非金属管线探测的四种方法
非金属管线探测

非金属管线探测的四种方法1、脉冲探测法2、固定信标探测法3、移动信标探测法4、探地雷达法探测脉冲探测法非金属管线脉冲定位仪的适用范围:内部流体为液态,带压力的非金属管道。
其原理是声波原理,利用声音在管道及其内部液体的传播特性来探测管道的位置。
其基本使用方法是:利用振荡器给管道加一个特定频率的声音信号,利用拾音器在远端路面采集由管道传过来的声波,从而达到对管道的定位。
非金属管线脉冲定位仪只能对管道进行平面定位,不能测定埋深;由于声波的衰减特性,仪器最适用于小口径管道的探测上,大口径声波的衰减太快;对于埋设太深的管道探测难度较大;使用场所必须有管道设施的暴露点,以便安装振动器。
固定信标探测法信标探测器通过发送可使地下信标感应的特定低频脉冲信号,定位预埋于地下管道上方的信标的分布;该仪器把这种感应信号转变为音频报警信号从而确定管道位置。
信标探测仪可探测圆柱形或环状的地下信标。
不同埋设深度的信标对应不同的频率。
该技术应用于地下非金属管道的定位。
该方法可代替传统在非金属管道上方预埋设金属示踪带,并避免一旦示踪带被挖断就无法对管道进行定位的弊端。
埋地信标探测法只适合于在管道施工时及管道抢修后,在管道重要的位置(如:三通,拐点,盲端)的上方布设信标,通过该方法可有效区分平行管道及交叉管道,给用户区分辩识管道提供依据.移动信标探测法利用信标探测仪定位管道,其基本的工作原理是通过追踪“信标”在管道中的移动从而定位管道的路径。
信标可以做为一个小发射机来使用,使用时利用玻璃钢穿孔器和连接绳;或者利用刚性和半刚性电缆推进装置;或者利用CCTV管道爬行器将信标置入管道内部,利用信标探测器接收机在路面上接收信标发射的磁场信号,从而对管道定位和定深。
从使用方法上来看,信标法探测的前题是只能应用于开放式的管道,即:非压力管道、重力管道、带有检修井或是窨井等设施。
从这一层面来说只适用于:排水管道。
信标法在探测范围上有很大的局限。
地下非金属管线实用探测方法浅析

图 2 探地雷达探测过路管线
图 2 为探测 过 路管线 成果 图,可以看到探地雷达在
外 界 干 扰 因 素 较 小 的 情 况 下 ,对绝大 多 数 地 下 管 线 均 有
比较明显的识别,主要反映为向上隆起的波形特征。 一
般 情 况 下 , 金 属 管 线 (钢 管 、 铸 铁 管 、 电 缆 ) 的 反 射 异
发射天线T 以短脉冲、宽频带的方式向地下发射高 频 电 磁 波 ,遇到非 金 属 地 下 管 线 时 ,就会有部分电磁能 量 发 生 反 射 形 成 反 射 波 (如 图 1 ) 。 由 于 介 质 的 相 对 介 电 常 数 s 不 同 ,导 致 反 射 系 数 的 不 同 。反 射 系 数 越 大 (相 对 介 电 常 数 差 异 越 大 ),反 射 波 能 量 越 强 ;反射系数为
(PE 常 比 非 金 属 管
管 和 水 泥 管 )要 强 烈 得 多 。区别到底
是金属管还是非金属管道,主 要 是 结 合 RD8000金属管
线 探 测仪的探测 成 果 ,综合地面明显点标志来进行分析 判 断 。图 3 为探 地 雷 达 变 密 度 显 示 剖 面 ,混凝土中的排
水 管 道 在 剖 面 上 反 映 为 较 强 的 “亮 点 ”效 果 , 与 周 围 地
2017年第5 期 (总第80期) 1103
Huabei Land and R e so urce s — 华北国土资源|
动 ,便可将反射 界 面 的 反 射 波 依 次 排 列 成 雷 达 图 像 ,通 过对雷达图像的 分 析 研 宄 以 及 时 深 转 换 ,我们便可以预 判 出 地 下 管 线 的 走 向 、深 度 等 相 关 信 息 。
浅述地下管线非开挖探测技术

浅述地下管线非开挖探测技术1 引言管线探测主要是指确定地下管线的走向、埋深等指标参数,本文在分析了目前国内外各种探测方法和探测仪器优缺点的基础上,重点研究了管线探测技术在复杂管线的探深定位方面的应用,以期为城市非开挖管线施工提供理论及技术支持。
2 地下管线常用的探测方法及仪器2.1 非金属管线探测中存在的问题目前管线探测行业所使用的金属管线探测仪以电磁感应类居多,常用的探测方法有以下几种:(1)直接法[1] 该方法主要适用于存在有出露点的金属管线。
直接法的连接方式有三种:双端连接、单端连接及远接地单端连接。
接收机能够接收到较强的电磁信号,对管线的定位及定深精度都较为精确,对存在相邻管线干扰时,直接法特别有效。
(2)夹钳法夹钳法是利用管线探测仪配备的夹钳(耦合环)夹住被探测的管线,通过夹钳把电磁信号加载到被探测的管线上,从而达到对管线追踪定位的目的。
此方法信号强,定位定深精确度高,适用于管线直径小且不宜使用直接法探测的金属管线或电缆,如电力、电信类电缆、燃气管线等。
(3)电磁感应法该方法是以地下管线与周围介质的导电性及导磁性差异为主要物性基础,根据麦克斯韦电磁场理论和电磁感应原理观测和研究电磁场空间分布规律,从而达到对被探测的管线进行搜索、追踪定位的目的。
(4)地质雷达法是利用脉冲雷达系统连续向地下发射高频电磁波,并由接收天线连续接收地下介质反射回来的电磁波,在经过专用软件处理后,获取地下不同目标体雷达波的反射图像,通过对图像的分析解释可以确定管线的位置和埋藏深度。
地质雷达的优点在于无损、连续检测、精度高、样点多、效率高等。
2.2 非金属管线探测中存在的问题非金属管线按材质可分为:钢筋混凝土管、陶瓷管、玻璃钢、PVC管等,由于这些材质不具备导电性,在主动源和被动源中都没有信号可接受,因此给管线探测工作带来一定的困难。
常规的管线探测仪对非金属管线探测效果不好,必须采用特殊的探测方法进行探测,比如示踪电磁法、地质雷达等。
管径200的非金属管线探测方案

管径200的非金属管线探测方案
1.选择适当的探测设备:非金属管线通常无法通过传统的金属探测器来探测,因此需要采用其他技术。
一种常用的方法是使用地质雷达,它可以通过探测地下的物质差异来定位非金属管线。
2.确定探测区域:在开始探测之前,需要明确要探测的区域范围。
这可以通过相关的工程图纸、地理信息系统(GIS)数据或与相关部门的沟通来实现。
3.进行地面预处理:在进行探测之前,需要对地面进行适当的准备工作。
这包括清理杂物、移除表面覆盖物以及标记地面上的标志点,以便更好地定位管线。
4.使用地质雷达进行探测:将地质雷达设备沿着预定的探测路径移动,确保完整地覆盖整个探测区域。
地质雷达将发送无线电波到地下,并通过接收反射回来的波来识别管线。
5.分析和解读数据:收集到的地质雷达数据需要进行分析和解读,以确定管线的位置和走向。
专业的地质雷达软件可以帮助将数据转化为可视化的地图或图表,使得管线的位置更加清晰可见。
6.标记管线位置:根据数据分析结果,使用临时标记物(如颜色标记喷漆、小旗帜等)在地面上标记出管线的位置。
这将有助于后续的工程施工和维护工作。
管线探测方法

管线探测方法(1)磁电充电法(或称直连法):发射机一端接金属管线,另一端接地,将交变电流直接注入地下金属管线,观测管线电流产生的磁场。
可对各种金属管线进行扫描定位、测深、连续追踪并区分相邻管线。
由于管线电流产生的信号很强,故信噪比和分辨率均较高,水平定位、垂直测深精度最高,但必须有金属管线出露点。
在各种方法中,探测效果最好。
(2)电偶权感应法:发射机两端接地,在金属管线中产生感应电流,观测管线电流激励的电磁信号。
可搜索、追踪地下各种金属管线。
管线不需有地表露头,且信号较强,但应具备接地条件。
在有接地条件的地段,可用来探测金属管线。
(3)磁偶极感应法:由发射线圈产生一次交变电磁场,使金属管线产生感应电流.观测管线中感应电流在地面上产生的二次电磁场以确定管线在地下的分布状态。
在无管线露头及不具备接地条件的城市可用来确定管线走向、平面位置和埋深。
仪器操作员活、方便、效率高、效果好,是目前应用最多的一种有效方法,但探测深度一般小于5m,并且相邻管线干扰严重。
在磁偶极感应法中,若将发射线团(磁偶极子)送人管道内,在地面观测它产生的电磁场,则可以探测管道的位置和深度,而且特别适用于非金属管道的探测。
探测深度大、效果好;但操作麻烦、成本高,探头容易在管道中遇阻或遇卡。
(4)信号夹钳法:用信号夹钳套在金属管线上,使其产生感应电流,观测该电流的磁场。
特点是:信号强,探测精度高,易分辨相邻管线,但必须有管线出露点,可用来对管径较小,且有出口点的金属管线进行定位和定深。
(5)50Hz法:利用动力电缆、邻近电缆或工业离散电流在金属管线中产生的50 Hz感应电流激励的电磁场,可探测动力电缆或金属管线。
这种方法探测成本低、效率高、简单方便,但容易受到其他动力电缆的干扰,有的机型仅用接收机不能直读测深,可作为一种辅助性的探测方法。
(6)甚低频法:利用甚低频(超长波)通讯电台发射的电磁被在地下金属管线中产生的感应二次电磁场来探测地下金属管线。
金属管线和非金属管线探测方法

一、金属管线探测方法1.主要利用英国雷迪、美国里奇、日本富士等金属管线探测仪完成探测方式有以下几种:(1)直连法;(2) 工频法;(3)感应法;(4)夹钳法方法特点:探测深度较深,探测效率高,适用于大规模管线普查,在地质条件较单一测区最深探测6m以下供电、通信、监控等导电性较好的金属管线;对于供水、燃气、原水等金属管线随着管线直径变大和埋深变深,探测效果越差(根据实践经验探测最大深度在3m左右)方法缺点:对没有检查井的管线,盲探效果较差;多个金属管线左右密集并排埋设时,信号容易串联,无法准确分辨管线位置;多个金属管线上下密集排列时,无法准确探测下方管线深度位置。
2.地质雷达法目前地质雷达进口设备主要有瑞典马拉、迪普瑞达,美国劳累,意大利ids等,国产主要有中电众益、大连中睿、中国矿大等;适用于管线探测领域天线频率主要有:100Mhz、200Mhz、400Mhz、600Mhz。
方法特点:地质雷达根据天线频率高低不同,探测分辨率和深度不同;天线频率越高分辨率越高(探测到最小目标体越小),探测深度越浅;天线频率越低分辨率越低,探测深度越深;根据实践经验最深能够探测5.5m管线,能够清楚分辨左右、上下交错管线位置,对大口径金属管线探测效果较好。
方法缺点:对地质条件要求较高,探测效果不稳定,在不同深度介电常数差异较大区域、地下土体富水、地下埋设大量石块等干扰异常较多区域,探测深度很浅,且探测效果较差;只能垂直管线走向横切确定每一个管线点,探测效率较低不适合大规模管线普查,只能用于管线详查、专项探查和处理探测过程中疑难点。
二、非金属管线探测方法1.地质雷达法地质雷达法探测非金属管线时,在同样地质条件下探测效果相对于探测金属管线较差,根据实践经验探测深度最深可达3m。
其他特点与金属管线相同2.主动源声波法目前国外仪器主要有法国的GasTracker PE管线定位仪,国内的有西安管畅科技、西安捷通智创生产的燃气PE管线探测仪。
地质雷达探测非金属管线技术探讨

地质雷达探测非金属管线技术探讨对于地理信息系统,管线网络的资料是很重要的一部分,其在城市规划、建筑施工等工程中意义极大。
一般,在工程开工前,为了避免对重要的地下管线造成损伤,需要对管线进行探测,随着新材料发展,非金属材料的管道应用越来越广泛,其中,由于地质雷达技术具有直观、分辨率高、识别能力强等优点被广泛应用。
目前,利用地质雷达技术对非金属管线进行探测是非常重要的课题,文章从地质雷达探测技术的原理出发,对地质雷达探测发非金属管线的具体方法以及后期数据的处理方法进行了探讨,希望能推动相关研究发展。
标签:探测;非金属管线;地质雷达1、引言随着我国城市化进程愈来愈快,人们开始重视地下空间的有效利用,相应的,地下管线的数量也不断增多,随着新材料的发展,管线材质也在不断地推陈出新,非金属材质(如:PVC、PE、PCCP、PP等)的管道被大范围地应用到了地下管线的建设中去。
特别地,由于非金属管线具有重量轻、便于运输、便于安装、防腐性强、不会对介质造成二次污染等优势,能够使得地下管线工程的施工更加方便顺利,所以,非金属管线被大量应用到了给排水管道与煤气管道中。
在市政工程施工时,为了避免工程对地下管线造成破坏,施工单位必须在开始施工前对施工区域内的地下管线进行详细的排查,此排查工作的探测技术一般采用的是地质雷达探测技术。
2、地质雷达探测技术的原理如果使用传统的地质探测技术来探测非金属管线,并不能得到理想的效果,也不能满足探测要求,但是,利用地质雷达探测技术就可以得到满意的效果。
对于地质雷达探测技术,利用其对非金属管线进行探测依据的主要原理是电磁波的传播。
当地质雷达向有耗介质发射高频的电磁波时,其传播形式主要是宽频带短脉冲。
在对地下管线进行探测时,如图1所示,若被探测地区的地下介质完整且均匀时,电磁波不会有反射现象,即使有,被反射的能量也是非常弱的,但是,若被探测地区的地下有探测目标的存在或者有其他异常现象,雷达发射的高频电磁波会被反射,而且,电磁波反射的路线、波形、强度会随着探测介质的几何特性、电性特性的变化而变化,所以,当技术人员在进行探测时,可以通过雷达所发射的电磁波有没有发生发射、反射的信号是什么样的、接受电磁波的时间等实际情况来分析探测地区的地下介质的构造、结构等情况,比如,在探测非金属管线时,简单来说,如果地下无探测目标,则雷达发射的信号不会发射反射,接受到波的时间会比较早,波形会很均匀;反之,接收到波的时间会比较晚,而且波形会因高频电磁波发生了反射而变得复杂。
五大管线探测技术

目前地下管线探测方法大多是利用探测对象与周围环境介质的物理特性差异进行探测,下面小编就为大家介绍几种常见的探测方法。
1、电磁法电磁法是基于电磁感应原理进行探测的方法,具体的原理:通过交变电磁场能够在地下金属管线上感应生成次级磁场。
由于原磁场和次级磁场传播距离差异性,所以我们可以建立交变磁场,通过金属管道或电缆进行传递,在较远的距离外测量次级磁场来确定地下管线的位置。
2、电磁波法电磁波法又被称为(地质雷达法),其原理是根据电磁波的反射和折射进行探测,利用电磁波发射装置向地下发射高频短脉冲电磁波,由于地下环境波阻抗的不同,反射回地面的波形也将发生变化。
因此,可以根据接收到的雷达反射波进行推断,判断出管线位置及深度,有的甚至可以探测出地下管线的规格。
因此电磁波法也是目前地下非金属管线探测技术中具有发展前景的。
3、声波法声波法跟电磁波法差不多,也是通过利用回收波形的变化进行探测的,其主要是应用在对测深精度要求不高的金属及非金属管道。
4、红外辐射法红外辐射法是利用热交换的原理,主要是应用在测深精度要求不高且管内外存在温差的金属及非金属管道,在实际的地下管线探测中也具有一定应用空间和参考价值。
5、综合分析法综合分析法指的是收集整理一切可利用的证据和参考资料,通过具体分析,对地下管线进行准确的定位,这里我们以供暖管道为例:证据可包括管线的阀门、预留口、检修井、变径、盖堵等出露位置、各种管网资料、各种探测方法所提供的信息等等。
而参考资料则包括探测方法的基本原理及技术理论、管道施工及管网布设的规律及本地特殊规律、干扰因素的评估、个人探测经验、相关人员提供的管道信息等。
综合以上因素进行具体分析仪确定管线的位置、深度及规格等。
综合分析法作为地下管线探测中最根本和普遍的技术方法,贯穿于各种探测方法之中,是探测得以实现的根本。
探测方法的不足之处虽然上面提到的几种探测手段在一定条件下能得到所需的结果,但在实际的应用中都存在一定的局限性,具体可分为以下几点:(1)任何探测方法一般都只适用某一种或某一类管线,所以在实际的应用中,对不同的探测对象我们需要采用不同的探测方法,使用不同的探测设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非金属管线探测的四种方法
移动信标探测法
利用信标探测仪定位管道,其基本的工作原理是通过追踪“信标”在管道中的移动从而定位管道的路径。
信标可以做为一个小发射机来使用,使用时利用玻璃钢穿孔器和连接绳;或者利用刚性和半刚性电缆推进装置;或者利用CCTV管道爬行器将信标置入管道内部,利用信标探测器接收机在路面上接收信标发射的磁场信号,从而对管道定位和定深。
从使用方法上来看,信标法探测的前题是只能应用于开放式的管道,即:非压力管道、重力管道、带有检修井或是窨井等设施。
从这一层面来说只适用于:排水管道。
信标法在探测范围上有很大的局限。
固定信标探测法
EBEX®300信标探测器通过发送可使地下信标感应的特定低频脉冲信号,定位预埋于地下管道上方的信标的分布;该仪器把这种感应信号转变为音频报警信号从而确定管道位置。
信标探测仪可探测圆柱形或环状的地下信标。
不同埋设深度的信标对应不同的频率。
该技术应用于地下非金属管道的定位。
该方法可代替传统在非金属管道上方预埋设金属示踪带,并避免一旦示踪带被挖断就无法对管道进行定位的弊端。
埋地信标探测法只适合于在管道施工时及管道抢修后,在管道重要的位置(如:三通,拐点,盲端)的上方布设信标,通过该方法可有效区分平行管道及交叉管道,给用户区分辩识管道提供依据.
脉冲探测法
非金属管线脉冲定位仪的适用范围:内部流体为液态,带压力的非金属管道。
其原理是声波原理,利用声音在管道及其内部液体的传播特性来探测管道的位置。
其基本使用方法是:利用振荡器给管道加一个特定频率的声音信号,利用拾音器在远端路面采集由管道传过来的声波,从而达到对管道的定位。
非金属管线
脉冲定位仪只能对管道进行平面定位,不能测定埋深;由于声波的衰减特性,仪器最适用于小口径管道的探测上,大口径声波的衰减太快;对于埋设太深的管道探测难度较大;使用场所必须有管道设施的暴露点,以便安装振动器。
探地雷达法探测
雷达法探测是利用探地雷达电磁波,对所覆盖区域地下结构的导电性进行探测,利用不同物质的电介常数(导电性)的差异,从而区分出地下管道。
雷达波的特性是:频率越高,所探测物的分辨率越高,同时衰减越快,探测深度越小;频率越低,分辩率越低,衰减慢探测深度大。
影响雷达对管道探测的因素有:管道材质与周围回填物的导电差异, 相应的是管道导电性越好,导电差异越大,雷达反应也越明显;管道回填土的含水率,湿度越高越不利于雷达的分辨;雷达波的频率,选择合适的天线频率以满足对测深或分辩率的要求。
同时雷达法探测不需要地面上有管道的相关构筑物或井等,但是只能做剖面探测,不能对管道进行追踪,若想在一定区域内探测,必须在区域内做网格状探测,要求越高网格的密度也需要越大。
链接:杭州领图信息科技有限公司。