2018-2019年河北省保定市曲阳县七年级(上)期末数学试卷
2018-2019学年河北省保定市曲阳县七年级(上)期末数学试卷(解析版)

2018-2019学年河北省保定市曲阳县七年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥2.如图所示,在数轴上两点A、B分别表示的数是a,b,则下列四个数中最大的一个是()A.a B.﹣a C.b D.﹣b3.有理数﹣22,(﹣2)2,|﹣23|,﹣按从小到大的顺序排列是()A.|﹣23|<﹣22<﹣<(﹣2)2B.﹣22<﹣<(﹣2)2<|﹣23|C.﹣<﹣22<(﹣2)2<|﹣23|D.﹣<﹣22<|﹣23|<(﹣2)24.下列计算中正确的是()A.6a﹣5a=1B.5x﹣6x=11x C.m2﹣m=m D.x3+6x3=7x3 5.当x=7,y=﹣3时,代数式的值是()A.B.C.D.6.已知y=1是关于y的方程2﹣(m﹣1)=2y的解,则关于x的方程m(x﹣3)﹣2=m的解是()A.0B.6C.43D.以上答案均不对7.下列说法正确的是()A.0不是单项式B.x没有系数C.是多项式D.﹣xy3是单项式8.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b9.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.格点N C.格点P D.格点Q10.某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A.880元B.800元C.720元D.1080元二、填空题(每小题3分,共30分)11.若一个数平方等于它的倒数,那么这个数是.12.等式×(﹣5)+(﹣13)=[(﹣5)+(﹣13)]依据的运算律是.13.已知点A,B,C在同一条直线上,AB=8cm,BC=4cm,则AC=.14.如果∠1+∠2=90°,∠1+∠3=90°,那么∠2与∠3的大小关系是.15.某商店举办促销活动,促销的方法是将原价x元的衣服以(﹣10)元出售,请你用正确的语言表达该商店的促销方法是.16.已知a2+2ab=﹣8,b2+2ab=14,则a2+4ab+b2=;a2﹣b2=.17.如图所示,已知OC平分∠AOB,若OD是∠BOC内的一条射线,且∠COD=∠BOD,则∠AOB:∠COD=.18.若2x=与3(x+a)=a﹣5x有相同的解,那么a﹣1=.19.下列图形都是由同样大小的圆按一定的规律组成,其中,第①个图形中一共有2个圆:第②个图形中一共有7个圆:第③个图形中一共有16个圆;第④个图形中一共有29个圆,…,则第⑦个图形中圆的个数为.20.根据图中给出的信息,可列方程是.小乌鸦:老乌鸦,我喝不到大量筒中的水.老乌鸦:小乌鸦,你飞到装有相同水量的小量筒,就可以喝到水了!三、解答题(40分)21.(6分)计算:(1)﹣22﹣(1﹣0.8×)÷(﹣);(2)=2(1﹣x).22.(6分)解方程:(1)4x=19﹣(x+4);(2).23.(4分)3x2y﹣[2xyz﹣(2xyz﹣x2yz)+3x2y],其中x=﹣4,y=,z=3.24.(6分)将7张相同的小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD内,未被覆盖的部分恰好被分割为两个长方形,面积分别为S1,S2,已知小长方形纸片的长为a,宽为b,且a>b(1)当a=9,b=2,AD=30时,请求:①长方形ABCD的面积;②S2﹣S1的值.(2)当AD=30时,请用含a,b的式子表示S2﹣S1的值.25.(9分)已知将一副三角板(直角三角板OAB和直角板OCD,∠AOB=90°,∠ABO =45°,∠CDO=90°,∠COD=30°)(1)如图1摆放,点O、A、C在一条直线上,∠BOD的度数是;(2)如图2,变化摆放位置将直角三角板COD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是;(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC.射线ON 平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.26.(9分)甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件.如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件?参考答案与试题解析一、选择题(每小题3分,共30分)1.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥【解答】解:四棱锥的底面是四边形,侧面是四个三角形,底面有四条棱,侧面有4条棱,故选:D.2.如图所示,在数轴上两点A、B分别表示的数是a,b,则下列四个数中最大的一个是()A.a B.﹣a C.b D.﹣b【解答】解:∵由图可知,﹣1<a<0<b<1,∴﹣a与﹣b在数轴上表示如图,∴四个数中最大的一个是﹣a.故选:B.3.有理数﹣22,(﹣2)2,|﹣23|,﹣按从小到大的顺序排列是()A.|﹣23|<﹣22<﹣<(﹣2)2B.﹣22<﹣<(﹣2)2<|﹣23|C.﹣<﹣22<(﹣2)2<|﹣23|D.﹣<﹣22<|﹣23|<(﹣2)2【解答】解:∵﹣22=﹣4,(﹣2)2=4,|﹣23|=8,∴﹣4<﹣<4<8,∴﹣22<﹣<(﹣2)2<|﹣23|.故选:B.4.下列计算中正确的是()A.6a﹣5a=1B.5x﹣6x=11x C.m2﹣m=m D.x3+6x3=7x3【解答】解:6a﹣5a=a,故A错误,5x﹣6x=﹣x,故B错误,m2﹣m≠m,故C错误,x3+6x3=7x3,故D正确,故选:D.5.当x=7,y=﹣3时,代数式的值是()A.B.C.D.【解答】解:当x=7,y=﹣3时,原式=,故选:A.6.已知y=1是关于y的方程2﹣(m﹣1)=2y的解,则关于x的方程m(x﹣3)﹣2=m的解是()A.0B.6C.43D.以上答案均不对【解答】解:把y=1代入方程得:2﹣(m﹣1)=2,去分母得:6﹣m+1=6,解得:m=1,把m=1代入方程得:x﹣3﹣2=1,解得:x=6,故选:B.7.下列说法正确的是()A.0不是单项式B.x没有系数C.是多项式D.﹣xy3是单项式【解答】解:A、0是单项式,故原题说法错误;B、x系数为1,故原题说法错误;C、+x3不是多项式,故原题说法错误;D、﹣xy3是单项式,故原题说法正确;故选:D.8.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.9.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.格点N C.格点P D.格点Q【解答】解:如图,连接N和两个三角形的对应点;发现两个三角形的对应点到点N的距离相等,因此格点N就是所求的旋转中心;故选:B.10.某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A.880元B.800元C.720元D.1080元【解答】解:设1月份每辆车售价为x元,则2月份每辆车的售价为(x﹣80)元,依题意得100x=(x﹣80)×100×(1+10%),解得x=880.即1月份每辆车售价为880元.故选:A.二、填空题(每小题3分,共30分)11.若一个数平方等于它的倒数,那么这个数是1.【解答】解:设这个数是x,根据题意得x2=,解得x=1.故答案是1.12.等式×(﹣5)+(﹣13)=[(﹣5)+(﹣13)]依据的运算律是分配律.【解答】解:×(﹣5)+(﹣13)=[(﹣5)+(﹣13)]依据的运算律是乘法分配律,故答案为:乘法分配律.13.已知点A,B,C在同一条直线上,AB=8cm,BC=4cm,则AC=12cm或4cm.【解答】解:当点C在AB上时,AC=AB﹣BC=8﹣4=4(cm);当C(C′)在AB外时,AC′=AB+BC′=8+4=12(cm);故答案为:12cm或4cm.14.如果∠1+∠2=90°,∠1+∠3=90°,那么∠2与∠3的大小关系是相等.【解答】解:∵∠1+∠2=90°,∠1+∠3=90°,∴∠2=∠3(等角的余角相等).故答案为:相等15.某商店举办促销活动,促销的方法是将原价x元的衣服以(﹣10)元出售,请你用正确的语言表达该商店的促销方法是原价打8折后降价10元销售.【解答】解:原价x元的衣服以(﹣10)元出售,语言表达该商店的促销方法是:原价打8折后降价10元销售,故答案为:原价打8折后降价10元销售.16.已知a2+2ab=﹣8,b2+2ab=14,则a2+4ab+b2=6;a2﹣b2=﹣22.【解答】解:∵a2+2ab=﹣8,b2+2ab=14,∴a2+2ab+b2+2ab=a2+4ab+b2=6,a2+2ab﹣(b2+2ab)=a2﹣b2=﹣8﹣14=﹣22.即:a2+4ab+b2=6,a2﹣b2=﹣22.17.如图所示,已知OC平分∠AOB,若OD是∠BOC内的一条射线,且∠COD=∠BOD,则∠AOB:∠COD=6:1.【解答】解:如图所示,设∠COD=α,∠COD=∠BOD,则∠BOD=2α,OC平分∠AOB,则∠AOC=3α,∠AOB:∠COD=6α:α=6:1,故答案为:6:1.18.若2x=与3(x+a)=a﹣5x有相同的解,那么a﹣1=﹣.【解答】解:解方程2x=得到:x=,把x=代入3(x+a)=a﹣5x得到关于a的方程:﹣6a=16解得:a=﹣,把a=﹣代入a﹣1得到:a﹣1=﹣.故填﹣.19.下列图形都是由同样大小的圆按一定的规律组成,其中,第①个图形中一共有2个圆:第②个图形中一共有7个圆:第③个图形中一共有16个圆;第④个图形中一共有29个圆,…,则第⑦个图形中圆的个数为92.【解答】解:第(1)个图形中最下面有1个圆,上面有1个圆;第(2)个图形中最下面有2个圆,上面有1+3+1个圆;第(3)个图形中最下面有3个圆,上面有1+3+5+3+1个圆;…第(7)个图形最下面有8个圆,上面有1+3+5+7+9+11+13+15+13+11+9+7+5+3+1个圆,∴共有7+(1+3+5+7+9+11+13+11+9+7+5+3+1)=92,故答案是:92.20.根据图中给出的信息,可列方程是π×()2•x=π×()2×(x+5).小乌鸦:老乌鸦,我喝不到大量筒中的水.老乌鸦:小乌鸦,你飞到装有相同水量的小量筒,就可以喝到水了!【解答】解:由题意可得:π×()2•x=π×()2×(x+5),故答案为:π×()2•x=π×()2×(x+5).三、解答题(40分)21.(6分)计算:(1)﹣22﹣(1﹣0.8×)÷(﹣);(2)=2(1﹣x).【解答】解:(1)原式=﹣4﹣(1﹣)×(﹣6)=﹣4﹣×6=﹣4﹣2=﹣6;(2)去分母得:x﹣1+3=6(1﹣x),去括号得:x﹣1+3=6﹣6x,移项合并同类项得:7x=4,解得:x=.22.(6分)解方程:(1)4x=19﹣(x+4);(2).【解答】解:(1)4x=19﹣(x+4)去括号得:4x=19﹣x﹣4,移项合并同类项得:5x=15,系数化1得:x=3(2)去分母得:x﹣1+3=6(1﹣x)去括号得:x﹣1+3=6﹣6x,移项合并同类项得:7x=4,解得:x=.23.(4分)3x2y﹣[2xyz﹣(2xyz﹣x2yz)+3x2y],其中x=﹣4,y=,z=3.【解答】解:原式=3x2y﹣2xyz+2xyz﹣x2yz﹣3x2y=﹣x2yz当x=﹣4,y=,z=3时,原式=﹣(﹣4)2××3=﹣24.24.(6分)将7张相同的小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD内,未被覆盖的部分恰好被分割为两个长方形,面积分别为S1,S2,已知小长方形纸片的长为a,宽为b,且a>b(1)当a=9,b=2,AD=30时,请求:①长方形ABCD的面积;②S2﹣S1的值.(2)当AD=30时,请用含a,b的式子表示S2﹣S1的值.【解答】解:(1)①长方形ABCD的面积为AD•AB=AD(a+4b)=30×(4×2+9)=510;②S2S1=(30﹣3×2)×9﹣(30﹣9)×4×2=48;﹣(2)当AD=30时,S2﹣S1=a(30﹣3b)﹣4b(30﹣a)=30a﹣3ab﹣120b+4ab=ab+30a﹣120b.25.(9分)已知将一副三角板(直角三角板OAB和直角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=30°)(1)如图1摆放,点O、A、C在一条直线上,∠BOD的度数是60°;(2)如图2,变化摆放位置将直角三角板COD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是75°;(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC.射线ON 平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.【解答】解:(1)∵∠AOB=90°,∠COD=30°,∴∠BOD=∠AOB﹣∠COD=60°;(2)∵OB恰好平分∠COD,∴∠COB=∠COD=×30°=15°,∴∠AOC=∠AOB﹣∠COB=90°﹣15°=75°;故答案为:60°;75°;(3)∠MON的度数不发生变化,∠MON=60°.理由如下:∵OM平分∠AOC,ON平分∠BOD,∴∠DON=∠BOD,∠COM=∠AOC,∴∠DON+∠COM=(∠BOD+∠AOC)=(∠AOB﹣∠COD),∴∠MON=∠DON+∠COM+∠COD=(∠AOB+∠COD)=×(90°+30°)=60°.26.(9分)甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件.如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件?【解答】解:设此月人均定额为x件,解得:x=45.答:此月人均定额是45件.。
保定市人教版七年级上册数学期末试卷及答案-百度文库

保定市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.下列说法中正确的有()A.连接两点的线段叫做两点间的距离B.过一点有且只有一条直线与已知直线垂直C.对顶角相等D.线段AB的延长线与射线BA是同一条射线2.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x天,由题意得方程()A.410+415x-=1 B.410+415x+=1 C.410x++415=1 D.410x++15x=13.将图中的叶子平移后,可以得到的图案是()A.B.C.D.4.下列调查中,适宜采用全面调查的是()A.对现代大学生零用钱使用情况的调查B.对某班学生制作校服前身高的调查C.对温州市市民去年阅读量的调查D.对某品牌灯管寿命的调查5.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为()4a b c﹣23…A.4 B.3 C.0 D.﹣26.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③D .④7.下列四个数中最小的数是( ) A .﹣1 B .0 C .2 D .﹣(﹣1) 8.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( )A .m=2,n=1B .m=2,n=0C .m=4,n=1D .m=4,n=09.3的倒数是( ) A .3B .3-C .13D .13-10.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3 B .若-2x=-2y ,则x=y C .若x ym m=,则x y = D .若x y =,则x y m m= 11.已知105A ∠=︒,则A ∠的补角等于( ) A .105︒B .75︒C .115︒D .95︒12.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .1二、填空题13.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.14.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………15.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.16.因式分解:32x xy -= ▲ .17.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______. 18.52.42°=_____°___′___″.19.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____.20.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.21.若2a +1与212a +互为相反数,则a =_____. 22.-2的相反数是__.23.3.6=_____________________′ 24.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.三、解答题25.滴滴快车是一种便捷的出行工具,其计价规则如图:(注:滴滴快车车费由里程费、时长费、远途费三部分构成,其中里程费按行车的具体时段标准和实际里程计算:时长费按具体时段标准和行车的实际时间计算,远途费的收取方式:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.3元)(1)小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费元,傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费元;(2)某人06:10出发,乘坐滴滴快车到某地,行驶里程20公里,用时40分钟,需付车费多少元?(3)某人普通时段乘坐演滴快车到某地,用时30分钟,共花车费39.8元,求他行驶的里程?26.(1)已知∠AOB=25°42′,则∠AOB的余角为,∠AOB的补角为;(2)已知∠AOB=α,∠BOC=β,OM平分∠AOB,ON平分∠BOC,用含α,β的代数式表示∠MON的大小;(3)如图,若线段OA与OB分别为同一钟表上某一时刻的时针与分针,且∠AOB=25°,则经过多少时间后,△AOB的面积第一次达到最大值.27.已知,,,A B C D四点如图所示,请按要求画图.(1)画直线AB;(2)若所画直线AB表示一条河流,点,C D分别表示河流两旁的两块稻田,要在河岸边某一位置开渠引水灌溉稻田,请在河流AB上确定点P,使得在点P处开渠到两块稻田,C D的距离之和最短,并说明理由.28.知图①,在数轴上有一条线段AB,点,A B表示的数分别是2-和11-.(1)线段AB=____________;(2)若M是线段AB的中点,则点M在数轴上对应的数为________;(3)若C为线段AB上一点.如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B'处,若15AB B C''=,求点C在数轴上对应的数是多少?29.甲乙两站相距450km,一列慢车从甲站开出,每小时行驶65km,一列快车从乙站开出,每小时行驶85km.(1)两车同时开出,相向而行,那么两车行驶多少小时相遇?(2)两车同时开出,同向而行,慢车在前,多少小时快车追上慢车?(3)快车先开30min,两车相向而行,慢车行驶多少小时两车相遇?30.设A=3a2+5ab+3,B=a2﹣ab.(1)化简;A﹣3B.(2)当a、b互为倒数时,求A﹣3B的值.四、压轴题31.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF,然后将一副三角板拼接在一起,其中45角(AOB∠)的顶点与60角(COD∠)的顶点互相重合,且边OA、OC都在直线EF上.固定三角板COD不动,将三角板AOB绕点O按顺时针方向旋转一个角度α,当边OB与射线OF第一次重合时停①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 32.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示); (2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.33.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】分别利用直线的性质以及射线的定义和垂线定义分析得出即可.【详解】A.连接两点的线段的长度叫做两点间的距离,错误;B.在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;C.对顶角相等,正确;D.线段AB的延长线与射线BA不是同一条射线,错误.故选C.【点睛】本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题的关键.2.B解析:B【解析】【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.【详解】设乙独做x天,由题意得方程:4 10+415x=1.故选B.【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.3.A解析:A【解析】【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.【详解】解:根据平移不改变图形的形状、大小和方向,将所示的图案通过平移后可以得到的图案是A,其它三项皆改变了方向,故错误.故选:A.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.4.B解析:B【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误;B、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.5.D解析:D【解析】【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c,解得c=4,a+b+c=b+c+(-2),解得a=-2,所以,数据从左到右依次为4、-2、b、4、-2、b,第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2.故选D.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.6.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.7.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.8.A解析:A【解析】根据同类项的相同字母的指数相同可直接得出答案.解:由题意得:m=2,n=1.故选A.9.C解析:C 【解析】根据倒数的定义可知. 解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10.D解析:D 【解析】 【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可. 【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x ym m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确; D. 当m=0时,x y =两边同除以m 无意义,则x ym m=不成立,故D 选项错误;故选:D . 【点睛】本题考查等式的变形,熟记等式的基本性质是解题的关键.11.B解析:B 【解析】 【分析】由题意直接根据互补两角之和为180°求解即可. 【详解】解:∵∠A=105°,∴∠A 的补角=180°-105°=75°. 故选:B . 【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.12.D解析:D 【解析】 【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案.【详解】解:因为2|2|(1)0a b ++-=,所以a +2=0,b -1=0,所以a =-2,b =1,所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D.【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键. 二、填空题13.2【解析】解:mx2+5y2﹣2x2+3=(m ﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x 的取值无关,则m ﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx 2+5y 2﹣2x 2+3=(m ﹣2)x 2+5y 2+3,∵代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m ﹣2=0,解得m =2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x 的取值无关,即含字母x 的系数为0.14.【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,解析:83n -【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.15.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.16.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x(x﹣y)(x+y).17.-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】<<,解:459∴<<,23=,∴=,b3a2=-=-,则原式495-故答案为5【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.18.52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即解析:52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.【详解】52.42°=52°25′12″.故答案为52、25、12.【点睛】此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.19.3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)解析:3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)=2x+9.故答案是:3(x﹣2)=2x+9.【点睛】本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.20.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.21.﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】根据题意得:去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:解析:﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】根据题意得:a2a110 22+++=去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:﹣1【点睛】本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.22.2【解析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.解析:2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.23.【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的解析:336【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】=︒+︒=︒+⨯=3°36′.解:3.630.63(0.660)'故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的计算法则知道度分秒间的进率为60进行分析运算.24.2【解析】根据定义可得:因为,所以,故答案为:2.【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.三、解答题25.(1)10,20.5,(2)需付车费65元;(3)行驶的里程为13公里【解析】【分析】(1)根据计价规则,列式计算,即可得到答案,(2)根据计价规则,列式计算,即可得到答案,(3)若行驶的里程为10公里,计算所需要付的车费,得出行驶的里程大于10公里,设行驶的里程为x 公里,根据计价规则,列出关于x 的一元一次方程,解之即可.【详解】解:(1)根据题意得:2.5×2+0.45×8=7.6<10,即小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费10元,2.3×5+0.3×20+0.3×(20﹣10)=11.5+6+3=20.5(元),即傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费20.5元,故答案为:10,20.5,(2)20×2.4+40×0.35+(20﹣10)×0.3=48+14+3=65(元),答:需付车费65元,(3)若行驶的里程为10公里,需要付车费:2.3×10+0.3×30=29<39.8,即行驶的里程大于10公里,设行驶的里程为x 公里,根据题意得:2.3x+0.3×30+0.3(x ﹣10)=39.8,解得:x =13,答:行驶的里程为13公里.【点睛】本题考查了一元一次方程的应用和有理数的混合运算,解题的关键:(1)正确掌握有理数的混合运算法则,(2)正确掌握有理数的混合运算法则,(3)正确找出等量关系,列出一元一次方程.26.(1)64°18′,154°18′;(2)∠MON=2β+a;(3)150 11分【解析】【分析】(1)依据余角和补角的定义即可求出∠AOB的余角和补角;(2)依据角平分线的定义表示出∠AOM=∠BOM=12∠AOB=12α,∠CON=∠BON=12∠COB=12β,最后再依据∠MON与这些角的关系求解即可;(3)当OA⊥OB时面积最大,此时∠AOB=90°,根据角的和差关系可得求出三角形OBC面积第一次达到最大的时间.【详解】解:(1)∵∠AOB=25°42',∴∠AOB的余角=90°﹣25°42'=64°18′,∠AOB的补角=180°﹣25°42'=154°18′;故答案为:64°18′,154°18′;(2)①如图1:∵∠AOB=α,∠BOC=β∴∠AOC=∠AOB+∠BOC=90°+30°=120°∵OM平分∠AOB,ON平分∠BOC,∴∠AOM=∠BOM=12∠AOB=12α,∠CON=∠BON=12∠COB=12β,∴∠MON=∠BOM+∠CON=2β+a;②如图2,∠MON =∠BOM ﹣∠BON =a 2β-; ③如图3,∠MON =∠BON ﹣∠BOM =2βα-. ∴∠MON 为2β+a 或a 2β-或2βα-. (3)当OA ⊥OB 时,△AOB 的面积第一次达到最大值,此时∠AOB =90°,设经过x 分钟后,△AOB 的面积第一次达到最大值,根据题意得:6x+25﹣60x ×30=90, 解得x =15011. 【点睛】 此题考查了是角平分线的定义、角的和差、余角和补角的定义、三角形的面积以及角的计算以及钟面角,熟练掌握相关知识是解题的关键,解题时注意:分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.27.(1)作图见解析;(2)作图见解析,理由:两点之间,线段最短.【解析】【分析】(1)根据直线的意义,画出直线AB即可.(2)根据两点之间线段最短,连接CD,与直线AB的交点即为所求.【详解】(1)直线AB为所求.(2)画线段CD交直线AB于点P,则点P为所求.理由:两点之间,线段最短.【点睛】本题考查了直线的画法和线段公理即两点之间线段最短,解决本题的关键是正确理解题意,熟练掌握线段公理.28.(1)9;(2)-6.5;(3)-6.【解析】【分析】(1)根据数轴上两点间的距离公式解决即可;(2)根据中点的性质,计算即可;(3)设AB'为x,根据题AB'与B'C的关系,将B'C用x表示出来,然后根据AC、AB、BC的关系,将AB用x表示出来,计算出x的值,即可求出AC的值,然后根据点A的坐标求出点C在数轴上的对应的数即可.【详解】(1)AB的长度为2(11)9---=.(2)M是线段AB的中点,所以M点在数轴上对应的点为2(11)6.52-+-=-.(3)设AB'=x,∵AB'=15B'C,则B'C=5x.∴由题意BC=B'C=5x,∴AC=B'C-AB'=4x,∴AB=AC+BC=AC+B'C=9x,即99x=,∴1x=,∴AC=4,又∵点A表示的数为-2,∴-2-4=-6,∴点C表示的数为-6.【点睛】本题考查了数轴上两点间的距离,中点的性质,线段折叠问题,解决本题的关键是正确理解题意,熟练掌握中点的性质,能够根据线段折叠找到线段之间的内在关系.29.(1)两车行驶3小时相遇;(2)行驶22.5小时快车追上慢车;(3)慢车行驶163 60小时两车相遇.【解析】【分析】(1)设两车行驶t1小时相遇,根据相遇时两车行驶路程之和为450km建立方程求解;(2)设t2小时快车追上慢车,快车比慢车多行驶450km建立方程求解;(3)设慢车行驶t3小时两车相遇,根据两车行驶路程之和为450km建立方程求解.【详解】解:(1)设两车行驶t1小时相遇,依题意得65t1+85t1=450解得:t1=3因此,那么两车行驶3小时相遇.(2)设t2小时快车追上慢车,依题意得 85t2-65t2=450解得:t2=22.5因此,行驶22.5小时快车追上慢车(3)设慢车行驶t3小时两车相遇,依题意得30分钟=0.5小时85×0.5+85t3+65t3=450解得:t3=163 60因此,慢车行驶16360小时两车相遇.【点睛】本题考查了一元一次方程的应用,熟练掌握行程问题中的等量关系是解题的关键.30.(1)8ab+3;(2)11【解析】【分析】(1)把A与B代入A﹣3B中,然后进行化简即可;(2)根据倒数的性质可得ab=1,然后代入计算即可.【详解】解:(1)∵A=3a2+5ab+3,B=a2﹣ab,∴A﹣3B=3a2+5ab+3﹣3a2+3ab=8ab+3;(2)由a,b互为倒数,得到ab=1,则A ﹣3B =8+3=11.【点睛】本题考查了整式的化简求值,灵活运用四则运算法则是解答本题的关键.四、压轴题31.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-. 解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.32.(1)-14,8-4t(2)点P运动11秒时追上点Q(3)103或4(4)线段MN的长度不发生变化,都等于11【解析】【分析】(1)根据AB长度即可求得BO长度,根据t即可求得AP长度,即可解题;(2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC-BC=AB,列出方程求解即可;(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8-22=-14,∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8-4t.故答案为-14,8-4t;(2)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC-BC=AB,∴4x-2x=22,解得:x=11,∴点P运动11秒时追上点Q;(3) ①点P、Q相遇之前,4t+2+2t =22,t=103,②点P、Q相遇之后,4t+2t -2=22,t=4,故答案为103或4(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11②当点P运动到点B的左侧时:。
2018-2019学年度第一学期七年级期末数学试卷及答案

2018-2019第一学期七年级数学期末试卷及答案姓名__________ 分数______一、选择题(每小题3分,共30分) 1.一个数的相反数是2,这个数是( ) A .12 B .12- C .2 D .-2 2.如果四个有理数的积是负数,那么其中负因数有( )个 A .3 B .1 C .0或2 D .1或33.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( ) A .0. 34×108 B .3. 4×106 C .34×106 D .3. 4×107 4.关于x 的方程3x + 2m + 1 = x -3m -2的解为x = 0,则m 的值为( ) A .35-B .15-C .15D .255.某种商品每件的进价为190元,按标价的九折销售时,利润率为15. 2%。
设这种商品的标价为每件x 元,依题意列方程正确的是( )A .1900.91900.152x -=⨯B .0.91900.152x =⨯C .0.91901900.152x -=⨯D .0.1521900.9x =⨯6.足球比赛计分规则是:胜一场得3分,平一场得1分,负一场得0分。
今年武汉黄鹤楼队经过26轮激战,以42分获“中超”联赛第五名,其中负6场,那么胜场数为( ) A .9 B .10 C .11 D .127.下图是一个由6个相同的小立方体组成的几何体,从上面看得到的平面图形是( )A .B .C .D . 8.下面等式成立的是( )A .83. 5°= 83°50′B .37°12′36″=37. 48°C .24°24′24″= 24. 44°D .41. 25°= 41°15′9.某校为了解360名七年级学生体重情况,从中抽取了60名学生进行检测。
【名校名卷】河北省保定市2019年数学七上期末试卷

河北省保定市2019年数学七上期末试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如图,点A 位于点O 的A .南偏东35°方向上B .北偏西65°方向上C .南偏东65°方向上D .南偏西65°方向上2.一艘海轮位于灯塔P 的南偏东70°方向的M 处,它以每小时40海里的速度向正北方向航行,2小时候到达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的距离为( )A.80海里B.70海里C.60海里D.40海里3.两根木条,一根长20cm ,另一根长24cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )A.2cmB.4cmC.2cm 或22cmD.4cm 或44cm 4.把方程1123--=x x 去分母后,正确的是( ). A.32(1)1x x --= B.3226x x +-= C.3226x x --=D.32(1)6x x --=5.下列计算正确的是( )A.B.C. D. 6.我国宋朝数学家杨辉1261年的著作《详解九章算法》给出了在()(n a b n +为非负整数)的展开式中,把各项系数按一定的规律排成右表(展开后每一项按a 的次数由大到小的顺序排列).人们把这个表叫做“杨辉三角”.据此规律,则2019(1)x +展开式中含2018x 项的系数是( )A.2016B.2017C.2018D.20197.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律。
河北省保定市 七年级(上)期末数学试卷

A. 84 颗棋子
B. 108 颗棋子
C. 135 颗棋子
D. 152 颗棋子
二、填空题(本大题共 3 小题,共 9.0 分)
17. 小明将一根木条固定在墙上只用了两个钉子,他这样做的依据是______.
18. 如图,已知 C,D 是以 AB 为直径的半圆周上的两点,O 是圆心,半径 OA=2,∠COD=120°,则图中阴影部分的 面积等于______.
B. 射线 OA 的长度是 12cm D. 两点之间线段最短
B. 整式包括单项式和多项式 D. 多项式2������2−������是二次二项式
第 1 页,共 16 页
8. 如图,数轴上有 M,N,P,Q 四个点,其中点 P 所表 示的数为 a,则数-3a 所对应的点可能是( )
A. M
B. N
A. 3������ + ������
B. 3������−������
C. ������ + 3������
D. 2������ + 2������
16. 下列图形由同样的棋子按一定规律组成,图 1 有 3 颗棋子,图 2 有 9 颗棋子,图 3 有 18 颗棋子,…,图 8 有( )
第 2 页,共 16 页
x=-4,y=1.
3
四、解答题(本大题共 5 小题,共 40.0 分)
第 3 页,共 16 页
22. (1)3(x+4)=5-2(x-1)
(2)������
+ 3
1
=
2������ + 1
1− 4
23. 某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课 外阅读时间 x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分 布直方图和扇形统计图. 根据图中提供的信息,解答下列问题: (1)补全频数分布直方图; (2)求扇形统计图中 m 的值和“E”组对应的圆心角度数; (3)请估计该校 3000 名学生中每周的课外阅读时间不小于 6 小时的人数.
保定市人教版七年级上册数学期末试卷及答案-百度文库

保定市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.下列判断正确的是( ) A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式2.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .123.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .4.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)35.下列分式中,与2x yx y ---的值相等的是()A .2x y y x+-B .2x y x y+-C .2x y x y --D .2x y y x-+6.﹣2020的倒数是( ) A .﹣2020B .﹣12020C .2020D .12020 7.方程3x +2=8的解是( ) A .3 B .103C .2D .128.解方程121123x x +--=时,去分母得( )A .2(x +1)=3(2x ﹣1)=6B .3(x +1)﹣2(2x ﹣1)=1C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=6 9.如果a ﹣3b =2,那么2a ﹣6b 的值是( ) A .4B .﹣4C .1D .﹣110.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =11.估算15在下列哪两个整数之间( ) A .1,2B .2,3C .3,4D .4,512.下列调查中,调查方式选择正确的是( ) A .为了了解1 000个灯泡的使用寿命,选择全面调查 B .为了了解某公园全年的游客流量, 选择抽样调查 C .为了了解生产的一批炮弹的杀伤半径,选择全面调查 D .为了了解一批袋装食品是否含有防腐剂,选择全面调查二、填空题13.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____.14.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.15.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.16.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.17.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.18.若a a -=,则a 应满足的条件为______.19.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.20.若a 、b 是互为倒数,则2ab ﹣5=_____.21.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____. 22.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.23.已知代数式235x -与233x -互为相反数,则x 的值是_______. 24.若523m xy +与2n x y 的和仍为单项式,则n m =__________.三、压轴题25.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?26.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.27.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个. 28.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 29.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数30.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)31.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示); (2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.32.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据同类项的定义,单项式和多项式的定义解答. 【详解】A .3d 2bc 与bca 2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.B .225m n的系数是25,故本选项错误.C .单项式﹣x 3yz 的次数是5,故本选项正确.D .3x 2﹣y +5xy 5是六次三项式,故本选项错误. 故选C . 【点睛】本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.2.C解析:C 【解析】 【分析】利用max}2,x x 的定义分情况讨论即可求解.【详解】解:当max }21,2x x =时,x ≥012,解得:x =14>x >x 2,符合题意;②x 2=12,解得:x =2x >x 2,不合题意;③x =12x >x 2,不合题意;故只有x =14时,max }21,2x x =. 故选:C . 【点睛】此题主要考查了新定义,正确理解题意分类讨论是解题关键.3.B解析:B 【解析】 【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案. 【详解】解:A 、5+3×6+1×6×6=59(颗),故本选项错误;B 、1+3×6+2×6×6=91(颗),故本选项正确;C 、2+3×6+1×6×6=56(颗),故本选项错误;D 、1+2×6+3×6×6=121(颗),故本选项错误; 故选:B . 【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.4.A解析:A 【解析】 【分析】根据乘方和绝对值的性质对各个选项进行判断即可. 【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等. 故选A.5.A解析:A 【解析】 【分析】根据分式的基本性质即可求出答案. 【详解】 解:原式=22x y x yx y y x++-=--, 故选:A . 【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.6.B解析:B 【解析】 【分析】根据倒数的概念即可解答. 【详解】解:根据倒数的概念可得,﹣2020的倒数是12020-, 故选:B .本题考查了倒数的概念,熟练掌握是解题的关键.7.C解析:C 【解析】 【分析】移项、合并后,化系数为1,即可解方程. 【详解】解:移项、合并得,36x =, 化系数为1得:2x =, 故选:C . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.8.C解析:C 【解析】 【分析】方程两边都乘以分母的最小公倍数即可. 【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=, 故选:C . 【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.9.A解析:A 【解析】 【分析】将a ﹣3b =2整体代入即可求出所求的结果. 【详解】解:当a ﹣3b =2时, ∴2a ﹣6b =2(a ﹣3b ) =4, 故选:A . 【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.10.A【解析】试题分析:将原方程移项合并同类项得:3x=3,解得:x=1.故选A.考点:解一元一次方程.11.C解析:C【解析】【分析】.【详解】∵9<15<16,∴,故选C.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.B解析:B【解析】选项A、C、D,了解1000个灯泡的使用寿命,了解生产的一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,不适于全面调查,适用于抽样调查.选项B,了解某公园全年的游客流量,工作量大,时间长,需要用抽样调查.故选B.二、填空题13.﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣解析:﹣1或﹣5【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣3,y=2时,x+y=﹣1,当x=﹣3,y=﹣2时,x+y=﹣5,所以,x+y的值是﹣1或﹣5.故答案为:﹣1或﹣5.【点睛】本题主要考查了有理数的乘方、绝对值的性质有理数的加法等知识,,解题的关键是确定x、y的值.14.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,∴∠B′PE+∠C′PF=∠B′PC′+85°,∴2(∠B′PC′+85°)﹣∠B′PC′=180°,解得∠B′PC′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.15.5【解析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3=8;∵点D是AC的中点,∴AD=8÷2=4;∵点E是AB的中点,∴AE=5÷2=2.5,∴ED=AD﹣AE=4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.16.-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3解析:-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.17.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.18.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.解析:a0【解析】【分析】根据绝对值的定义和性质求解可得.【详解】-=,解:a a∴≥,a0≥.故答案为a0【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.19.6×【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 010解析:6×9【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.20.-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒解析:-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3. 【点睛】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.21.8+x =(30+8+x ). 【解析】 【分析】设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程. 【详解】解:设还要录取女生人,根据题意得:解析:8+x =13(30+8+x ). 【解析】 【分析】设还要录取女生x 人,则女生总人数为8x +人,数学活动小组总人数为308x ++人,根据女生人数占数学活动小组总人数的13列方程. 【详解】解:设还要录取女生x 人,根据题意得: 18(308)3x x +=++.故答案为:18(308)3x x +=++.【点睛】此题考查了由实际问题抽象出一元一次方程,关键是准确表示还要录取后女生的人数及总人数.22.72 【解析】 【分析】用360度乘以C 等级的百分比即可得. 【详解】观察可知C 等级所占的百分比为20%,所以C 等级所在扇形的圆心角为:360°×20%=72°, 故答案为:72. 【点睛】解析:72 【解析】 【分析】用360度乘以C 等级的百分比即可得. 【详解】观察可知C 等级所占的百分比为20%,所以C 等级所在扇形的圆心角为:360°×20%=72°, 故答案为:72. 【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键.23.【解析】 【分析】根据互为相反数的两个数之和为0,建立方程求解即可. 【详解】 ∵与互为相反数 ∴ 解得: 【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键解析:278【解析】 【分析】 根据互为相反数的两个数之和为0,建立方程求解即可. 【详解】 ∵235x -与233x -互为相反数 ∴2323053-⎛⎫+-= ⎪⎝⎭x x 解得:278x = 【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.24.9 【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9 【解析】 根据523m xy +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.三、压轴题25.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm. 【解析】 【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置; (2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案. 【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +; ∴线段PQ 的长为:53(2)47x x x +---=+; (3)根据题意可知, 当PQ=2cm 时可分为两种情况: ①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm. 【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题. 26.(1)10;(2)212±;(3)288. 5±±,【解析】 【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a 的值为10. (2)分两种情况,点A 在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA 的长度,从而得出a 的值.同理可求出当点A 在原点的左侧时,a 的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 ,所以,OA=212,点A在原点O的右侧,a的值为212.当A在原点的左侧时(如图),a=-21 2综上,a的值为±212.(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5.当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5.当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,±28 5.【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.27.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题. 【详解】 解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个). 故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.28.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠. 【解析】 【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论. 【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°, ∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出; 故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=. 因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-. 因为BOC 2AOD ∠∠=, 所以()135α2120α-=-. 解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-. 因为BOC 2AOD ∠∠=, 所以()135α2α120-=-.解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=. 【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键. 29.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣4834【解析】 【分析】(1)根据A 点对应的数为60,B 点在A 点的左侧,AB =30求出B 点对应的数;根据AC =4AB 求出AC 的距离;(2)①当P 点在AB 之间运动时,根据路程=速度×时间求出AP =3t ,根据BP =AB ﹣AP 求解;②分P 点是A 、B 两个点的中点;B 点是A 、P 两个点的中点两种情况讨论即可; ③根据P 、Q 两点的运动速度与方向可知Q 点在往返过程中与P 点相遇2次.设Q 点在往返过程中经过x 秒与P 点相遇.第一次相遇是点Q 从A 点出发,向C 点运动的途中.根据AQ ﹣BP =AB 列出方程;第二次相遇是点Q 到达C 点后返回到A 点的途中.根据CQ+BP =BC 列出方程,进而求出P 点在数轴上对应的数. 【详解】(1)∵A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30, ∴B 点对应的数为60﹣30=30;∵C 点到A 点距离是B 点到A 点距离的4倍, ∴AC=4AB =4×30=120; (2)①当P 点在AB 之间运动时, ∵AP=3t ,∴B P=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.30.(1)25-,35(2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x秒,表示出P,Q的运动路程,利用路程和等于AB长即可解题;(3)根据点Q达到A点时,点P,Q停止运动求出运动时间即可解题;(4)根据第三问点P运动了6个来回后,又运动了30个单位长度即可解题.【详解】解:(1)25-,35(2)设运动时间为x秒13x2x2535+=+解得x4=352427-⨯=答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P运动了6个来回后,又运动了30个单位长度,∵25305-+=,∴点P所在的位置表示的数为5 .(4)由(3)得:点P运动了6个来回后,又运动了30个单位长度,∴点P和点Q一共相遇了6+1=7次.【点睛】本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.31.(1)-14,8-4t(2)点P运动11秒时追上点Q(3)103或4(4)线段MN的长度不发生变化,都等于11【解析】【分析】(1)根据AB长度即可求得BO长度,根据t即可求得AP长度,即可解题;(2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC-BC=AB,列出方程求解即可;(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8-22=-14,∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8-4t.故答案为-14,8-4t;(2)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC-BC=AB,∴4x-2x=22,解得:x=11,∴点P运动11秒时追上点Q;(3) ①点P、Q相遇之前,4t+2+2t =22,t=103,②点P、Q相遇之后,4t+2t -2=22,t=4,故答案为103或4 (4)线段MN 的长度不发生变化,都等于11;理由如下:①当点P 在点A 、B 两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP )=12AB=12×22=11 ②当点P 运动到点B 的左侧时:MN=MP ﹣NP=12AP ﹣12BP=12(AP ﹣BP )=12AB=11 ∴线段MN 的长度不发生变化,其值为11.【点睛】 本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.32.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,。
人教版初中数学七年级上册期末测试题(2018-2019学年河北省保定市

2018-2019学年河北省保定十七中七年级(上)期末数学试卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分)1.(3分)2016年“五一”假期期间,某市接待旅游总人数达到了9 180 000人次,将9 180 000用科学记数法表示应为()A.9.18×104B.9.18×105C.9.18×106D.9.18×107 2.(3分)如图所示左边是用八块完全相同的小正方体搭成的几何体,从上面看该几何体得到的图形是()A.B.C.D.3.(3分)下列判断正确的是()A.3a2b与ba2不是同类项B.单项式﹣x3y2的系数是﹣1C.不是整式D.3x2﹣y+5xy2是二次三项式4.(3分)下列调查中,最适合采用普查方式的是()A.调查某班级的每一个同学所穿鞋子的尺码情况B.调查某批次烟花爆竹的燃放效果C.调查奶茶市场上奶茶的质量情况D.调查重庆中学生心里健康现状5.(3分)用一个平面去截圆柱体,则截面形状不可能是()A.正方形B.三角形C.长方形D.圆6.(3分)如图,BC=3cm,BD=5cm,D是AC的中点,则AB等于()A.10cm B.8cm C.7cm D.9cm7.(3分)下列各式运算正确的是()A.2(a﹣1)=2a﹣1B.a2b﹣ab2=0C.2a3﹣3a3=a3D.a2+a2=2a28.(3分)如果x=2是方程x+a=﹣1的解,那么a的值是()A.0B.2C.﹣2D.﹣69.(3分)过一个多边形的一个顶点的所有对角线把多边形分成4个三角形,则这个多边形的边数为()A.3B.4C.5D.610.(3分)下列说法错误的是()A.若x=y,则﹣4x=﹣4y B.若x=y,则x+2b=y+2bC.若x=y,则D.若a=b,则a+3=b+311.(2分)下列语句正确的个数是()①两条射线组成的图形叫做角;②反向延长线段AB得到射线BA;③延长射线OA到点C;④若AB=BC,则点B是AC中点;⑤连接两点的线段叫做两点间的距离;⑥两点之间直线最短.A.1B.2C.3D.412.(2分)某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A.5B.6C.7D.813.(2分)钟面上的分针长为2cm,从8点到8点40,分针在钟面上扫过的面积是()cm2.A.B.C.D.14.(2分)某校为了丰富“阳光体育”活动,现购进篮球和足球共16个,共花了2820元,已知篮球的单价为185元,篮球是足球个数的3倍,则足球的单价为()A.120元B.130元C.150元D.140元15.(2分)A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是()A.2B.2或2.25C.2.5D.2或2.516.(2分)如图,如图是按照一定规律画出的“分形图”,经观察可以发现,图A2比图A1多2根“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图A2多的根数为()A.28B.56C.60D.124二、填空题(每题3分,共12分)17.(3分)比较大小:﹣﹣.18.(3分)已知a、b互为相反数,c、d互为倒数,那么2a+2b﹣5cd=.19.(3分)下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,第n个图案需要根火柴棒.20.(3分)老师布置了一道题:已知线段AB=a,在直线AB上取一点C,使BC=b(a>b),点M、N分别是线段AB、BC的中点,求线段MN的长.甲同学的答案是9,乙同学的答案是5,经询问得知甲、乙两个同学的计算都没有出错.依此探究线段AB的长为.三.解答题(本大题有6小题,共66分,解答应写出文字说明、证明过程或演算步骤)21.(16分)计算题:(1)(2)(3)化简求值:12(x2y﹣xy2)﹣5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.22.(10分)解方程(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)=﹣123.(8分)某实验学校为了解九年级学生的身体素质测试情况,随机抽取了该校九年级部分学生的身体素质测试成绩作为样本,按A(优秀),B(良好),C(合格),D(不合格)四个等级进行统计,并将统计结果绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整,并计算扇形统计图中“A”部分所对应的圆心角的度数为°.(3)我校九年级共有1000名学生参加了身体素质测试,估计测试成绩在良好以上(含良好)的人数.24.(8分)列一元一次方程解应用题:学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共80千克,了解到这些蔬菜的种植成本共180元,还了解到如下信息:(1)求采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?25.(12分)(1)如图甲,AOB为直线,OC平分∠AOD,∠BOD=42°12′,求∠AOC的度数;(2)已知,如图乙,B、C两点把线段AD分成2:5:3三部分,M为AD的中点,BM =6cm,求CM和AD的长.26.(12分)已知,A、B在数轴上对应的数分别用a、b表示,且(a+5)2+|b﹣15|=0.(1)数轴上点A表示的数是,点B表示的数是;(2)若一动点P从点A出发,以3个单位长度/秒速度由A向B运动;动点Q从原点O 出发,以1个单位长度/秒速度向B运动,点P、Q同时出发,点Q运动到B点时两点同时停止.设点Q运动时间为t秒.①若P从A到B运动,则P点表示的数为,Q点表示的数为.(用含t的式子表示)②当t为何值时,点P与点Q之间的距离为2个单位长度.2018-2019学年河北省保定十七中七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分)1.(3分)2016年“五一”假期期间,某市接待旅游总人数达到了9 180 000人次,将9 180 000用科学记数法表示应为()A.9.18×104B.9.18×105C.9.18×106D.9.18×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将9 180 000用科学记数法表示为:9.18×106.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)如图所示左边是用八块完全相同的小正方体搭成的几何体,从上面看该几何体得到的图形是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面一层有3个正方形,下面一层有2个正方形.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(3分)下列判断正确的是()A.3a2b与ba2不是同类项B.单项式﹣x3y2的系数是﹣1C.不是整式D.3x2﹣y+5xy2是二次三项式【分析】根据同类项的定义,单项式的定义解答.【解答】解:A、3a2b与ba2所含相同字母的指数相同,属于同类项,故本选项不符合题意.B、单项式﹣x3y2的系数是﹣1,故本选项符合题意.C、的分母中不含有字母,不是分式,是整式,故本选项不符合题意.D、3x2﹣y+5xy2是三次三项式,故本选项不符合题意.故选:B.【点评】考查了同类项,整式的概念,属于基础题,解题的关键是掌握相关定义.4.(3分)下列调查中,最适合采用普查方式的是()A.调查某班级的每一个同学所穿鞋子的尺码情况B.调查某批次烟花爆竹的燃放效果C.调查奶茶市场上奶茶的质量情况D.调查重庆中学生心里健康现状【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、调查某班级的每一个同学所穿鞋子的尺码情况,适合全面调查,故A 选项准确;B、调查某批次烟花爆竹的燃放效果,适合抽样调查,故B选项错误;C、调查奶茶市场上奶茶的质量情况,适合抽样调查,故C选项错误;D、调查重庆中学生心里健康现状,适于抽样调查,故D选项错误.故选:A.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.(3分)用一个平面去截圆柱体,则截面形状不可能是()A.正方形B.三角形C.长方形D.圆【分析】根据从不同角度截得几何体的形状判断出正确选项.【解答】解:用平面截圆柱,横切就是圆,竖切就是长方形,如果底面圆的直径等于高时,是正方形,不论怎么切不可能是三角形.故选:B.【点评】此题考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.6.(3分)如图,BC=3cm,BD=5cm,D是AC的中点,则AB等于()A.10cm B.8cm C.7cm D.9cm【分析】根据题意求出CD的长,根据线段中点的性质计算即可.【解答】解:∵BC=3cm,BD=5cm,∴CD=BD﹣BC=2cm,∵D是AC的中点,∴AC=2CD=4cm,∴AB=AC+BC=4+3=7(cm),故选:C.【点评】本题考查的是两点间的距离的计算,掌握线段中点的性质是解题的关键.7.(3分)下列各式运算正确的是()A.2(a﹣1)=2a﹣1B.a2b﹣ab2=0C.2a3﹣3a3=a3D.a2+a2=2a2【分析】直接利用合并同类项法则判断得出答案.【解答】解:A、2(a﹣1)=2a﹣2,故此选项错误;B、a2b﹣ab2,无法合并,故此选项错误;C、2a3﹣3a3=﹣a3,故此选项错误;D、a2+a2=2a2,正确.故选:D.【点评】此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.8.(3分)如果x=2是方程x+a=﹣1的解,那么a的值是()A.0B.2C.﹣2D.﹣6【分析】此题可将x=2代入方程,然后得出关于a的一元一次方程,解方程即可得出a 的值.【解答】解:将x=2代入方程x+a=﹣1得1+a=﹣1,解得:a=﹣2.故选:C.【点评】此题考查的是一元一次方程的解法,方程两边可同时减去1,即可解出a的值.9.(3分)过一个多边形的一个顶点的所有对角线把多边形分成4个三角形,则这个多边形的边数为()A.3B.4C.5D.6【分析】n边形中过一个顶点的所有对角线有(n﹣3)条,把这个多边形分成(n﹣2)个三角形,根据这一点即可解答.【解答】解:这个多边形的边数是4+2=6.故选:D.【点评】本题考查多边形的对角线规律,解题的关键是利用多边形的对角线把多边形分成(n﹣2)个三角形,本题属于基础题型.10.(3分)下列说法错误的是()A.若x=y,则﹣4x=﹣4y B.若x=y,则x+2b=y+2bC.若x=y,则D.若a=b,则a+3=b+3【分析】根据等式的性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.若x=y,等式的两边同时乘以﹣4得:﹣4x=﹣4y,即A项符合题意,B.若x=y,等式的两边同时加上2b得:x+2b=y+2b,即B项符合题意,C.若a=0,则和无意义,即C项不合题意,D.若a=b,等式两边同时加上3得:a+3=b+3,即D项符合题意,故选:C.【点评】本题考查了等式的性质,正确掌握等式的性质是解题的关键.11.(2分)下列语句正确的个数是()①两条射线组成的图形叫做角;②反向延长线段AB得到射线BA;③延长射线OA到点C;④若AB=BC,则点B是AC中点;⑤连接两点的线段叫做两点间的距离;⑥两点之间直线最短.A.1B.2C.3D.4【分析】依据角的概念以及线段、射线和直线的概念进行判断,即可得到结论.【解答】解:①由公共顶点的两条射线组成的图形叫做角;故不符合题意;②反向延长线段AB得到射线BA;故符合题意;③不能延长射线OA到点C;故不符合题意;④点B不一定在是线段AC上,故不符合题意;⑤连接两点的线段的长度叫做两点间的距离,根据不符合题意;⑥两点之间线段最短,故不符合题意;故选:A.【点评】本题主要考查角的概念以及线段、射线和直线的概念,掌握角的概念是解答此题的关键.12.(2分)某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A.5B.6C.7D.8【分析】根据利润=售价﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:根据题意得:200×﹣80=80×50%,解得:x=6.故选:B.【点评】本题考查了一元一次方程的应用,根据利润=售价﹣进价,列出关于x的一元一次方程是解题的关键.13.(2分)钟面上的分针长为2cm,从8点到8点40,分针在钟面上扫过的面积是()cm2.A.B.C.D.【分析】首先要明确分针1小时(60分钟)转1周,扫过的面积是一个圆的面积,40分钟分针扫过的面积是圆面积的,根据圆的面积公式s=πr2,把数据代入公式进行解答.【解答】解:依题意,得×π×22=π(cm2);答:分针所扫过的面积是πcm2.故选:C.【点评】本题考查了扇形面积的计算和旋转的性质.此题解答关键是明确分针的尖端30分钟走的路程是圆周长的一半,扫过的面积是圆面积的一半,然后根据圆的周长和面积公式解决问题.14.(2分)某校为了丰富“阳光体育”活动,现购进篮球和足球共16个,共花了2820元,已知篮球的单价为185元,篮球是足球个数的3倍,则足球的单价为()A.120元B.130元C.150元D.140元【分析】设购进足球x个,则购进篮球3x个,根据购进篮球和足球共16个,即可得出关于x的一元一次方程,解之即可得出x的值,再根据足球的单价=(总价﹣购买篮球的总价)÷购进篮球的个数,即可求出结论.【解答】解:设购进足球x个,则购进篮球3x个,根据题意得:x+3x=16,解得:x=4,∴足球的单价为(2820﹣185×4×3)÷4=150(元/个).故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.(2分)A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是()A.2B.2或2.25C.2.5D.2或2.5【分析】应该有两种情况,第一次应该还没相遇时相距50千米,第二次应该是相遇后交错离开相距50千米,根据路程=速度×时间,可列方程求解.【解答】解:设经过t小时两车相距50千米,根据题意,得120t+80t=450﹣50,或120t+80t=450+50,解得t=2,或t=2.5.答:经过2小时或2.5小时相距50千米.故选:D.【点评】本题考查了一元一次方程的应用,解决问题的关键是能够理解有两种情况、能够根据题意找出题目中的相等关系.16.(2分)如图,如图是按照一定规律画出的“分形图”,经观察可以发现,图A2比图A1多2根“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图A2多的根数为()A.28B.56C.60D.124【分析】主干1枝,第二层2叉,每叉1枝,多21枝,第三层在第二层的基础上每叉有多2枝,共多2×21=22枝,依次下去,每层比前一层多2n﹣1【解答】解:图A1有:1枝图A2有:(1+21)枝图A3有:(1+21+22)枝图A4有:(1+21+22+23)枝…图A n有:(1+21+22+23+…+2n﹣1)则图A6比图A2多(1+21+22+23+24+25)﹣(1+21)=60(枝)故选:C.【点评】本题考查了图形的变化规律,解题的关键是认真观察图象,弄清楚前后两个图之间的变化规律.二、填空题(每题3分,共12分)17.(3分)比较大小:﹣>﹣.【分析】先计算|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数反而越小即可得到它们的关系关系.【解答】解:∵|﹣|==,|﹣|==,而<,∴﹣>﹣.故答案为:>.【点评】本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.18.(3分)已知a、b互为相反数,c、d互为倒数,那么2a+2b﹣5cd=﹣5.【分析】由相反数性质和倒数的定义得出a+b=0,cd=1,再代入原式=2(a+b)﹣5cd 计算可得.【解答】解:由题意知a+b=0,cd=1,则原式=2(a+b)﹣5cd=2×0﹣5×1=0﹣5=﹣5,故答案为:﹣5.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及相反数、倒数的性质.19.(3分)下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,第n个图案需要7n+1根火柴棒.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;故答案为:7n+1.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.20.(3分)老师布置了一道题:已知线段AB=a,在直线AB上取一点C,使BC=b(a>b),点M、N分别是线段AB、BC的中点,求线段MN的长.甲同学的答案是9,乙同学的答案是5,经询问得知甲、乙两个同学的计算都没有出错.依此探究线段AB的长为14.【分析】分类讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段中点的性质,可得MB,NB,根据线段的和差,可得方程组,根据解方程组,可得答案.【解答】解:由点M、N分别是线段AB、BC的中点,得BM=AB=,BN=BC=.由线段的和差,得,解得.故答案为:14.【点评】本题考查了两点间的距离,利用线段中点的性质,线段的和差,分类讨论得出方程组是解题关键.三.解答题(本大题有6小题,共66分,解答应写出文字说明、证明过程或演算步骤)21.(16分)计算题:(1)(2)(3)化简求值:12(x2y﹣xy2)﹣5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.【分析】(1)根据有理数的运算法则即可求出答案.(2)根据有理数的运算法则即可求出答案.(3)根据整式的运算法则进行化简,然后将x与y的值代入即可求出答案.【解答】解:(1)原式===﹣18﹣30+21+8=﹣19;(2)原式=﹣1﹣,=﹣1+=;(3)原式=12x2y﹣4xy2﹣5xy2+5x2y﹣2x2y=15x2y﹣9xy2当x=,y=﹣5时,原式=15×=﹣3﹣45=﹣48.【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.22.(10分)解方程(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)=﹣1【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣7x+7=3﹣2x﹣6,移项合并得:﹣2x=﹣10,解得:x=5;(2)去分母得:3﹣3x=8x﹣2﹣6,移项合并得:﹣11x=﹣11,解得:x=1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.(8分)某实验学校为了解九年级学生的身体素质测试情况,随机抽取了该校九年级部分学生的身体素质测试成绩作为样本,按A(优秀),B(良好),C(合格),D(不合格)四个等级进行统计,并将统计结果绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整,并计算扇形统计图中“A”部分所对应的圆心角的度数为72°.(3)我校九年级共有1000名学生参加了身体素质测试,估计测试成绩在良好以上(含良好)的人数.【分析】(1)根据良好的人数和所占的百分比求出总人数;(2)根据总人数求出合格的人数,从而补全统计图;用“A”部分所占的百分比乘以360°即可求出“A”部分所对应的圆心角的度数;(3)用该校九年级的总人数乘以良好以上(含良好)的人数所占的百分比即可得出答案.【解答】解:(1)此次共调查学生数:20÷40%=50(人),答:此次共调查了50名学生;(2)合格的人数有:50﹣10﹣20﹣6=14(人),补全条形图如图:A等级对应扇形圆心角度数为:×360°=72°;(3)估计测试成绩在良好以上(含良好)的人数为:1000×=600(人),答:估计测试成绩在良好以上(含良好)的约有600人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.24.(8分)列一元一次方程解应用题:学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共80千克,了解到这些蔬菜的种植成本共180元,还了解到如下信息:(1)求采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?【分析】(1)设采摘的黄瓜x千克,则茄子(80﹣x)千克,根据题意可得等量关系:黄瓜的成本+茄子的成本=180元,根据等量关系列出方程,再解即可;(2)根据(1)中的结果计算出黄瓜的利润和茄子的利润,再求和即可.【解答】解:(1)设采摘的黄瓜x千克,则茄子(80﹣x)千克,由题意得:2x+2.4(80﹣x)=180,解得:x=30,80﹣30=50(千克),答:采摘的黄瓜30千克,则茄子50千克;(2)(3﹣2)×30+(4﹣2.4)×50=30+80=110(元),答:采摘的黄瓜和茄子可赚110元.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.25.(12分)(1)如图甲,AOB为直线,OC平分∠AOD,∠BOD=42°12′,求∠AOC的度数;(2)已知,如图乙,B、C两点把线段AD分成2:5:3三部分,M为AD的中点,BM =6cm,求CM和AD的长.【分析】(1)根据题意找出这几个角之间的关系,利用角平分线的性质来求.(2)由已知B,C两点把线段AD分成2:5:3三部分,所以设AB=2xcm,BC=5xcm,CD=3xcm,根据已知分别用x表示出AD,MD,从而得出BM,继而求出x,则求出CM 和AD的长.【解答】解:(1)∵∠AOB=180°,∴∠AOD=180°﹣∠BOD=180°﹣42°12′=137°48′,∵OC平分∠AOD,∴∠AOC=∠AOD=×137°48′=68°54′.(2)设AB=2xcm,BC=5xcm,CD=3xcm所以AD=AB+BC+CD=10xcm因为M是AD的中点所以AM=MD=AD=5xcm所以BM=AM﹣AB=5x﹣2x=3xcm因为BM=6 cm,所以3x=6,x=2故CM=MD﹣CD=5x﹣3x=2x=2×2=4cm,AD=10x=10×2=20cm.【点评】考查了角的计算,解题的关键是找出各角之间的关系,OC平分∠AOD,求出∠AOC的度数.同时考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.26.(12分)已知,A、B在数轴上对应的数分别用a、b表示,且(a+5)2+|b﹣15|=0.(1)数轴上点A表示的数是﹣5,点B表示的数是15;(2)若一动点P从点A出发,以3个单位长度/秒速度由A向B运动;动点Q从原点O 出发,以1个单位长度/秒速度向B运动,点P、Q同时出发,点Q运动到B点时两点同时停止.设点Q运动时间为t秒.①若P从A到B运动,则P点表示的数为﹣5+3t,Q点表示的数为t.(用含t 的式子表示)②当t为何值时,点P与点Q之间的距离为2个单位长度.【分析】(1)由偶次方及绝对值的非负性,可求出a,b的值,进而可得出结论;(2)①根据点P,Q的出发点及运动速度,可得出运动时间为t秒时,P,Q两点表示的数;①分P点在Q点左侧及P点在Q点右侧两种情况考虑,根据PQ=2,即可得出关于t 的一元一次方程,解之即可得出结论.【解答】解:(1)∵(a+5)2+|b﹣15|=0,∴a+5=0,b﹣15=0,∴a=﹣5,b=15,∴A表示的数是﹣5,B表示的数是15.故答案为:﹣5;15.(2)①当运动时间为t秒时,P点表示的数为﹣5+3t,Q点表示的数为t.故答案为:﹣5+3t;t.②当P点在Q点左侧时,﹣5+3t+2=t,解得:t=;当P点在Q点右侧时,t+2=﹣5+3t得:t=.综上所述,当t为或时,点P与点Q之间的距离为2个单位长度.【点评】本题考查了一元一次方程的应用、偶次方及绝对值的非负性、数轴以及列代数式,解题的关键是:(1)利用偶次方及绝对值的非负性求出a,b的值;(2)①根据数量关系,用含t的代数式表示出P,Q两点表示的数;②分P点在Q点左侧及P点在Q点右侧两种情况,找出关于t的一元一次方程.。
保定市初一上学期数学期末试卷带答案

保定市初一上学期数学期末试卷带答案一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13C .13-D .32.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104C .3.84×105D .3.84×1063.-2的倒数是( ) A .-2B .12- C .12D .24.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .5925.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( ) A .23(30)72x x +-= B .32(30)72x x +-= C .23(72)30x x +-=D .32(72)30x x +-=6.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( ) A .410 +415x -=1 B .410 +415x +=1 C .410x + +415=1 D .410x + +15x=1 7.下列分式中,与2x yx y---的值相等的是() A .2x yy x +-B .2x yx y+-C .2x yx y--D .2x yy x-+ 8.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cmB .2cmC .8cm 或2cmD .以上答案不对9.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .D .10.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-4 11.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A .向西走3米B .向北走3米C .向东走3米D .向南走3米12.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为( ) A .3.31×105B .33.1×105C .3.31×106D .3.31×10713.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥14.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+15.如图的几何体,从上向下看,看到的是( )A .B .C .D .二、填空题16.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.17.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.18.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 19.36.35︒=__________.(用度、分、秒表示)20.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元. 21.计算:()222a -=____;()2323x x ⋅-=_____.22.若a a -=,则a 应满足的条件为______.23.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.24.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 25.将520000用科学记数法表示为_____.26.五边形从某一个顶点出发可以引_____条对角线. 27.4是_____的算术平方根.28.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.29.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.30.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.三、压轴题31.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).32.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ? 33.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.34.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示); ②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.35.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.36.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?37.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.38.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).(1)当甲追上乙时,x = .(2)请用含x的代数式表示y.当甲追上乙前,y= ;当甲追上乙后,甲到达C之前,y= ;当甲到达C之后,乙到达C之前,y= .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵3>13>13->﹣3,∴在数3,﹣3,13,13-中,最小的数为﹣3.故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】试题分析:384 000=3.84×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握4.C解析:C【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项. 【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++, 第二行四个数分别为7,8,9,10x x x x ++++, 第三行四个数分别为14,15,16,17x x x x ++++, 第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C. 【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.5.A解析:A 【解析】 【分析】设女生x 人,男生就有(30-x )人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可. 【详解】 设女生x 人, ∵共有学生30名, ∴男生有(30-x )名,∵女生每人种2棵,男生每人种3棵, ∴女生种树2x 棵,男生植树3(30-x )棵, ∵共种树72棵, ∴2x+3(30-x)=72, 故选:A. 【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.6.B解析:B 【解析】 【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可. 【详解】设乙独做x 天,由题意得方程:410+415x +=1.【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.7.A解析:A 【解析】 【分析】根据分式的基本性质即可求出答案. 【详解】 解:原式=22x y x yx y y x++-=--, 故选:A . 【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.8.C解析:C 【解析】 【分析】根据题意分两种情况讨论:①当点C 在线段AB 上时,②当点C 在线段AB 的延长线上时,分别根据线段的和差求出AC 的长度即可. 【详解】解:当点C 在线段AB 上时,如图,∵AC=AB−BC , 又∵AB=5,BC=3, ∴AC=5−3=2;②当点C 在线段AB 的延长线上时,如图,∵AC=AB+BC , 又∵AB=5,BC=3, ∴AC=5+3=8. 综上可得:AC=2或8. 故选C . 【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.9.C解析:C【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【详解】移项得,x>2,在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.10.B解析:B【解析】【分析】把5xy=⎧⎨=⎩x=5代入方程x-2y=3可求得y的值,然后把x、y的值代入2x+y=口即可求得答案.【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,故选B.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.11.A解析:A【解析】∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.12.C解析:C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:3310000=3.31×106.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.C解析:C【解析】【分析】根据面动成体可得长方形ABCD绕CD边旋转所得的几何体.【详解】解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故选:C.【点睛】此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.14.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】方程212134x x-+=-两边同时乘12得:4(21)123(2)x x-=-+故选:D.【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.15.A解析:A【解析】【分析】根据已知图形和空间想象能力,从上面看图形,根据看的图形选出即可.【详解】从上面看是水平方向排列的两列,上一列是二个小正方形,下一列是右侧一个正方形,故A符合题意,故选:A.【点睛】本题考查了简单组合体的三视图的应用,主要培养学生的观察能力和空间想象能力.二、填空题16.8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.17.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.18.4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则解析:4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则m+n=4.故答案是:4.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.19.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点解析:3621'o【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点睛】本题主要考查了度分秒的换算,相对比较简单,注意以60为进制,熟记1°=60′,1′=60″.20.33【解析】【分析】根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价.【详解】解:设6斤重的西瓜卖x 元解析:33【解析】【分析】根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝⎭元”可得出(12+6)斤重西瓜的定价. 【详解】解:设6斤重的西瓜卖x 元,则(6+6)斤重的西瓜的定价为:363(21)6x x x =+++元, 又12斤重的西瓜卖21元,∴2x+1=21,解得x=10.故6斤重的西瓜卖10元.又18=6+12,∴(6+12)斤重的西瓜定价为:6121021=3336⨯++(元). 故答案为:33.【点睛】本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 21.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a-=44a()23⋅-=5x x23-6x【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键22.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.≥解析:a0【解析】【分析】根据绝对值的定义和性质求解可得.【详解】-=,解:a a∴≥,a0≥.故答案为a0【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.23.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.24.1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可. 【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.25.2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数解析:2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.26.2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.27.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.28.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.29.140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:14030.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.三、压轴题31.(1)①5;②OQ 平分∠AOC ,理由详见解析;(2)5秒或65秒时OC 平分∠POQ ;(3)t =703秒. 【解析】【分析】(1)①由∠AOC =30°得到∠BOC =150°,借助角平分线定义求出∠POC 度数,根据角的和差关系求出∠COQ 度数,再算出旋转角∠AOQ 度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ 和∠COQ 度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ =3t ,∠AOC =30°+6t ,根据角平分线定义可知∠COQ =45°,利用∠AOQ 、∠AOC 、∠COQ 角之间的关系构造方程求出时间t ; (3)先证明∠AOQ 与∠POB 互余,从而用t 表示出∠POB =90°﹣3t ,根据角平分线定义再用t 表示∠BOC 度数;同时旋转后∠AOC =30°+6t ,则根据互补关系表示出∠BOC 度数,同理再把∠BOC 度数用新的式子表达出来.先后两个关于∠BOC 的式子相等,构造方程求解.【详解】(1)①∵∠AOC =30°,∴∠BOC =180°﹣30°=150°,∵OP 平分∠BOC ,∴∠COP =12∠BOC =75°, ∴∠COQ =90°﹣75°=15°,∴∠AOQ =∠AOC ﹣∠COQ =30°﹣15°=15°,t =15÷3=5;②是,理由如下:∵∠COQ =15°,∠AOQ =15°,∴OQ 平分∠AOC ;(2)∵OC 平分∠POQ ,∴∠COQ =12∠POQ =45°. 设∠AOQ =3t ,∠AOC =30°+6t ,由∠AOC ﹣∠AOQ =45°,可得30+6t ﹣3t =45,解得:t =5,当30+6t ﹣3t =225,也符合条件,解得:t =65,∴5秒或65秒时,OC 平分∠POQ ;(3)设经过t 秒后OC 平分∠POB ,∵OC 平分∠POB ,∴∠BOC =12∠BOP , ∵∠AOQ +∠BOP =90°,∴∠BOP =90°﹣3t ,又∠BOC =180°﹣∠AOC =180°﹣30°﹣6t ,∴180﹣30﹣6t =12(90﹣3t ), 解得t =703. 【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键.32.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P在点Q的右边时,有(21)72t-=+,解得:9t=;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.33.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.34.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=,故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数, 对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭ 75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 35.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767. 【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257⨯=1767.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年河北省保定市曲阳县七年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥2.如图所示,在数轴上两点A、B分别表示的数是a,b,则下列四个数中最大的一个是()A.a B.﹣a C.b D.﹣b3.有理数﹣22,(﹣2)2,|﹣23|,﹣按从小到大的顺序排列是()A.|﹣23|<﹣22<﹣<(﹣2)2B.﹣22<﹣<(﹣2)2<|﹣23|C.﹣<﹣22<(﹣2)2<|﹣23|D.﹣<﹣22<|﹣23|<(﹣2)24.下列计算中正确的是()A.6a﹣5a=1B.5x﹣6x=11x C.m2﹣m=m D.x3+6x3=7x3 5.当x=7,y=﹣3时,代数式的值是()A.B.C.D.6.已知y=1是关于y的方程2﹣(m﹣1)=2y的解,则关于x的方程m(x﹣3)﹣2=m的解是()A.0B.6C.43D.以上答案均不对7.下列说法正确的是()A.0不是单项式B.x没有系数C.是多项式D.﹣xy3是单项式8.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b9.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.格点N C.格点P D.格点Q10.某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A.880元B.800元C.720元D.1080元二、填空题(每小题3分,共30分)11.若一个数平方等于它的倒数,那么这个数是.12.等式×(﹣5)+(﹣13)=[(﹣5)+(﹣13)]依据的运算律是.13.已知点A,B,C在同一条直线上,AB=8cm,BC=4cm,则AC=.14.如果∠1+∠2=90°,∠1+∠3=90°,那么∠2与∠3的大小关系是.15.某商店举办促销活动,促销的方法是将原价x元的衣服以(﹣10)元出售,请你用正确的语言表达该商店的促销方法是.16.已知a2+2ab=﹣8,b2+2ab=14,则a2+4ab+b2=;a2﹣b2=.17.如图所示,已知OC平分∠AOB,若OD是∠BOC内的一条射线,且∠COD=∠BOD,则∠AOB:∠COD=.18.若2x=与3(x+a)=a﹣5x有相同的解,那么a﹣1=.19.下列图形都是由同样大小的圆按一定的规律组成,其中,第①个图形中一共有2个圆:第②个图形中一共有7个圆:第③个图形中一共有16个圆;第④个图形中一共有29个圆,…,则第⑦个图形中圆的个数为.20.根据图中给出的信息,可列方程是.小乌鸦:老乌鸦,我喝不到大量筒中的水.老乌鸦:小乌鸦,你飞到装有相同水量的小量筒,就可以喝到水了!三、解答题(40分)21.(6分)计算:(1)﹣22﹣(1﹣0.8×)÷(﹣);(2)=2(1﹣x).22.(6分)解方程:(1)4x=19﹣(x+4);(2).23.(4分)3x2y﹣[2xyz﹣(2xyz﹣x2yz)+3x2y],其中x=﹣4,y=,z=3.24.(6分)将7张相同的小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD内,未被覆盖的部分恰好被分割为两个长方形,面积分别为S1,S2,已知小长方形纸片的长为a,宽为b,且a>b(1)当a=9,b=2,AD=30时,请求:①长方形ABCD的面积;②S2﹣S1的值.(2)当AD=30时,请用含a,b的式子表示S2﹣S1的值.25.(9分)已知将一副三角板(直角三角板OAB和直角板OCD,∠AOB=90°,∠ABO =45°,∠CDO=90°,∠COD=30°)(1)如图1摆放,点O、A、C在一条直线上,∠BOD的度数是;(2)如图2,变化摆放位置将直角三角板COD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是;(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC.射线ON 平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.26.(9分)甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件.如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件?参考答案与试题解析一、选择题(每小题3分,共30分)1.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥【解答】解:四棱锥的底面是四边形,侧面是四个三角形,底面有四条棱,侧面有4条棱,故选:D.2.如图所示,在数轴上两点A、B分别表示的数是a,b,则下列四个数中最大的一个是()A.a B.﹣a C.b D.﹣b【解答】解:∵由图可知,﹣1<a<0<b<1,∴﹣a与﹣b在数轴上表示如图,∴四个数中最大的一个是﹣a.故选:B.3.有理数﹣22,(﹣2)2,|﹣23|,﹣按从小到大的顺序排列是()A.|﹣23|<﹣22<﹣<(﹣2)2B.﹣22<﹣<(﹣2)2<|﹣23|C.﹣<﹣22<(﹣2)2<|﹣23|D.﹣<﹣22<|﹣23|<(﹣2)2【解答】解:∵﹣22=﹣4,(﹣2)2=4,|﹣23|=8,∴﹣4<﹣<4<8,∴﹣22<﹣<(﹣2)2<|﹣23|.故选:B.4.下列计算中正确的是()A.6a﹣5a=1B.5x﹣6x=11x C.m2﹣m=m D.x3+6x3=7x3【解答】解:6a﹣5a=a,故A错误,5x﹣6x=﹣x,故B错误,m2﹣m≠m,故C错误,x3+6x3=7x3,故D正确,故选:D.5.当x=7,y=﹣3时,代数式的值是()A.B.C.D.【解答】解:当x=7,y=﹣3时,原式=,故选:A.6.已知y=1是关于y的方程2﹣(m﹣1)=2y的解,则关于x的方程m(x﹣3)﹣2=m的解是()A.0B.6C.43D.以上答案均不对【解答】解:把y=1代入方程得:2﹣(m﹣1)=2,去分母得:6﹣m+1=6,解得:m=1,把m=1代入方程得:x﹣3﹣2=1,解得:x=6,故选:B.7.下列说法正确的是()A.0不是单项式B.x没有系数C.是多项式D.﹣xy3是单项式【解答】解:A、0是单项式,故原题说法错误;B、x系数为1,故原题说法错误;C、+x3不是多项式,故原题说法错误;D、﹣xy3是单项式,故原题说法正确;故选:D.8.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.9.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.格点N C.格点P D.格点Q【解答】解:如图,连接N和两个三角形的对应点;发现两个三角形的对应点到点N的距离相等,因此格点N就是所求的旋转中心;故选:B.10.某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A.880元B.800元C.720元D.1080元【解答】解:设1月份每辆车售价为x元,则2月份每辆车的售价为(x﹣80)元,依题意得100x=(x﹣80)×100×(1+10%),解得x=880.即1月份每辆车售价为880元.故选:A.二、填空题(每小题3分,共30分)11.若一个数平方等于它的倒数,那么这个数是1.【解答】解:设这个数是x,根据题意得x2=,解得x=1.故答案是1.12.等式×(﹣5)+(﹣13)=[(﹣5)+(﹣13)]依据的运算律是分配律.【解答】解:×(﹣5)+(﹣13)=[(﹣5)+(﹣13)]依据的运算律是乘法分配律,故答案为:乘法分配律.13.已知点A,B,C在同一条直线上,AB=8cm,BC=4cm,则AC=12cm或4cm.【解答】解:当点C在AB上时,AC=AB﹣BC=8﹣4=4(cm);当C(C′)在AB外时,AC′=AB+BC′=8+4=12(cm);故答案为:12cm或4cm.14.如果∠1+∠2=90°,∠1+∠3=90°,那么∠2与∠3的大小关系是相等.【解答】解:∵∠1+∠2=90°,∠1+∠3=90°,∴∠2=∠3(等角的余角相等).故答案为:相等15.某商店举办促销活动,促销的方法是将原价x元的衣服以(﹣10)元出售,请你用正确的语言表达该商店的促销方法是原价打8折后降价10元销售.【解答】解:原价x元的衣服以(﹣10)元出售,语言表达该商店的促销方法是:原价打8折后降价10元销售,故答案为:原价打8折后降价10元销售.16.已知a2+2ab=﹣8,b2+2ab=14,则a2+4ab+b2=6;a2﹣b2=﹣22.【解答】解:∵a2+2ab=﹣8,b2+2ab=14,∴a2+2ab+b2+2ab=a2+4ab+b2=6,a2+2ab﹣(b2+2ab)=a2﹣b2=﹣8﹣14=﹣22.即:a2+4ab+b2=6,a2﹣b2=﹣22.17.如图所示,已知OC平分∠AOB,若OD是∠BOC内的一条射线,且∠COD=∠BOD,则∠AOB:∠COD=6:1.【解答】解:如图所示,设∠COD=α,∠COD=∠BOD,则∠BOD=2α,OC平分∠AOB,则∠AOC=3α,∠AOB:∠COD=6α:α=6:1,故答案为:6:1.18.若2x=与3(x+a)=a﹣5x有相同的解,那么a﹣1=﹣.【解答】解:解方程2x=得到:x=,把x=代入3(x+a)=a﹣5x得到关于a的方程:﹣6a=16解得:a=﹣,把a=﹣代入a﹣1得到:a﹣1=﹣.故填﹣.19.下列图形都是由同样大小的圆按一定的规律组成,其中,第①个图形中一共有2个圆:第②个图形中一共有7个圆:第③个图形中一共有16个圆;第④个图形中一共有29个圆,…,则第⑦个图形中圆的个数为92.【解答】解:第(1)个图形中最下面有1个圆,上面有1个圆;第(2)个图形中最下面有2个圆,上面有1+3+1个圆;第(3)个图形中最下面有3个圆,上面有1+3+5+3+1个圆;…第(7)个图形最下面有8个圆,上面有1+3+5+7+9+11+13+15+13+11+9+7+5+3+1个圆,∴共有7+(1+3+5+7+9+11+13+11+9+7+5+3+1)=92,故答案是:92.20.根据图中给出的信息,可列方程是π×()2•x=π×()2×(x+5).小乌鸦:老乌鸦,我喝不到大量筒中的水.老乌鸦:小乌鸦,你飞到装有相同水量的小量筒,就可以喝到水了!【解答】解:由题意可得:π×()2•x=π×()2×(x+5),故答案为:π×()2•x=π×()2×(x+5).三、解答题(40分)21.(6分)计算:(1)﹣22﹣(1﹣0.8×)÷(﹣);(2)=2(1﹣x).【解答】解:(1)原式=﹣4﹣(1﹣)×(﹣6)=﹣4﹣×6=﹣4﹣2=﹣6;(2)去分母得:x﹣1+3=6(1﹣x),去括号得:x﹣1+3=6﹣6x,移项合并同类项得:7x=4,解得:x=.22.(6分)解方程:(1)4x=19﹣(x+4);(2).【解答】解:(1)4x=19﹣(x+4)去括号得:4x=19﹣x﹣4,移项合并同类项得:5x=15,系数化1得:x=3(2)去分母得:x﹣1+3=6(1﹣x)去括号得:x﹣1+3=6﹣6x,移项合并同类项得:7x=4,解得:x=.23.(4分)3x2y﹣[2xyz﹣(2xyz﹣x2yz)+3x2y],其中x=﹣4,y=,z=3.【解答】解:原式=3x2y﹣2xyz+2xyz﹣x2yz﹣3x2y=﹣x2yz当x=﹣4,y=,z=3时,原式=﹣(﹣4)2××3=﹣24.24.(6分)将7张相同的小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD内,未被覆盖的部分恰好被分割为两个长方形,面积分别为S1,S2,已知小长方形纸片的长为a,宽为b,且a>b(1)当a=9,b=2,AD=30时,请求:①长方形ABCD的面积;②S2﹣S1的值.(2)当AD=30时,请用含a,b的式子表示S2﹣S1的值.【解答】解:(1)①长方形ABCD的面积为AD•AB=AD(a+4b)=30×(4×2+9)=510;②S2S1=(30﹣3×2)×9﹣(30﹣9)×4×2=48;﹣(2)当AD=30时,S2﹣S1=a(30﹣3b)﹣4b(30﹣a)=30a﹣3ab﹣120b+4ab=ab+30a﹣120b.25.(9分)已知将一副三角板(直角三角板OAB和直角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=30°)(1)如图1摆放,点O、A、C在一条直线上,∠BOD的度数是60°;(2)如图2,变化摆放位置将直角三角板COD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是75°;(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC.射线ON 平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.【解答】解:(1)∵∠AOB=90°,∠COD=30°,∴∠BOD=∠AOB﹣∠COD=60°;(2)∵OB恰好平分∠COD,∴∠COB=∠COD=×30°=15°,∴∠AOC=∠AOB﹣∠COB=90°﹣15°=75°;故答案为:60°;75°;(3)∠MON的度数不发生变化,∠MON=60°.理由如下:∵OM平分∠AOC,ON平分∠BOD,∴∠DON=∠BOD,∠COM=∠AOC,∴∠DON+∠COM=(∠BOD+∠AOC)=(∠AOB﹣∠COD),∴∠MON=∠DON+∠COM+∠COD=(∠AOB+∠COD)=×(90°+30°)=60°.26.(9分)甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件.如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件?【解答】解:设此月人均定额为x件,解得:x=45.答:此月人均定额是45件.。