”是没有实际意义的.因此, 对一组样本数据,应先作散点图,在具有线 性相关关系的前提下再求回归方程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变量间的相关关系
一、教材分析
本节知识内容不多,但分析本节内容,至少有下列特点:
1、知识的联系面广,应用性强,概念的真正理解有难度,教学既要承前启后,完成统计必修基础知识的构建;也要知道知识的来龙去脉,提升学生运用统计知识解决实际问题的能力,更要抓住本质,正确理解统计推断的结论。

2、通过典型案例进行教学,使知识形成的过程中具有可操作性,易于创设问题情境,引导学生参与,而学生借助解决问题,通过自主思维活动,会产生感悟、发现,能提出问题,思考交流,不仅能正确、全面地理解基础知识和基本方法,而且能促进、发展学生的统计意识、统计思想。

二、学生分析
本节是一种对样本数据的处理方法,但侧重的是由样本推断总体,其方法是学生初识的、知识的作用也是学生初见的。

知识量并不大,但涉及的数学方法、数学思想较充分,同时,在教材中留有供发现的点,设有开放性问题,既具有体验数学方法、数学思想的功能,也具有培养学生从具体到抽象能力、锻炼创造性思维能力的作用。

三、教学目标
1、通过收集现实问题中两个有关联变量的数据做出散点图,并利用散点图直观认识变量间的相关关系;
2、知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。

四、教学环境
简易多媒体教学环境
五、信息技术应用思路
1、使用哪些技术?
(1)用几何画板画散点图;
(2)用PPT动画效果制作线性回归直线。

2、在哪些教学环节如何使用这些技术?
(1)在讲解人体脂肪含量和年龄关系时,根据表中给出的数据,用几何画板画出
两者关系的散点图;在讲热饮的杯数与气温关系时,同样用几何画板直观的画出
散点图。

(2)根据散点图画线性回归直线时,用PPT动画制作。

3、使用这些技术的预期效果
(1)用几何画板画散点图,容易操作,容易改变数据,互动性很好,能激发学生
的求知欲;
(2)用PPT动画制作线性回归直线,更直观,动态效果好,能调动学生的学习积
极性。

教学重点、难点
重点:做出散点图和根据给出的线性回归方程系数公式建立线性回归方程。

难点:对最小二乘法的理解。

教学方法
1、自主探究,互动学习
2、新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作
探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
课前准备
1、学生的学习准备:预习课本,初步把握必须的定义。

2、教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后
延伸拓展学案。

课时安排:1课时
六、教学流程设计
〖复习回顾〗
标准差的公式为:______________________________________________________ 〖创设情境〗
1、函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系
2、在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题。

”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?
3、“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?
〖新知探究〗
思考:考察下列问题中两个变量之间的关系:
1、商品销售收入与广告支出经费;
2、粮食产量与施肥量;
3、人体内的脂肪含量与年龄.
这些问题中两个变量之间的关系是函数关系吗?
(一)相关关系:
自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫
做相关关系。

【说明】函数关系是一种非常确定的关系,而相关关系是一种非确定性关系。

思考探究:
1、有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语。

吸烟是否
一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”
的说法对吗?
2、某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,
如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿
出生率低,于是他得出了一个结论:天鹅能够带来孩子。

你认为这样的结论可靠吗?
如何证明这个问题的可靠性?
分析:(1)吸烟只是影响健康的一个因素,对健康的影响还有其他的一些因素,
两者之间非函数关系即非因果关系;
(2)不对,这也是相关关系而不是函数关系。

上面提到了很多相关关系,那它们之间的相关关系强还是弱?我们下面来研究一
下。

(二)散点图
探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据: 其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数。

思考探究:
1、对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出
一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?
2、为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分
析,通过作图可以对两个变量之间的关系有一个直观的印象.以x 轴表示年龄,y 轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?
3、观察人的年龄的与人体脂肪含量散点图的大致趋势,有什么样的特点?阅读课本85~86P ,这种相关关系我们称为什么?还有没有其他的相关关系?它又有怎样的特点?
(三)线性相关、回归直线方程和最小二乘法
在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?
如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线。

我们所画的回归直线应该使散点图中的各点在整体上尽可能的与其接近。

我们怎么来实现这一目的呢?说一说你的想法。

设所求的直线方程为y
ˆ=bx +a ,其中a 、b 是待定系数。

则y ˆi =bx i +a (i =1,2,…,
n ).于是 得到各个偏差
y i -y ˆi =y i -(bx i +a )(i =1,2,…,n )
显见,偏差y i -y
ˆi 的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n 个偏差的平方和
Q =(y 1-bx 1-a )2+(y 2-bx 2-a )2+…+(y n -bx n -a )2 表示n 个点与相应直线在整体上的接近程度。

记Q =∑=--n
i i i a bx y 12)(这样,问题就归结为:当a 、b 取什么值时Q 最小,a 、b 的
值由下
面的公式给出:⎪⎪

⎩⎪⎪⎪


-=--=---=∑
∑∑
∑====.
,
)())((1
2
2
1
12
1
x b y a x n x y
x n y
x x x y y x x b n
i i n
i i
i
n
i i n
i i i
其中x =
n
1

=n
i i x 1
,y =
n
1
∑=n
i i
y
1
,a 为回归方程的斜率,b 为截距。

求回归直线,使得样本数据的点到它的距离的平方和最小的方法叫最小二乘法。

【例题精析】
有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的饮料杯数与当天气温的对比表:
1、画出散点图;
2、从散点图中发现气温与热饮杯数之间关系的一般规律;
3、求回归方程;
4、如果某天的气温是2℃,预测这天卖出的热饮杯数。

解:4、当x=2时,y=143.063
(四)反思总结,当堂检测。

1、求样本数据的线性回归方程,可按下
列步骤进行:
(1)计算平均数x,y;
(2)求a,b;
(3)写出回归直线方程。

2、回归方程被样本数据惟一确定,对同一个总体,不同的样本数据对应不同的回归直线,所以回归直线也具有随机性.。

3、对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具线性相关关系,即不存在回归直线,那么所得的“回归方程”是没有实际意义的。

因此,对一组样本数据,应先作散点图,在具有线性相关关系的前提下再求回归方程
教师组织学生反思总结本节课的主要内容,并进行当堂检测。

设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。

(课堂实录)(五)发导学案、布置预习。

完成本节的课后练习及课后延伸拓展作业。

(六)板书设计
本节课学习了变量间的相互关系和两个变量的线性相关,以及最小二乘法和回归直线的定义,体会了用最小二乘法解决两个变量线性相关的方法,在解决问题中要熟练掌握求回归系数b、a的公式,精确计算.同时,要注意培养学生的观察分析两变量的关系和抽象概括的能力。

七、教学特色
1、本课的设计采用了学生预习本节内容,找出自己迷惑的地方;
2、课堂上师生注重解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测;
3、课后进行延伸拓展,以达到提高课堂效率的目的。

相关文档
最新文档