高一数学寒假作业(人教A版必修一)集合word版含解析

合集下载

高一数学(必修一)寒假作业1Word版含答案

高一数学(必修一)寒假作业1Word版含答案

高一数学(必修一)寒假作业1一、选择题,每小题只有一项是正确的。

1.已知全集{}1,2,3,4U =,集合{}{}1,2,2A B == ,则∁U (A ∪B ) =( )A .{}134,,B .{}34,C . {}3D . {}4 2.已知集合A ={x|a -1≤x≤a+2},B ={x|3<x <5},则使A ⊇B 成立的实数a 的取 值范围是 ( )A.{a|3<a≤4}B.{a|3≤a≤4}C. {a|3<a <4}D.φ3.函数 的定义域为M , 的定义域为N ,则M ∩N =( )A .[-2,+∞)B .[-2,2)C .(-2,2)D .(-∞,2) 4.下列式子中成立的是 ( ) A.1122log 4log 6< B. 0.30.311()()23> C. 3.4 3.511())22<( D.32log 2log 3> 5.下列函数是偶函数的是 ( )A. 2lg y x =B. 1()2xy = C. 21y x =- ,(11]x ∈- D. 1y x -=6.已知函数()2030x x x fx x log ,,⎧>=⎨≤⎩, 则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是( )A .9B .19 C .9- D .19- 7.下列各个对应中,构成映射的是( )8.设()f x 是定义在R 上的偶函数,对任意的x R ∈,都有(2)(2)f x f x -=+,且当[2,0]x ∈-时,1()()12x f x =-,则在区间(2,6]-内关于x 的方程2()log (2)0f x x -+=的零点的个数是( )A .1B .2C .3D .49.若函数()(1)(0x x f x k a a a -=-->且1)a ≠在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )二、填空题10.函数32,1()log 1x x f x x x ⎧≤=⎨>⎩,,则(f f =__________11.若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B 。

高一数学(人教A版2019)寒假作业:(1)集合、

高一数学(人教A版2019)寒假作业:(1)集合、

寒假作业(1)集合1下列命题中正确的是()① 0 -「0 ?;②由1,2,3组成的集合可以表示为{1, 2,3 / 或「3, 2,仁;;③方程(x —1)2(x —2)=0的所有解构成的集合可表示为(1,1,2 [;④集合]x| 2 :::x :::5?可以用列举法表示.A.①和④B.②和③C.②D.以上命题都不对2、若X,A,则—• A,就称A是伙伴集合.其中M二-2, -1,0,丄,2,3的所有非空子集中具有x [ 2J伙伴关系的集合个数是()A.1B.3C.7D.13、若集合 A ={x|0 £X c a,x€ N }有且只有一个元素,则实数a的取值范围为()A. (1,2)B.1,2]C. 1,2D. 1,2]4、设集合 A _2,1 B -〔-1,2 /,定义集合 A : B = |x = X1X2 ,X1 三A,X2 三 B ?,则A: B 中所有元素之积为()A.七B. -16C.8D.165、已知M - \x|x_5,x Rf,a - 11,b二26,则()A. a MR^MB. aEM,b'MC.a -M,b MD. a 'M,b 'M6、已知集合 A = :1,2B = lx | x =a • b,a • A,b • A ?,则集合B中元素的个数为()A.1B.2C.3D.47、设集合 A -〔a • N | -1 ::: a _ 2 1 B -〔b • Z | —2 _ b ::: 3 ?,则A ^ ()A. 9,1?B.\-1,0,1?C.'0,1,2? D< -1,0,1, 2?8、已知集合 A - lx | -1 ::: x ::: 2 B - lx | x 1 ?,则A- B=()9、已知集合A 非空集合B 满足A_. B 」:1,2二则满足条件的集合 B 有()A.1个B.2个C.3个D.4个 10、 定义集合运算:A ^B =「z|z=x 2-y 2x Ay B?,设集合 A =「1,.. 2 > B 二「_1,0?,则集合 A ^B 的元素之和为()A.2B.1C.3D.411、 ______________________________________________________________若 A = {x|ax 2 —ax+1 兰0,xw R }=0 ,则 a 的取值范围是 _____________________________________.12、 已知集合 A ={_1,3,2 m _1 },集合 B ={3,m 2},若 B u A ,则实数 m = _________________ .13、 已知集合 A - \x|x 2 • x -6 =0f,B - 1x|mx •仁0?,且B_ A ,则m 的取值构成的集合为14、 若AQ B, A 匸C, B ={0,1,2,3,4},C =S,2,4,8},则满足上述条件的集合A 有__________ 个.15、 已知集合 A = {-1,3,2m-1,集合 B={3,m 2},若 BG A ,则实数 m 二 ______________16、 设 M £[X, y |mx ny = 4?且〈2,1 , -2, 5 ?? M 则m = __________ , n = __________ .17、 设A 」x|1 vxc2},B={x|xca},若A 匚B ,则a 的取值范围是 _____________________ .18、 设全集U 二R ,集合A ^' x|x • 1, B ・x| x ::: -a?,且B u e U A ,则实数a 的取值范围是19、 已知集合 A ・.x|x 2-px 15=0,x Zl,B"x|x 2-5x q=0,x Z?,若 A 一 B ・..2,3,5 ?,则 A = ____ , B= ________ .20、 已知集合A ・.a 2,a 7,£油 J ・a-3,2a-1,a 2若A 、B -「-3»则实数a 的值为A. (一1,1)B.(1,2) c.(-1,;) D. (1,;)答案以及解析1答案及解析:答案:C解析:①错误,0是元素,[0[表示有一个元素0的集合;②正确,由1,2,3组成的集合可以表示为「1,2,3 /或:3, 2,1 / ;③错误,方程(x _1)2(X_2) =0的所有解构成的集合可表示为{1,2:;④错误,集合[X | 2 :::x :::5 :•不可以用列举法表示.2答案及解析:答案:B1 解析:•••若A ,则A,就称A是伙伴集合.x「 1 1 「门」i 「1】••• M - -2, -1,0, - ,2,3的所有非空子集中具有伙伴关系的集合有2,- ,m, -1,2,-.r 11••• M= 2-1,0, —,2,3的所有非空子集中具有伙伴关系的集合个数是3•故选BI 2J3答案及解析:答案:D解析:因为若集合 A ={x|0 £x c a,x€ N }中有且只有一个元素,则该元素一定是1,所以1 ^ <2,故选D.4答案及解析:答案:C解析:T A :H B - lx | x =X t X2,捲三A, X2 三 B f,二 A : B - ;2, -4, -1二• A :B中所有元素之积为2 (V) (-1)=8.5答案及解析:答案:B解析:M =&以兰5/€"月=州<54=#26:>5,.・.a壬M,b更M .故选B答案:C 解析:•••集合A =",2?,B =[x|x =a • b,a三A,b三8 =\2,3,4>,^集合B中元素的个数为3.故选C.7答案及解析:答案:C解析:T A =3,1,2 ?, B ,2?,二A-B=g,1,2?.8答案及解析:答案:C解析:将集合A,B在数轴上表示出来,如图所示.由图可得A B」..x|x . _1?.故选C.M . 1 产一-1012^9答案及解析:答案:C解析:•••集合A = {l,2},非空集合 B 满足A5 ={l,2},: B ={l }或 B ={2}或 B ={l, 2} .•••有3个.10答案及解析:答案:C解析:当y=0 y_-1.y =0故集合A^ B J.0,1,2 /的元素之和为0 T 2 =3.11答案及解析:答案:0^a:::4解析:T A - \x| aX—ax 1 m o,x 二R? ,a A Oa=°或丄=(一》_4a:::0‘••• 0 ma :::4 .•••实数a的取值范围为0乞a :::4.12答案及解析:答案:1解析:T B u A ,• m2 =2m -1,即(m _1)2 =0,解得m=1.当m J 时、A-1,3,1 ?, B =「3,1 ?,满足 B u A .13答案及解析:答案:0,丄丄I 2 3j解析:由题意得,A^x|x2飞-6=0二;-3,21且B5A.1当B »时,m=0;当m=0时,x =-丄,m1 1 1 1所以2或3,所以m 或m = - .m m 2 3所以m的取值构成的集合为』0_丄1•I' 2,3J14答案及解析:答案:8解析:A中可能含有0,2,4这3个元素,故其A可以为「0丁2丁4 Jo,2 Jo,4丁2,4 Jo,2,4?, 一,共8个. 15答案及解析:答案:1解析:T B 5 A ,• m 二2m T,•- m = 1.4 4答案:3 3解析:•••;、2,1 , -2,5 ?? M ,2m n = 4-2 m 5n = 4m=4n 二一317答案及解析:答案:a_2解析:••• A U,二a _ 218答案及解析:答案:a _ -1解析:••• e j A J”x|x 胡又••• B u e u A,佃答案及解析:答案:(3,5 ?;「2,3 /解析:设A -1x i,X2 ?,B -:X3,xJ.因为X iK是方程x2-px • 15 =0的两根,所以x’x? =15,由已知条件可知x’,x2三'2,3,5 /,所以洛=3, X2 =5或X1 =5, X? = 3 ,所以A - \3,5 f •因为X3, %是方程x2 -5x q =0的两根,所以X3 * X4 = 5,由已知条件可知X3,x^ '-2,3,5 /,所以X3 = 3, X4 = 2或X3 =2, X4 =3,所以 B = ^2,3 ;.20答案及解析:答案:-1解析:••• A -•B 3 B.••• a2 1 0,.・. a2 1 = 3当3-3 = -3 时,a =0, A -「0,1,3「B - i-3, _1,1 ?,此时 A - B - \ _3,1 ?,与 A " B - ;-3 [矛盾;当2a -1 - -3 时,a = _1, A =「1,0, _3 [, B = 1_4, —3,2},此时 A - B -[故实数a的值为-1.。

高一年级(必修1)寒假作业5Word版含答案

高一年级(必修1)寒假作业5Word版含答案

高一年级(必修1)寒假作业5一.选择题:1.在“①高一数学课本上的难题; ②所有的正三角形; ③方程220x +=的实数解;”中,能够形成集合的是_________A. ②B. ③C. ②③D. ①②③2.已知集合{2,0,2}A =-,B=2{|20}x x x --=,则____A B =A.∅B.{2}C.{0}D.{-2}3.设全集{1,2,3,4,5,6,7},{2,3,4,6},{1,4,5}U M N ===,则{1,5}等于________A.M NB. M NC.()U C M ND. ()U M C N4.设A={|12}x x <<,B={|}x x a ≤,若A B ≠⊂,则实数a 的取值范围是________ A.a ≥2 B.a ≤1 C. a ≥1 D. a ≤25.满足1234{,,,}M a a a a ⊆,且12312{,,}{,}M a a a a a = 的集合M 的个数是______A.3B.2C.1D.无穷多个6.已知集合{|212},{|21,}M x x N x x k k N +=-≤-≤==-∈,则M N 子集的个数是________________A.2B.1C.4D.8 7.11{|,},{|,}623n A x x m m Z B x x n Z ==+∈==-∈,1{|,}26p C x x p Z ==+∈,则A 、B 、C 的关系是___________A.A=B=CB.A B C ⊆=C.A B C ⊆⊆D.B C A ⊆⊆8.某班在全明星投票期间,对本班55位学生进行了调查,发现支持科比的有26人,支持詹姆斯的有23人,还有12人既不支持科比也不支持詹姆斯,则在该班中既支持科比又支持詹姆斯的人数为_______________A.5B.6C.35D.389.设I 为全集,1S ,2S ,3S 是I 的三个非空子集,且1S ∪2S ∪3S =I ,则下列结论正确的是___________:A.1()I C S ∩(2S ∪3S )=∅B.1S ⊆ 1()I C S ∩3()I C SC. 1()I C S ∩3()I C S =13()I C S SD.123()()I I S C S C S ⊆10.已知集合{|4A x x =<-或1}x >,M={|2121}x k x k -≤≤+,若M A ⊆,则实数k 的取值范围是_________________.1A k > B.52k <- C.1k >或52k <- D.512k -<< 11.设U R =,{|2A x x =≤-或5}x ≥,{|2}B x x =≤,{|23}C x a x a =-≤≤-,若(())U C C A B C = ,则实数a 的取值范围是_______________A.a>1B.a<1C.a>0D.a<012.已知集合1234567{,,,,,,,,,}A a a a a a a a a a a =,其中0(1,2,i a i >=,集合B={(,)|,,()}a b a A b A a b A ∈∈-∈,则集合B 的元素至多有___________个A.55B.45C.35D.65二.填空题:13.设集合A={-1,2},2{|20}B x x ax b =-+=,若,B B A ≠≠∅⊂,则a+b=____________ 14.已知2{,2},{,2},A a B a A B A B === ,则a=__________15.若集合2{1,3,},{1,}A x B x ==,{1,3,}A B x = ,x Q ∈,则x 的值是______16.已知2{|430}A x x x =-+≥,{|}B x a x b =<<,,A B R A B ==∅ ,则 22a b +=_______________________三.解答题:17.已知集合2{4,21,},{5,1,9},{9}A a a B a a A B =--=--= ,求a 的值18.集合{|35},{|223},A x x B x m x m B A =-≤≤=+<<-⊆,求m 的取值范围19.已知集合2{|60},{|1}A x x x B x m x m =--<=<-<①若A B A = ,求实数m 的取值范围②若()R C A B ≠∅ ,求实数m 的取值范围20.222{|190},{|560}A x x ax a B x x x =-+-==-+=,2{|280}C x x x =+-= ①若A B A B = ,求实数a 的值 ②若(),A B A C ≠∅⊂=∅ ,求a 的值21.已知集合2{|20}A x x x p =++=,若{|0}A x x >=∅ ,求实数p 的取值范围22.已知正整数集合222212341234{,,,},{,,,}A a a a a B a a a a ==,其中123a a a a <<<,如果1414{,},10,A B a a a a A B =+= 的所有元素之和为124,①求1a 和4a 的值 ②求集合A高一年级(必修1)寒假作业5答案1-6.CBCABD 7-12.BBCCBB 13.0或者6 14. 0或者1 15.0 16.1017.-3注意集合元素的互异性18.(,4]-∞ 19.(1)1m ≥-(2).m<-1 20.(1)a=5(2)a=-221.0p ≥ 22.(1)141,9a a ==(2){1,3,5,9},{1,9,25,81}A B ==。

2018_2019学年高一数学寒假作业(含解析)(打包27套)新人教A版

2018_2019学年高一数学寒假作业(含解析)(打包27套)新人教A版

高一数学寒假作业(1)集合1、设集合{|,M x R x a =∈≤=则( )A. a M ∉B. a M ∈C. {}a M ∈D. {}a M ∉2、集合{}*|32x N x ∈-<的另一种表示方法是( )A. {}0,1,2,3,4B. {}1,2,3,4C. {}0,1,2,3,4,5D. {}1,2,3,4,53、集合(){}**,|4,,x y x y x N y N +=∈∈用列举法可表示为( )A. {}1,2,3,4B. ()(){}1,3,2,2C. ()(){}3,1,2,2D. ()()(){}1,3,2,2,3,14、已知集合{}1,2,3,4,5A = ,{}(,)|,,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为( )A.3B.6C.8D.105、已知全集{}{}|09,|1U x x A x x a =<<=<<,若非空集合A U ⊆,则实数a 的取值范围是( )B. {}|9a a ≤C. {}|19a a <<D. {}|19a a <≤6、已知集合{}2|35,Z A x x x =≤≤∈,则集合A 的真子集的个数为( )A.1B.2C.3D.47、已知集合{}{}2|320,|A x x x B x x a =-+==<,若AB ,则实数a 的取值范围是( )A. 2a ≤B. 2a <C. 2a >D. 2a ≥8、已知全集{}1,2,3,4U =,集合{}{}1,2,2,3A B ==,则()A B ⋃= ( ) A. {}1,3,4B. {}3,4C. {}3D. {}49、已知全集{}0,1,2,3,4,5U =,集合{}0,3,5M =,M ⋂{}0,3=,则满足条件的集合N 共有( )A.4个B.6个C.8个D.16个10、已知集合{}()(){}1,2,3,|120,A B x x x x Z ==+-<∈,则A B ⋃= ( )A. {}1B. {}1,2D. {1,0,1,2,3}-11、已知集合{}|13,{|0A x x B x x =≤≤<或2}x ≥,则A ⋂=__________.12、已知集合{}0,1,3M =,集合{}|3,N x x a a M ==∈,则M N ⋃=__________.13、设集合(){},|27A x y x y =+=,集合(){},|1B x y x y =-=-,则A B ⋂=__________14、已知{}(){}222||40,2110A x x x B x x a x a =+==+++-=.1.若A B B ⋃=,求a 的值.2.若A B B ⋂=,求a 的值.15、已知集合{}{}{}|37,|410,|A x x B x x C x x a =≤<=<≤=<,全集为实数集R.1.求();;R A B C A B ⋃⋂2.若,A C φ⋂≠求a 的取值范围.答案以及解析1答案及解析:答案:B解析:((2224270-=-<,∴,∴a M ∈.2答案及解析:答案:B解析:集合中的元素满足5x <且*x N ∈,所以集合的元素有1,2,3,4.3答案及解析:解析:注意题中所给集合的代表元素为(),x y .4答案及解析:答案:D解析:由x y A -∈,及{}1,2,3,4,5A =得x y >,当1y =时,x 可取2,3,4,5,有4个;当2y =时,x 可取3,4,5,有3个;当3y =时,x 可取4,5,有2个;当4y =时,x 可取5,有1个;故共有123410+++=,故选D.5答案及解析:答案:D解析:由A U ⊆知, A 是U 的子集,∴19a <≤.6答案及解析:答案:C解析:由题意知, 2x =-或2,即{}2,2A =-,故其真子集由3个.7答案及解析:答案:C解析:{}{}2|3201,2A x x x =-+==,要使A B ,只需2a >即可.8答案及解析:解析:因为{}1,2,3A B ⋃=, 所以(){}4A B ⋃=,故选D.9答案及解析:答案:C解析:∵{}0,3,5M =,{}0,3=, ∴∴0,3,5N N N ∉∉∈而全集U 中的1,2,4不能确定,故满足条件的集合N 有328= (个).10答案及解析:答案:C解析:()(){}{}{}|120,Z |12,Z 0,1B x x x x x x x =+-<∈=-<<∈=.又因为{}1,2,3A =,所以{}0,1,2,3A B ⋃=.11答案及解析:答案:{}|12x x ≤<解析:∵{|0B x x =<或2}x ≥. ∴{}|02x x ≤<∴A ⋂{}|12x x =≤<.12答案及解析:答案:{}0,1,3,9解析:{}{}|3,0,3,9N x x a a M ==∈=,所以{}0,1,3,9M N ⋃=.13答案及解析: 答案:58,33⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭解析:,x y 同时满足27x y +=和1x y -=-,则,x y 必是方程组271x y x y +=⎧⎨-=-⎩,解得5383x y ⎧=⎪⎪⎨⎪=⎪⎩ ∴58,33A B ⎧⎫⎛⎫⋂=⎨⎬ ⎪⎝⎭⎩⎭.14答案及解析:答案:1. {}4,0A =-若A B B ⋃=,则{}4,0B A ==-,解得1a =2.若A B B ⋂=,则①若B 为空集,则()()224141880a a a ∆=+--=+<,则1a <-;②若B 为单元素集合,则()()224141880a a a ∆=+--=+=,解得1a =-,将1a =-代入方程()222110x a x a +++-=,得20x =,得0x =,即{}0B =,符合要求;③若{}4,0B A ==-,则1a =.综上所述, 1a ≤-或1a =.解析:15答案及解析:答案:1.因为集合{}{}|37,|410,A x x B x x =≤<=<≤所以{}{}{}|37|410|310;?A B A x x x x x x ⋃==≤<⋃<≤=≤≤{|3R C A x x =<或7},x ≥则(){|3R C A B x x ⋂=<或{}{}7}|410|710.x x x x x ≥⋂<≤=≤≤2.由{}{}|37,|A x x C x x a =≤<=<又,A C φ⋂≠所以3a >.所以满足A C φ⋂≠的a 的取值范围是()3,.+∞解析:高一数学寒假作业(2)函数及其表示1、函数21y x =-的定义域是()[],12,5-∞⋃,则其值域是( )A. ()1,1,22⎡⎤-∞⋃⎢⎥⎣⎦B. (),2-∞C. [)1,2,2⎛⎫-∞⋃+∞ ⎪⎝⎭D. ()0,+∞2、已知函数()f x =.则m 的取值范围是()A. (]0,4B. (]0,1C. [)4,+∞D. []0,43、若()2212f x x x +=-,则()2f 的值为( )A. 34-B. 34C. 0D. 14、函数()2f x =的定义域是( ) A. 1,13⎡⎤-⎢⎥⎣⎦ B. 1,13⎛⎫- ⎪⎝⎭ C. 11,33⎛⎫- ⎪⎝⎭ D. 1,3⎛⎫-∞- ⎪⎝⎭5、函数228156x x y x x -+=--的值域是( )A. (),1-∞B. ()(),11,-∞⋃+∞C. 22,,55⎛⎫⎛⎫-∞-⋃-+∞ ⎪ ⎪⎝⎭⎝⎭ D. ()22,,11,55⎛⎫⎛⎫-∞-⋃-⋃+∞ ⎪ ⎪⎝⎭⎝⎭6下列函数中,与表示同一个函数的是() A. B. C. D.7、已知函数()f x 是一次函数,且()()()()22315,2011f f f f -=--=,则()f x =( )A. 32x +B. 32x -C. 23x +D. 23x -8、设,f g 都是由A 到B 的映射,其对应法则如下表:表1 映射f 的对应法则表2 映射g 的对应法则则()()()()()()()1,2,3f g f f f g f 的值分别为( )A. 3,3,3B. 3,1,2C. 3,3,2D.以上都不对9已知,则( )A.B.C. D.10、向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形状可以是()A. B. C. D.11、若函数()()()()2210102232x x f x x x x +-<<⎧⎪⎪=-≤<⎨⎪⎪≥⎩,则()f x 的值域是__________.12、若()()()f a b f a f b +=⋅且()1?2f =,则()()()()()()232012...122011f f f f f f +++=__________.13、已知函数()f x 的定义域为()1,0?-,则函数()21f x +的定义域为__________.14、已知函数()214f x x x =+-. 1.若函数()f x 的定义域为[]0,3时,求()f x 的值域;2.当函数()f x 的定义域为[,1]a a +时, ()f x 的值域为11,216⎡⎤-⎢⎥⎣⎦,求a 的值.15、已知函数()3f x +的定义域是[2,4]-,求函数()23f x +的定义域.答案以及解析1答案及解析:答案:A解析:函数21y x =-的图像是由反比例函数2y x=的图像向右平移1个单位得到的,根据图像可得答案.2答案及解析:答案:D解析:由题意得, 210mx mx ++≥对一切实数恒成立.①当0m =时,不等式变为10≥.对一切实数恒成立,符合题意;②当0m ≠时,应有20,0440m m m m >⎧⇒<≤⎨∆=-≤⎩. 综上知04m ≤≤.3答案及解析:答案:A解析:令212x +=,得12x =, ∴()211322224f ⎛⎫=-⨯=- ⎪⎝⎭.4答案及解析:答案:B 解析:1101,,1131033x x x x x <⎧->⎧⎪⇒⇒-<<⎨⎨+>>-⎩⎪⎩5答案及解析:答案:D 解析:∵()()()()()2235815536322x x x x x y x x x x x x ---+-===≠---++, ∴1y ≠且25y ≠-.6答案及解析:答案: D解析: 的定义域为, 与的定义域不同,故A 不正确.与的对应关系不同,故B 不正确.的定义域为,与的定义域不同,故C 不正确.的定义域为, 与表示同一个函数,故D 正确.7答案及解析:答案:B解析:()()0f x kx b k =+≠∵()()()()22315,011f f f f -=--=,∴5{1k b k b -=+= ∴3{2k b ==- ∴()32f x x =-8答案及解析:答案:A解析:()()()()()()123,233f g f g f g ====,()()()()()()3123f g f f g f ===.故选A .9答案及解析:答案: B解析: 令, 则, 故, 即.10答案及解析:答案:B解析:若水平形状是圆柱,则2π,V r h r =不变,V 是h 的正比例函数,其图象应该是过原点的直线,与已知不符.由题图可以看出,随着高度h 的增加, V 也增加,但随h 的不断变大,每增加相同的量,体积V 的增加量变小,图象上升趋势变缓,其原因只能是瓶子平行于地面的截面的半径由底到顶逐渐变小.11答案及解析:答案:(){}1,23-⋃解析:当10x -<<时, ()()220,2f x x =+∈;当02x ≤<时, ()(]11,02f x x =-∈-;当2x ≥时, ()3f x =.故函数()f x 的值域为(){}1,23-⋃.12答案及解析:答案:4022解析:令1b =,则有()()()11f a f a f +=,∴()()()112f a f f a +==,∴()()()()()()2320122,2,...,2,122011f f f f f f ===∴()()()()()()2320122,2,...,201124022122011f f f f f f ===⨯=.13答案及解析: 答案:11,2⎛⎫-- ⎪⎝⎭解析:由1210x -<+<,得112x -<<-,所以函数()21f x +的定义域为11,2⎛⎫-- ⎪⎝⎭.14答案及解析:答案:1.∵()21122f x x ⎛⎫=+- ⎪⎝⎭,∴函数()f x 的图像的对称轴为直线12x =-.∴()f x 的值域为()()0,3f f ⎡⎤⎣⎦,即147,44⎡⎤-⎢⎥⎣⎦.2.∵()min 12f x =-∴[]1,12x a a =-∈+, ∴131212212a a a ⎧≤-⎪⎪⇒-≤≤-⎨⎪+≥-⎪⎩∵区间[,1]a a +的中点为012x a =+ ①当1122a +≥-,即112a -≤≤-时,有()()max 1116f x f a =+=,即()()21111416a a +++-=, 解得34a =-或94a =- (舍去). ②当1122a +<-,即312a -≤<-时,有()()max 116f x f a ==. 即211416a a +-=,解得54a =-或14a = (舍去).综上,知34a =-或54a =-.解析:15答案及解析:答案:已知函数()3f x +的定义域是[2,4]-,所以137x ≤+≤.在函数()23f x +中, 12x ≤≤,1237x ≤+≤解得12x -≤≤所以函数()23f x +的定义域为{}|12x x -≤≤.解析:高一数学寒假作业(3)函数的基本性质1、函数()31f x x x =--+有( )A.最大值4,最小值0B.最大值0,最小值-4C.最大值4,最小值-4D.最大值、最小值都不存在 2函数在上的最大值为( ) A. B.C.D.3、函数()245f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( )A. [)2,+∞B. []2,4C. (,2]-∞D. []0,24、若2()2f x x ax =-+与()1a g x x =+在区间[1,2]上都是减函数,则a 的取值范围是( )A. (1,0)(0,1)-⋃B. ()(]1,00,1-⋃C. (0,1)D. (0,1]5、已知()f x 是定义在()0,+∞上的单调递增函数,若()()2f x f x >-,则x 的取值范围是( )A. ()1,+∞B. (),1-∞C. ()0,2D. ()1,26、如果()f x 是定义在R 上的奇函数,那么下列函数中,一定为偶函数的是( )A. ()y x f x =+B. ()y xf x =C. ()2y x f x =+ D. ()2y x f x = 7、函数1()f x x x=-的图像关于( ) A. y 轴对称 B.直线y x =-对称C.原点对称D.直线y x =对称8、已知()()|2|,f x g x x ==-则下列结论正确的是( )A. ()()()h x f x g x =+是偶函数B. ()()()h x f x g x =⋅是奇函数C. ()()()2f x g x h x x⋅=-是偶函数 D. ()()2()f x h x g x =-是偶函数 9、函数()f x 的定义域为,R 且满足()f x 时偶函数, (1)f x -是奇函数,若(0.5)9,f =则(8.5)f =( )A. 9-B. 9C. 3-D. 010、下列图象表示的函数具有奇偶性的是( )A.B.C. D.11、设函数()f x 在()0.2上是增函数,函数(2)f x +是偶函数,则57(1),(),()22f f f 的大小关系是__________.12、已知函数()f x 为奇函数,函数(1)f x +为偶函数, (1)1,f =则(3)f =__________.13、已知函数()[]1,1,31x f x x x -=∈+,则函数()f x 的最大值为__________,最小值为__________.14、已知函数()1f x x x=+. 1.判断()f x 在区间(]0,1和[)1,+∞上的单调性;2.求()f x 在1,52x ⎡⎤∈⎢⎥⎣⎦时的值域. 15、设函数1()f x x a x=++为定义在(,0)(0,)-∞⋃+∞上的奇函数. 1.求实数a 的值; 2.判断函数()f x 在区间()1,a ++∞上的单调性,并用定义法证明.答案以及解析1答案及解析:答案:C解析:()()()()43|3||1|221341x f x x x x x x -≥⎧⎪=--+=--≤<⎨⎪<-⎩.2答案及解析:答案: A解析: ∵, ∴ ∴函数图像的开口向下,且对称轴为轴 ∴在上,单调递减,故当时,取得最大值,最大值为9.3答案及解析:答案:B解析:二次函数()245f x x x =-+图像的对称轴为直线2x =, 且当2x =时, ()1f x =.∵当0x =时, ()5f x =∴根据二次函数图像的对称性和函数的单调性可知,满足题意的m 的取值范围为24m ≤≤.4答案及解析:答案:D解析:()()2222x ax x a a f x =-+=--+,当1a ≤时, ()f x 在区间[]1,2上是减函数, ()11g x x =+,当0a >时, ()g x 在区间[]1,2上是减函数,故a 的取值范围是01a <≤.5答案及解析:答案:D解析:由题意知210012202x xx x x x x x >->⎧⎧⎪⎪>⇒>⇒<<⎨⎨⎪⎪-><⎩⎩.6答案及解析:答案:B解析:因为()f x 是奇函数,()().f x f x ∴-=-对于A,令(),y f x =则()()()(),g x x f x x f x g x -=-+-=--=- ()y x f x ∴=+是奇函数。

高一年级(必修1)寒假作业6Word版含答案

高一年级(必修1)寒假作业6Word版含答案

高一年级(必修1)寒假作业6一、选择题1.已知集合{}{}A a a x x B A ∈===,2,3,2,1,0,则B A ⋂中元素的个数为( )A. 0B. 1C. 2D. 32.已知集合{}{}076,015222≥-+=<-+=x x x N x x x M ,则N M ⋂=( ) [)31.,A ]3,1.[B ),(37-.C ),(35-.D 3.已知集合{}⎭⎬⎫⎩⎨⎧<=≤≤-=01,31x x B x x A ,则B A ⋃=( )A.),(01-B. ]0,1[-C. ),(0-∞ D. (]3,∞- 4.已知)(),(x g x f 分别是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则=+)1()1(g f ( )A. -3B. -1C. 1D. 35.已知函数a x x f +=)(在()1--,∞上是单调函数,则a 的取值范围是( )]1-.,(∞A ]1--.,(∞B )C.[-1∞+, )D.[1∞+,6.定义在R 上的奇函数)(x f ,当0≥x 时,2)(x x f =,则不等式)3()21(f x f <-的解集是( )A.[1,2)B. (1,)-+∞C. [1,)-+∞D. (,1)-∞-7.以下四个集合中为空集的是( ) {}33.=+x x A}),.{(22x y y x B -= . }0.{2≤x x C}01.{2=+-x x x D 8.若集合{}{}1,322+==<<-=x y y N x x M ,则N M ⋂=( ) ),(∞+2-.A ),(32-.B [)31.,C R D . 9.已知集合{}2,1,0=A ,则集合{}A y A x y x B ∈∈-=,中元素的个数是( ) A. 1 B. 3 C. 5 D. 910.已知函数()2121)(---=a x a a x f 是幂函数,则=a ( ).A -1或2 .B -2或1 .C -1 .D 111.设)(x f 是定义在R 上的奇函数,当0≤x 时,()x x x f -=22,则)2(f =A. 6B. -6C. 10D. -1012.已知函数1(),22017x f x x N x ++=∈-,则当x 取____时,f(x)取得最小值 A.2017 B.1008 C.2018 D.1009二.填空题:13.全集{}32322-+=a a U ,,,{}122-=a A ,,{}5=A C U ,则实数=a _________14.函数()114>-+=x x x y 的最小值是_________ 15.已知函数()()3521----=m x m m x f ,当=m _________时,()x f 是在()∞+,0上单调递增的幂函数16.函数()22444a a ax x x f --+-=在[]10,上有一个最大值-5,则=a _________三、解答题17.已知R U =,{}71≤≤=x x A ,{}m x m x B <<+-=12(1) 若m=5,求()B A C R ⋂(2)若A B A =⋂,求m 的取值范围18.已知集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-==1121x x y x A ,()[]()[]{}041<+-+-=a x a x x B (1)若A B A =⋂,求a 的取值范围(2)若∅≠⋂B A ,求a 的取值范围19.已知函数()x f 的定义域为()22-,,函数()()()x f x f x g 231-+-= (1)求()x g 定义域(2)若()x f 是奇函数,且定义域上递减,求()0≤x g 的解集20.求证:函数2()1x f x x =-在(1,)+∞时减函数21.设函数()12--=mx mx x f(1)若对于一切实数x,()0<x f 恒成立,求实数m 的范围(2)若对于[]3,1∈x ,()5+-<m x f 有解,求实数m 的取值范围22.已知函数()n mx x x f ++=2的图像过点()31,,且()()x f x f --=+-11对任意实数都成立,函数()x g y =与()x f y =的图像关于原点对称(1)求()x f 与()x g 的解析式(2)若()()()x f x g x F λ-=在[]11-,上是增函数,求实数λ的取值范围高一年级(必修1)寒假作业6答案 1-6.CADCAB 7-12.DCCCDB 13.2 14.5 15.-1 16.54或-5 17.(1)(-9,1) (2)m>7 18.(1)42a -<≤-(2)42a -<≤- 19.(1)(0.5,2.5) (2)1(,2]2 20.略 21.(1)(4,0]-(2)m>1 22.(1)22()2,()2f x x x g x x x =+=-+(2)0λ≤。

2018年高一数学寒假作业(人教A版必修1)集合word版含答案 (3)

2018年高一数学寒假作业(人教A版必修1)集合word版含答案 (3)

2018年高一数学寒假作业(人教A 版必修1)集合A 组 基础达标(建议用时:30分钟)一、选择题1.(2016·全国卷Ⅱ)已知集合A ={1,2,3},B ={x |x 2<9},则A ∩B =( )A .{-2,-1,0,1,2,3}B .{-2,-1,0,1,2}C .{1,2,3}D .{1,2}2.(2015·全国卷Ⅱ)已知集合A ={1,2,3},B ={2,3},则( )A .A =BB .A ∩B =∅C .A BD .B A 3.(2017·潍坊模拟)已知集合A ={x |x 2-3x +2=0,x ∈R},B ={x |0<x <5,x ∈N},则满足条件A ⊆C ⊆B的集合C 的个数为( )A .1B .2C .3D .4 4.(2016·山东高考)设集合A ={y |y =2x ,x ∈R},B ={x |x 2-1<0},则A ∪B =( )A .(-1,1)B .(0,1)C .(-1,+∞)D .(0,+∞)5.(2017·衡水模拟)已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7}, 则集合A ∩∁U B =( )A .{2,5}B .{3,6}C .{2,5,6}D .{2,3,5,6,8}6.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( )A .1B .3C .7D .317.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( )A .{x |x ≥0}B .{x |x ≤1}C .{x |0≤x ≤1}D .{x |0<x <1}二、填空题8.已知A ={0,m,2},B ={x |x 4-4x 2=0},若A =B ,则m =________.9.(2016·天津高考)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=________.10.集合A={x|x<0},B={x|y=lg[x(x+1)]},若A-B={x|x∈A,且x∉B},则A-B=________.B组能力提升(建议用时:15分钟)1.(2016·全国卷Ⅲ改编)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则(∁R S)∩T=( ) A.[2,3] B.(-∞,-2]∪[3,+∞)C.(2,3) D.(0,+∞)2.(2017·郑州调研)设全集U=R,A={x|x2-2x≤0},B={y|y=cos x,x∈R},则图1­1­2中阴影部分表示的区间是( )图1­1­2 A.[0,1]B.(-∞,-1]∪[2,+∞)C.[-1,2]D.(-∞,-1)∪(2,+∞)3.已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是________.4.设集合A={x|x2-x-6<0},B={x|x-a≥0}.若存在实数a,使得A∩B={x|0≤x<3},则A∪B=________.2018年高一数学寒假作业(人教A版必修1)集合答案A组基础达标(建议用时:30分钟)一、选择题1.(2016·全国卷Ⅱ)已知集合A={1,2,3},B={x|x2<9},则A∩B=( )A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2}C.{1,2,3} D.{1,2}D [∵x2<9,∴-3<x<3,∴B={x|-3<x<3}.又A={1,2,3},∴A∩B={1,2,3}∩{x|-3<x<3}={1,2}.]2.(2015·全国卷Ⅱ)已知集合A={1,2,3},B={2,3},则( )A.A=B B.A∩B=∅C.A B D.B AD [∵A={1,2,3},B={2,3},∴2,3∈A且2,3∈B,1∈A但1∉B,∴B A.]3.(2017·潍坊模拟)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B 的集合C的个数为( ) 【导学号:31222002】A.1 B.2C.3 D.4D [由x2-3x+2=0,得x=1或x=2,∴A={1,2}.由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.] 4.(2016·山东高考)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( )A.(-1,1) B.(0,1)C.(-1,+∞)D.(0,+∞)C [由已知得A={y|y>0},B={x|-1<x<1},则A∪B={x|x>-1}.]5.(2017·衡水模拟)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=( )A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6,8}A [由题意得∁U B={2,5,8},∴A∩∁U B={2,3,5,6}∩{2,5,8}={2,5}.]6.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( ) 【导学号:31222003】A .1B .3C .7D .31B [具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.] 7.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( )A .{x |x ≥0}B .{x |x ≤1}C .{x |0≤x ≤1}D .{x |0<x <1}D [∵A ={x |x ≤0},B ={x |x ≥1},∴A ∪B ={x |x ≤0或x ≥1},在数轴上表示如图,∴∁U (A ∪B )={x |0<x <1}.]二、填空题8.已知A ={0,m,2},B ={x |x 4-4x 2=0},若A =B ,则m =________.-2 [由题知B ={0,-2,2},A ={0,m,2},若A =B ,则m =-2.]9.(2016·天津高考)已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B =________. {1,4} [因为集合B 中,x ∈A ,所以当x =1时,y =3-2=1;当x =2时,y =3×2-2=4;当x =3时,y =3×3-2=7;当x =4时,y =3×4-2=10.即B ={1,4,7,10}.又因为A ={1,2,3,4},所以A ∩B ={1,4}.]10.集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x ∉B },则A -B =________.[-1,0) [由x (x +1)>0,得x <-1或x >0,∴B =(-∞,-1)∪(0,+∞),∴A -B =[-1,0).]B 组 能力提升(建议用时:15分钟)1.(2016·全国卷Ⅲ改编)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则(∁R S )∩T =( )A .[2,3]B .(-∞,-2]∪[3,+∞)C .(2,3)D .(0,+∞) C [易知S =(-∞,2]∪[3,+∞),∴∁R S =(2,3).∴(∁R S )∩T =(2,3).]2.(2017·郑州调研)设全集U =R ,A ={x |x 2-2x ≤0},B ={y |y =cos x ,x ∈R},则图1­1­2中阴影部分表示的区间是( )图1­1­2A.[0,1]B.(-∞,-1]∪[2,+∞)C.[-1,2]D.(-∞,-1)∪(2,+∞)D [A={x|x2-2x≤0}=[0,2],B={y|y=cos x,x∈R}=[-1,1].图中阴影部分表示∁U(A∪B)=(-∞,-1)∪(2,+∞).]3.已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是________. 【导学号:31222004】(-∞,-2] [由4≤2x≤16,得2≤x≤4,则A=[2,4],又B=[a,b],且A⊆B.∴a≤2,b≥4,故a-b≤2-4=-2.因此a-b的取值范围是(-∞,-2].]4.设集合A={x|x2-x-6<0},B={x|x-a≥0}.若存在实数a,使得A∩B={x|0≤x<3},则A∪B =________.{x|x>-2} [A={x|-2<x<3},B={x|x≥a}.如图,由A∩B={x|0≤x<3},得a=0,A∪B={x|x>-2}.]。

集合及其运算寒假作业-高一上学期数学人教A版(2019)必修第一册

高一数学寒假作业专题01集合及其运算1.给出下列表述:①联合国常任理事国;②充分接近√2的实数的全体;③方程x2+x−1=0的实数根④全国著名的高等院校.以上能构成集合的是()A.①③B.①②C.①②③D.①②③④2.设集合U={1,2,3,4,5},M={1,2},N={2,3},则∁U(M⋃N)=()A.{4,5}B.{1,2}C.{2,3}D.{1,3,4,5}3.若集合A={x|−1<x<1},B={x|0≤x≤2},则A⋂B=()A.{x|−1<x<1}B.{x|−1<x<2}C.{x|0≤x<1}D.{x|−1<x<0}4.已知集合A满足{1}⊆A⫋{1,2,3,4},这样的集合A有()个A.5B.6C.7D.85.已知集合A={x|y=log2(x+1)},B={x∈Z||x−1|≤1},则A⋂B=()A.{x|−1<x<2}B.{x∈Z|0≤x≤2}C.{x|0≤x<2}D.{0,1}6.60名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有40名,参加乙项的学生有35名,则仅参加了一项活动的学生人数为()A.50B.35C.40D.457.已知全集U=R,集合A={x|0≤x≤2},B={x|x2−x>0},则图中的阴影部分表示的集合为()A.{x|x≤1或x>2}B.{x|x<0或1<x<2}C.{x|1≤x<2}D.{x|1<x≤2}8.若函数f(x)=√x2−5x+6的定义域是F,g(x)=√x−2+√x−3的定义域是G,则F 和G的关系是()A.G⊂F B.F⊂G C.F=G D.F∩G=∅9.设P={x|x≤3},a=2√2,则下列关系中正确的是()A.a⊆P B.a∈P C.{a}⊆P D.{a}∈P10.如图所示的阴影部分表示的集合是()A.M∩(N∩P)B.(C U M)∩(N∩P)C.P∩[C U(M∪N)]D.P∩(C U M)∩(C U N)11.已知集合M={2,4},集合M⊆N {1,2,3,4,5},则集合N可以是()A.{2,4}B.{2,3,4}C.{1,2,3,4}D.{1,2,3,4,5}12.集合A,B是实数集R的子集,定义A−B={x|x∈A,x∉B},A∗B=(A−B)∪(B−A)叫做集合的对称差.若集合A={y|y=(x−1)2+1,0≤x≤3},B={y|y=x2+1,1≤x ≤3},则以下说法正确的是()A.A={y|−1≤y≤5}B.A−B={y|1≤y<2}C.B−A={y|5<y≤10}D.A∗B={y|1<y≤2}∪{y|5<y≤10}三、填空题13.已知集合M={y|y=x,x≥0},N={x|y=lg(2x−x2)},则M⋂N=______.14.若集合A={x∈R|ax2−2x+1=0}中只有一个元素,则a=_________.15.我们将b−a称为集合{x|a≤x≤b}的“长度”.若集合M={x|m≤x≤m+2022},N= {x|n−2023≤x≤n},且M,N都是集合{x|0≤x≤2024}的子集,则集合M∩N的“长度”的最小值为______.16.当两个集合中有一个集合为另一集合的子集时称这两个集合之间构成“全食”,当两个集合有公共元素,但互不为对方子集时称两集合之间构成“偏食”.对于集合A={−12,12,1},B={x|ax2+1=0,a≤0},若A与B构成“全食”,或构成“偏食”,则a的取值集合为__________ _.17.已知集合A={x|1≤x≤4},B={x|2<x<5},C={x|a−1≤x≤a+1},且B∪C= B.(1)求实数a的取值范围;(2)若全集U=A⋃(B⋃C),求∁U B.18.设全集U=R,集合A={x|x−6x+5≤0},B={x|x2+5x−6≥0},求:(1)A∩∁U B;(2)(∁U A)∪(∁U B).19.已知集合A={x|log2(x+1)<4},B={x|4x>8},C={x|a−1≤x≤2a+1}.(1)计算A⋂B;(2)若C⊆(A∩B),求实数a的取值范围.20.已知集合A={x|a≤x≤a+3},B={x|x<−6或x>1}.(1)若A⋂B=∅,求a的取值范围;(2)若A∪B=B,求a的取值范围.21.已知集合P={x|x2+4x=0},Q={x|x2−4mx−m2+1=0}.(1)若1∈Q,求实数m的值;(2)若P⋃Q=P,求实数m的取值范围.22.已知集合A={x|3−a≤x≤3+a},B={x|x2−4x≥0}.(1)当a=2时,求A⋂B;(2)若a>0,且“x∈A”是“x∈∁R B”的充分不必要条件,求实数a的取值范围.高一数学寒假作业专题01集合及其运算答案1.【答案】A【解析】①联合国的常任理事国有:中国、法国、美国、俄罗斯、英国.所以可以构成集合.②中的元素是不确定的,不满足集合确定性的条件,不能构成集合.③方程x2+x−1=0的实数根是确定,所以能构成集合.④全国著名的高等院校.不满足集合确定性的条件,不构成集合.故选:A2.【答案】A【解析】根据题意,易得M⋃N={1,2,3},故∁U(M∪N)={4,5}.故选:A.3.【答案】C【解析】因为A={x|−1<x<1},B={x|0≤x≤2},所以A⋂B={x|0≤x<1}.故选:C.4.【答案】C【解析】由题得集合A={1},{1,2},{1,3},{1,4},{1,2,3},{1,2,4},{1,3,4}.故选:C5.【答案】B【解析】因为A={x|x>−1},B={x∈Z|0≤x≤2},所以A∩B={x∈Z|0≤x≤2}故选:B.6.【答案】D【解析】用集合A表示参加甲项体育活动的学生,用集合B表示参加乙项体育活动的学生,用card(A)来表示有限集合A中的元素个数,于是有:card(A∪B)=card(A)+card(B)−card(A∩B),即:60=40+35−card(A⋂B)⇒card(A⋂B)=15,因此仅参加了一项活动的学生人数为:60−15=45,故选:D7.【答案】A【解析】解不等式可得B ={x |x <0或x >1},由题意可知阴影部分表示的集合为∁U (A⋂B )⋂(A⋃B ), 且A⋂B ={x|1<x ≤2},A⋃B =R , ∴∁U (A⋂B )={x |x ≤1或x >2},所以∁U (A⋂B )⋂(A⋃B )={x |x ≤1或x >2}, 故选:A. 8.【答案】A 【解析】由题设,x 2−5x +6=(x −2)(x −3)≥0,可得F ={x|x ≤2或x ≥3}, 又{x −2≥0x −3≥0,可得G ={x|x ≥3}, ∴G ⊂F . 故选:A.9.【答案】BC 【解析】 因为2√2≤3, 所以2√2∈{x|x ≤3}, 即a ∈P ,{a }⊆P 故选:BC10.【答案】CD 【解析】A 选项表示的是图1的部分,不合题意,B 选项表示的是图2的部分,不合题意CD选项表示的是题干中的阴影部分故选:CD11.【答案】ABC【解析】因为集合M={2,4},对于A:N={2,4}满足M⊆N {1,2,3,4,5},所以选项A符合题意;对于B:N={2,3,4}满足M⊆N {1,2,3,4,5},所以选项B符合题意;对于C:N={1,2,3,4}满足M⊆N {1,2,3,4,5},所以选项C符合题意;对于D:N={1,2,3,4,5}不是{1,2,3,4,5}的真子集,故选项D不符合题意,故选:ABC.12.【答案】BC【解析】A={y|y=(x−1)2+1,0≤x≤3}={y|1≤y≤5},A错误;B={y|y=x2+1,1≤x≤3}={y|2≤y≤10},A−B={x|1≤x<2},B正确;B−A={y|5<y≤10},C正确;A∗B=(A−B)∪(B−A)={y|1≤y<2}∪{y|5<y≤10},D错误.故选:BC.13.【答案】(0,2)【解析】M={y|y=x,x≥0}={y|y≥0},N={x|y=lg(2x−x2)}={x|2x−x2⟩0}={x|x2−2x<0}={x|0<x<2},所以M∩N={x|0<x<2}=(0,2),故答案为:(0,2).14.【答案】0或1或0【解析】因集合A ={x ∈R |ax 2−2x +1=0}中只有一个元素,则当a =0时,方程为−2x +1=0,解得x =12,即集合A ={12},则a =0, 当a ≠0时,由Δ=22−4a =0,解得a =1,集合A ={1},则a =1, 所以a =0或a =1. 故答案为:0或1 15.【答案】2021 【解析】由题意得,M 的“长度”为2022,N 的“长度”为2023,要使M ∩N 的“长度”最小,则M ,N 分别在{x |0≤x ≤2024}的两端. 当m =0,n =2024时,得M ={x |0≤x ≤2022},N ={x |1≤x ≤2024}, 则M ∩N ={x |1≤x ≤2022},此时集合M ∩N 的“长度”为2022−1=2021; 当m =2,n =2023时,M ={x |2≤x ≤2024},N ={x |0≤x ≤2023}, 则M ∩N ={x |2≤x ≤2023},此时集合M ∩N 的“长度”为2023−2=2021. 故M ∩N 的“长度”的最小值为2021. 故答案为:202116.【答案】{0,−1,−4} 【解析】当A 与B 构成“全食”即B ⊆A 时, 当a =0时,B =∅;当a ≠0时,B ={√−1a ,−√−1a }, 又∵B ⊆A , ∴a =−4;当A 与B 构成构成“偏食”时,A ⋂B ≠∅且B ⊈A , ∴a =−1.故a 的取值为:0,−1,−4, 故答案为:{0,−1,−4}17.【答案】 (1)(3,4);(2)∁U B ={x |1≤x ≤2}. 【解析】(1)由B ∪C =B ,可知C ⊆B ,又∵B ={x |2<x <5},C ={x |a −1≤x ≤a +1},∴2<a −1<a +1<5,解得:3<a <4, ∴实数a 的取值范围是(3,4).(2)依题意得,U =A⋃(B⋃C)=A⋃B , 又A ={x |1≤x ≤4},B ={x |2<x <5}, ∴U ={x |1≤x <5}, ∴∁U B ={x |1≤x ≤2}. 18.【答案】(1)A⋂∁U B ={x|−5<x <1}; (2)(∁U A )∪(∁U B )={x|x <1或x >6}. 【解析】(1)由x−6x+5≤0可得{(x −6)(x +5)≤0x +5≠0,解得:−5<x ≤6,所以A ={x|−5<x ≤6},由x 2+5x −6≥0,可得(x −1)(x +6)≥0,解得:x ≤−6或x ≥1, 所以B ={x|x ≤−6或x ≥1},所以∁U B ={x|−6<x <1}, 所以A⋂∁U B ={x|−5<x <1}.(2)由(1)知A ={x|−5<x ≤6},所以∁U A ={x|x ≤−5或x >6}, 所以(∁U A )∪(∁U B )={x|x <1或x >6}. 19.【答案】(1){x ∣32<x <15} (2)(−∞,−2)∪(52,7) 【解析】(1)由log 2(x +1)<4得log 2(x +1)<log 224, 又函数y =log 2x 在(0,+∞)上单调递增, 则0<x +1<24即A ={x ∣−1<x <15}, 由4x >8,得x >32,即B ={x ∣x >32}, 则A ∩B ={x ∣32<x <15}. (2)因为C ⊆(A ∩B ),当C =∅时,2a +1<a −1,即a <−2; 当C ≠∅时,由C ⊆(A ∩B ),可得 {2a +1⩾a −1,a −1>32,2a +1<15,即52<a <7, 综上,a 的取值范围是(−∞,−2)∪(52,7). 20.【答案】(1){a|−6≤a ≤−2}; (2){a|a <−9或a >1}. 【解析】(1)因为A⋂B =∅,所以{a ≥−6a +3≤1,解得:−6≤a ≤−2,所以a 的取值范围是{a|−6≤a ≤−2}.(2)因为A ∪B =B ,所以A ⊆B ,所以a +3<−6或a >1,解得:a <−9或a >1, 所以a 的取值范围是{a|a <−9或a >1}. 21.【答案】 (1)m =−2±√6.(2)−√55<m <√55或m =−1.【解析】(1)由1∈Q 得1−4m −m 2+1=0,即m 2+4m −2=0, 解得m =−2±√6;(2)因为P⋃Q =P ,所以Q ⊆P ,由P ={0,−4}知Q 可能为∅,{0},{−4},{0,−4};①当Q =∅,即x 2−4mx −m 2+1=0无解,所以Δ=16m 2+4m 2−4=20m 2−4<0, 解得−√55<m <√55;②当Q ={0},即x 2−4mx −m 2+1=0有两个等根为0,所以依据韦达定理知{Δ=0,0=4m,0=1−m 2所以m 无解;③当Q ={−4},即x 2−4mx −m 2+1=0有两个等根为−4,所以依据韦达定理知{Δ=0,−8=4m,16=1−m 2所以m 无解; ③当Q ={0,−4},即x 2−4mx −m 2+1=0有两个根为0,−4,所以依据韦达定理知{Δ>0,−4=4m,0=1−m 2解得m =−1; 综上,−√55<m <√55或m =−1.22.【答案】 (1)[4,5] (2)0<a <1 【解析】(1)x 2−4x =x (x −4)≥0,解得x ≤0或x ≥4, 所以B =(−∞,0]∪[4,+∞)a=2时,A=[1,5],所以A∩B=[4,5].(2)∁R B=(0,4),因为“x∈A”是“x∈∁R B”的充分不必要条件,所以A是∁R B的真子集,且A≠∅;∴{3−a>03+a<4所以实数a的取值范围为:0<a<1.11/ 11。

高一数学寒假作业(人教A版必修一)集合的概念与运算word版含解析

高一数学寒假作业(人教A版必修一)集合的概念与运算1.已知集合A={y|x2+y2=1}和集合B={y|y=x2},则A∩B等于( )A.(0,1) B.[0,1]C.(0,+∞) D.{(0,1),(1,0)}【答案】 B2.设全集U=M∪N={1,2,3,4,5},M∩∁UN={2,4},则N=( )A.{1,2,3} B.{1,3,5}C.{1,4,5} D.{2,3,4}【解析】由M∩∁UN={2,4}可得集合N中不含有元素2,4,集合M中含有元素2,4,故N={1,3,5}.【答案】 B3.设集合U={x|x<5,x∈N*},M={x|x2-5x+6=0},则∁U M=( ).A.{1,4} B.{1,5} C.{2,3} D.{3,4}【解析】U={1,2,3,4},M={x|x2-5x+6=0}={2,3},∴∁U M={1,4}.【答案】 A4.若A={2,3,4},B={x|x=n·m,m,n∈A,m≠n},则集合B中的元素个数是( ).A.2 B.3 C.4 D.5【解析】B={x|x=n·m,m,n∈A,m≠n}={6,8,12}.【答案】 B5.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的( ).A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件【解析】若N⊆M,则需满足a2=1或a2=2,解得a=±1或a=± 2.故“a=1”是“N⊆M”的充分不必要条件.【答案】 A6.设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x 24+3y 24=1,B ={y |y =x 2},则A ∩B =( ). A .[-2,2]B .[0,2]C .[0,+∞)D .{(-1,1),(1,1)}【解析】 A ={x |-2≤x ≤2},B ={y |y ≥0},∴A ∩B ={x |0≤x ≤2}=[0,2].【答案】 B7.已知集合M ={x|(x -1)2<4,x∈R},N ={-1,0,1,2,3},则M∩N=( )A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3} 【答案】 A8.若集合A ={x|x 2-2x -16≤0},B ={y|C 5y≤5},则A∩B 中元素个数为( )A .1个B .2个C .3个D .4个 【答案】 D【解析】 A =[1-17,1+17],B ={0,1,4,5},∴A∩B 中有4个元素.故选D.9.若集合M ={0,1,2},N ={(x ,y)|x -2y +1≥0且x -2y -1≤0,x ,y∈M},则N 中元素的个数为( )A .9B .6C .4D .2 【答案】 C【解析】 N ={(x ,y)|-1≤x-2y≤1,x ,y∈M},则N 中元素有:(0,0),(1,0),(1,1),(2,1).10.已知集合A ={1,3,zi}(其中i 为虚数单位),B ={4},A∪B=A ,则复数z 的共轭复数为( )A .-2iB .2iC .-4iD .4i 【答案】 D【解析】 由A∪B=A ,可知B ⊆A ,所以zi =4,则z =4i=-4i ,所以z 的共轭复数为4i ,故选D. 11.设集合M ={y|y =2sinx ,x∈[-5,5]},N ={x|y =log 2(x -1)},则M∩N=( )A .{x|1<x≤5}B .{x|-1<x≤0}C.{x|-2≤x≤0} D.{x|1<x≤2}【答案】 D【解析】∵M={y|y=2sinx,x∈[-5,5]}={y|-2≤y≤2},N={x|y=log2(x-1)}={x|x>1},∴M∩N={y|-2≤y≤2}∩{x|x>1}={x|1<x≤2}.12.设函数f(x)=lg(1-x2),集合A={x|y=f(x)},B={y|y=f(x)},则图中阴影部分表示的集合为( )A.[-1,0] B.(-1,0)C.(-∞,-1)∪[0,1) D.(-∞,-1]∪(0,1)【答案】 D13.已知集合A={-1,0},B={0,1},则集合∁A∪B(A∩B)=( )A.∅B.{0}C.{-1,1} D.{-1,0,1}【答案】 C【解析】∵A∩B={0},A∪B={-1,0,1},∴∁A∪B(A∩B)={-1,1}.14.已知P={x|4x-x2≥0},则集合P∩N中的元素个数是( )A.3 B.4C.5 D.6【答案】 C【解析】因为P={x|4x-x2≥0}={x|0≤x≤4},且N是自然数集,所以集合P∩N中元素的个数是5,故选C.15.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.【解析】∵3∈B,又a2+4≥4,∴a+2=3,∴a=1.【答案】 116.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},则实数a的值为________.【解析】 若a =4,则a2=16∉(A∪B),所以a =4不符合要求,若a2=4,则a =±2,又-2∉(A∪B),∴a =2.【答案】 217.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合;②集合A ={n |n =3k ,k ∈Z}为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合.其中正确结论的序号是________.【答案】 ②18.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 6x +1≥1,x ∈R ,B ={x |x 2-2x -m <0},若A ∩B ={x |-1<x <4},则实数m 的值为________.【解析】 由6x +1≥1,得x -5x +1≤0, ∴-1<x ≤5,∴A ={x |-1<x ≤5}.又∵B ={x |x 2-2x -m <0},A ∩B ={x |-1<x <4},∴有42-2×4-m =0,解得m =8.此时B ={x |-2<x <4},符合题意,故实数m 的值为8.【答案】 819.若集合A ={-1,3},集合B ={x |x 2+ax +b =0},且A =B ,求实数a ,b .解 ∵A =B ,∴B ={x |x 2+ax +b =0}={-1,3}.∴⎩⎪⎨⎪⎧ -a =-1+3=2,b = -1 ×3=-3,∴a =-2,b =-3.20.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B );(2){9}=A ∩B .解 (1)∵9∈(A ∩B ),∴9∈A 且9∈B ,∴2a -1=9或a 2=9,∴a =5或a =-3或a =3,经检验a =5或a =-3符合题意.∴a =5或a =-3.(2)∵{9}=A ∩B ,∴9∈A 且9∈B ,由(1)知a =5或a =-3.当a =-3时,A ={-4,-7,9},B ={-8,4,9},此时A ∩B ={9},当a =5时,A ={-4,9,25},B ={0,-4,9},此时A ∩B ={-4,9},不合题意.∴a =-3.21.设A ={x |x 2-8x +15=0},B ={x |ax -1=0}.(1)若a =15,试判定集合A 与B 的关系; (2)若B ⊆A ,求实数a 组成的集合C .∴1a =3或1a =5,即a =13或a =15, ∴C =⎩⎨⎧⎭⎬⎫0,13,15. 22.设集合A ={x2,2x -1,-4},B ={x -5,1-x,9},若A∩B={9},求A∪B.解 由9∈A,可得x2=9或2x -1=9,解得x =±3或x =5.当x =3时,A ={9,5,-4},B ={-2,-2,9},B 中元素重复,故舍去;当x =-3时,A ={9,-7,-4},B ={-8,4,9},A∩B={9}满足题意,故A∪B={-7,-4,-8,4,9}; 当x =5时,A ={25,9,-4},B ={0,-4,9},此时A∩B={-4,9}与A∩B={9}矛盾,故舍去.综上所述,A∪B={-8,-4,4,-7,9}.23.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a ,9},分别求适合下列条件的a 的值.(1)9∈A∩B; (2){9}=A∩B .【答案】(1)a=5或a=-3 (2)a=-3【解析】(1)∵9∈A∩B且9∈B,∴9∈A.∴2a-1=9或a2=9.∴a=5或a=±3.而当a=3时,a-5=1-a=-2,故舍去.∴a=5或a=-3.(2)∵{9}=A∩B,∴9∈A∩B.∴a=5或a=-3.而当a=5时,A={-4,9,25},B={0,-4,9},此时A∩B={-4,9}≠{9},故a=5舍去.∴a=-3.讲评9∈A∩B与{9}=A∩B意义不同,9∈A∩B说明9是A与B的一个公共元素,但A与B允许有其他公共元素.而{9}=A∩B说明A与B的公共元素有且只有一个9.24.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(∁U A)∩B=∅,试求实数m的值.【答案】m=1或m=22};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2. 经检验知m=1和m=2符合条件.∴m=1或2.。

寒假作业(一)集合-【新教材】人教A版(2019)高中数学必修第一册

寒假作业(一)2020高一数学【新教材】人教A版(2019)高中数学必修第一册全册寒假作业5套高中数学必修一寒假作业寒假作业(一)——集合一、单选题1.设a ,b R ∈,集合{1,a b +,}{0a =,ba,}b ,则(b a -= ) A .1B .1-C .2D .2- 2.设全集U R =,若集合1{|0}4x A x x-=-,2{|log 2}B x x =,则(A B = )A .{|4}x x <B .{|4}x xC .{|14}x x <D .{|14}x x3.已知集合{|}A x x a =>,{|12}B x x =<<,且()R AB R =,则实数a 的取值范围是()A .{|1}a aB .{|1}a a <C .{|2}a aD .{|2}a a >4.已知集合2{|log (1)1}A x x =-<,{|||2}B x x a =-<,若A B ⊆,则实数a 的取值范围为()A .(1,3)B .[1,3]C .[1,)+∞D .(-∞,3]5.设U 为全集,A ,B 是集合,则“A B =∅”是“存在集合C 使得A C ⊆,UB C ⊆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知全集U R =,集合{|(4)0}A x x x =-<,2{|log (1)1}B x x =->,图中阴影部分所表示的集合为( )A .{|12}x x <<B .{|23}x x <<C .{|03}x x <D .{|04}x x <<7.设集合1{|24k M x x ==+,}k Z ∈,1{|42k N x x ==+,}k Z ∈,则下列关系正确的是( )A .M N =B .MN ⊂≠C .MN ⊃≠D .以上都不对8.设P 、Q 是非空集合,定义{|P Q x x P Q ⨯=∈且}x P Q ∉,已知{|P x y ==,{|2}x Q y y e ==,则P Q ⨯等于( )A .(2,){0}+∞B .[0,1][2,)+∞C .[0,1)(2⋃,)+∞D .[0.1](2,)+∞二、多选题9.已知集合为A ={x ∈Z |≥1},集合B ={x |ax =1},且A ∩B =B ,则a 的值可能为( )A .0B .﹣C .﹣1D .﹣210.已知全集U 和集合A ,B ,C ,若A ⊆B ⊆∁U C ,则下列关系一定成立的有( ) A .A ∩B =A B .B ∪C =BC .C ⊆∁U AD .(∁U A )∪(∁U C )=U11.已知集合A ={x ∈Z |x 2+3x ﹣10<0},B ={x |x 2+2ax +a 2﹣4=0}.若A ∩B 中恰有2个元素,则实数a 值可以为( ) A .2B .1C .﹣1D .﹣212.设集合M ={x |(x ﹣a )(x ﹣3)=0},N ={x |(x ﹣4)(x ﹣1)=0},则下列说法不正确的是( )A .若M ∪N 有4个元素,则M ∩N ≠∅B .若M ∩N ≠∅,则M ∪N 有4个元素C .若M ∪N ={1,3,4},则M ∩N ≠∅D .若M ∩N ≠∅,则M ∪N ={1,3,4} 三、填空题13.已知集合22{|log (34)}A x y x x ==--,22{|320(0)}B x x mx m m =-+<>,若B A ⊆,则实数m 的取值范围为14.对于任意两集合A ,B ,定义{|A B x x A -=∈且}x B ∉,*()()A B A B B A =--记{|0}A y y =,{|33}B x x =-,则*A B = .15.设集合{0A =,4}-,22{|2(1)10B x x a x a =+++-=,}x R ∈.若B A ⊆,则实数a 的取值范围是 .16.设非空集合A 为实数集的子集,若A 满足下列两个条件: (1)0A ∈,1A ∈;(2)对任意x ,y A ∈,都有x y A +∈,x y A -∈,xy A ∈,(0)xA y y∈≠ 则称A 为一个数域,那么命题:①有理数集Q 是一个数域;②若A 为一个数域,则Q A ⊆;③若A ,B 都是数域,那么A B也是一个数域;④若A ,B 都是数域,那么AB 也是一个数域.其中真命题的序号为 . 四、解答题17.已知集合{|3A x a x a =<<,0}a >,集合{|23}B x x =<. (1)当1a =时,求AB ,AB ;(2)若A B =∅,求实数a 的取值范围.18.已知全集U R =,集合2{|450}A x x x =--,2{|124}x B x -=.(1)求()U AB ;(2)若集合{|4C x a x a =,0}a >,且满足C A A =,C B B =,求实数a 的取值范围.19.已知集合6{|1}2A x x=+,2{|(4)70}B x x m x m =-+++<. (1)若3m =时,求()R AB ;(2)若A B A =,求实数m 的取值范围.20.已知集合2{|450}A x x x =--<,22{|(34)280}B x x m x m m =-+++<.(1)若2m =,求A B ;(2)若B A ⊆,求m 的取值范围.寒假作业(一)——集合答案1.解:根据题意,集合{1,,}{0,,}ba b a b a+=,又0a ≠,0a b ∴+=,即a b =-,∴1ba=-,1b =; 故1a =-,1b =,则2b a -=,故选:C .2.解:由A 中不等式变形得:(1)(4)0x x --,且40x -≠, 解得:14x <,即{|14}A x x =<,由B 中不等式变形得:22log 2log 4x =,解得:04x <,即{|04}B x x =<,则{|14}A B x x =<,故选:C .3.解:()R AB R =,且()R B B R =,()R B B =∅;B A ∴⊆,1a ∴故选:A .4.解析:2{|log (1)1}{|012}{|13}A x x x x x x =-<=<-<=<<,{|||2}{|22}{|22}B x x a x x a x a x a =-<=-<-<=-<<+,因为A B ⊆,所以2123a a -⎧⎨+⎩,解得13a .故选:B . 5.解:由题意A C ⊆,则U U C A ⊆,当UB C ⊆,可得“A B =∅”;若“A B =∅”能推出存在集合C 使得A C ⊆,UB C ⊆,U ∴为全集,A ,B 是集合,则“存在集合C 使得A C ⊆,UB C ⊆”是“A B =∅”的充分必要的条件. 故选:C .6.解:由Venn 图可知阴影部分对应的集合为()U AB ,集合{|(4)0}{|04}A x x x x x =-<=<<,2{|log (1)1}{|3}B x x x x =->=>,{|3}U B x x ∴=,即(){|03}U A B x x =<,故选:C .7.解:若x M ∈,则11212424k K x -=+=+,k Z ∈,21k Z -∈ 即M 中元素都是N 中元素;所以,M N ⊆. 而当2k =-时,0N ∈,0M ∉MN ∴故选:B .8.解:由P 知,220x x -,即02x ,即[0P =,2],由Q 知,20x y e =>,(0,)Q =+∞,[0PQ =,)+∞,(0P Q =,2],则(2,){0}P Q ⨯=+∞故选:A .9.解:={﹣2,﹣1},∵A∩B=B,∴B⊆A,∴①a=0时,B=∅,满足题意;②a≠0时,,则或﹣1,解得或﹣1,∴a的值可能为.故选:ABC.10.解:如图阴影表示集合C,矩形表示集合U,∵A⊆B⊆∁U C,∴A∩B=A,B∪C=∁U A,C⊆∁U A,(∁U A)∪(∁U C)=U,故选:ACD.11.解:集合A={x∈Z|x2+3x﹣10<0}={x∈Z|﹣5<x<2}={﹣4,﹣3,﹣2,﹣1,0,1},B={x|x2+2ax+a2﹣4=0},当a=2时,此时x2+4x=0,解得x=0或x=﹣4,满足A∩B中恰有2个元素,当a=1时,此时x2+2x﹣3=0,解得x=﹣3或x=1,满足A∩B中恰有2个元素,当a=﹣1时,此时x2﹣2x﹣3=0,解得x=3或x=﹣1,不满足A∩B中恰有2个元素,当a=﹣2时,此时x2﹣4x=0,解得x=0或x=4,不满足A∩B中恰有2个元素,故选:AB.12.解:∵集合M={x|(x﹣a)(x﹣3)=0}={a,3},N={x|(x﹣4)(x﹣1)=0}={1,4},在A中,若M∪N有4个元素,则a∉{1,3,4},∴M ∩N =∅,故A 正确;在B 中,若M ∩N ≠∅,则a ∈{1,4},∴M ∪N 有3个元素,故B 错误; 在C 中,若M ∪N ={1,3,4},则当a =3时,M ∩N =∅,故C 错误; 在D 中,若M ∩N ≠∅,则a ∈{1,4},∴M ∪N ={1,3,4},故D 正确. 故选:BC .13.解:解一元二次不等式2340x x -->得:1x <-或4x >,即(A =-∞,1)(4-⋃,)+∞,解一元二次不等式22320(0)x mx m m -+<>得2m x m <<,即(,2)B m m =, 又B A ⊆,所以210m m -⎧⎨>⎩或40m m ⎧⎨>⎩,解得4m ,14.解:有题意知:{|3}A B x x -=>,{|30}B A x x -=-<, *()()[3A B A B B A =--=-,0)(3⋃,)+∞.故答案为:[3-,0)(3⋃,)+∞.15.解:集合{0A =,4}-,22{|2(1)10B x x a x a =+++-=,}x R ∈,B A ⊆,∴当B =∅时,222(1)10x a x a +++-=无解,△224(1)4(1)0a a =+--<,解得1a <-;当{0}B =时,把0x =代入方程222(1)10x a x a +++-=,得1a =±; 当1a =时,{0B =,4}{0}-≠,1a ∴≠;当1a =-时,{0}B =,1a ∴=-;当{4}B =-时,把4x =-代入方程222(1)10x a x a +++-=,得1a =或7a =; 当1a =时,{0B =,4}{4}-≠-,1a ∴≠; 当7a =时,{4B =-,12}{4}-≠-,7a ∴≠; 当{0B =,4}-时,则1a =; 当1a =时,{0B =,4}-,1a ∴=; 综上所述:1a -或1a =,∴实数a 的取值范围是(-∞,1]{1}-.故答案为:(-∞,1]{1}-.16.解:由已知中数域的定义可得:则有理数集Q 满足定义,是一个数域,故①正确;若A 为一个数域,则A 中包含任意整数和分数,故Q A ⊆,故②正确; 若A ,B 都是数域,那么Q A B ⊆,故AB 中的元素均满足定义,故AB 也是一个数域,故③正确;若{|,}A x x nm n Q ==∈,{|,}B x x ts t Q ==∈,则{|A B x x n ==或,,,}ts t m n Q ∈,此时1)2)AB +∉,故④不正确;故真命题的序号为①②③. 故答案为:①②③17.解:(1)当1a =时,集合{|13}A x x =<<,集合{|23}B x x =<. {|23}AB x x ∴=<<,{|13}A B x x =<.(2)集合{|3A x a x a =<<,0}a >,集合{|23}B x x =<.AB =∅,∴当A =∅时,3a a ,解得0a ,不合题意,当A ≠∅时,33a a a <⎧⎨⎩或332a aa <⎧⎨⎩,解得3a 或23a. 又0a >,故实数a 的取值范围是(0,2][33,)+∞.18.解:(1){|15}A x x =-,{|24}B x x =,{|2U B x x ∴=<或4}x >,(){|12U AB x x ∴=-<或45}x <;(2)由CA A =得C A ⊆,则1450a a a -⎧⎪⎨⎪>⎩,解得504a <;由CB B =得BC ⊆,则2440a a a ⎧⎪⎨⎪>⎩,解得12a ;∴实数a 的取值范围为5{|1}4a a. 19.解:(1)集合6{|1}{|24}2A x x x x==-<+, 3m =时,{|25}B x x =<<, {|2R C B x x ∴=或5}x ,(){|22}R AC B x x =-<.(2)A B A =,B A ∴⊆, ①当B =∅时,△2(4)4(7)0m m =+-+,解得62m -, ②当B ≠∅时,记2()(4)7f x x m x m =-+++,04242(2)0(4)0m f f >⎧⎪+⎪-<<⎪⎨⎪-⎪⎪⎩,628419373m m m m m ⎧-⎪-<<⎪⎪⎨-⎪⎪⎪⎩或即, 解得1976233m m -<-<或, 综合①②得m 的范围是197[,]33-. 20.解:(1)2m =时,2{|10240}{|46}B x x x x x =-+<=<<,且{|15}A x x =-<<, {|16}A B x x ∴=-<<;(2){|(2)(4)0}B x x m x m =---<,且B A ⊆,∴①若24m m <+,即4m <时,{|24}B x m x m =<<+,则21454m m m -⎧⎪+⎨⎪<⎩,解得112m -; ②若24m m =+,即4m =时,B =∅,符合题意;③若24m m >+,即4m >时,{|42}B x m x m =+<<,则41254m m m +-⎧⎪⎨⎪>⎩,不等式无解; m ∴的取值范围为1{|14}2m m m -=或.。

高一年级(必修1)寒假作业9Word版含答案

高一年级(必修1)寒假作业9数学试题第Ⅰ卷(共60分)一、选择题:1.已知集合{}034|2<+-=x x x A ,{}0,12|≥-==x y y B x ,则=B A ( ) A .φ B .[)()+∞,31,0 C .A D .B2.设51log ,2,512512==⎪⎭⎫⎝⎛=c b a ,则( )A .b a c <<B .a b c <<C .b c a <<D .c b a <<3.若函数)(x f y =是函数xy 3=的反函数,则)21(f 的值为( )A .2log 3-B .3log 2-C .91D . 3 4.已知函数)1lg(910)(2---=x x x x f ,函数定义域为( )A .[]10,1B .[)(]10.22,1 C. (]10.1 D . ()()10,22,15.已知)(x f 是定义在R 上的偶函数,且在区间()0,∞-上单调递减,若实数a 满足()()221->-f f a ,则a 的取值范围是( )A .⎪⎭⎫ ⎝⎛∞-21,B .⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛∞-,2321, C. ⎪⎭⎫ ⎝⎛23,21 D .⎪⎭⎫ ⎝⎛+∞,23 6.函数()()22log44x x f xx--=的图像大致为( )A .B . C. D .7.函数)(x f y =在[]2,0上单调递增,且函数)2(+x f 是偶函数,则下列结论成立的是( )A .()⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<27251f f fB . ()⎪⎭⎫ ⎝⎛<<⎪⎭⎫ ⎝⎛25127f f fC. ()12527f f f <⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛ D .()⎪⎭⎫ ⎝⎛<<⎪⎭⎫ ⎝⎛27125f f f8.设函数()⎪⎩⎪⎨⎧>+≤+=1,21,12x ax x x x f x ,若()()a f f 41=,则实数a 等于( )A .21 B .34C. 2 D .4 9.已知函数()()()b x a x x f --=(其中b a >)的图像如图所示,则函数b a x g x +=)(的图像是( )A .B .C. D .10.设函数)10(log )(≠>=a a x x f a 且,若8)(201721=x x x f ,则)()()(201722212x f x f x f +++ 值等于( )A .8log 2aB .16 C. 8 D .4 11.对于幂函数54)(x x f =,若210x x <<,则2)()(),2(2121x f x f x x f ++的大小关系是( ) A .2)()()2(2121x f x f x x f +>+ B .2)()()2(2121x f x f x x f +<+ C. 2)()()2(2121x f x f x x f +=+ D .无法确定 12.已知定义在R 上的函数)(x f 满足: )1(-=x f y 的图像关于点)0,1(对称,且当0≥x 时恒有)21()23(+=-x f x f ,当)2,0(∈x 时,1)(-=x e x f ,则=-+)2015()2016(f f ( )A . e -1B .1-e C. e --1 D .1+e第Ⅱ卷(共90分)二、填空题13.计算=+-32)27(2lg 4lg 32lg .14.已知函数⎪⎩⎪⎨⎧≤+->=1,2)24(1,)(x x ax a x f x 是R 上的增函数,则实数a 的取值范围是 . 15.幂函数1222)33()(+-+-=m mx m m x f 在区间),0(+∞上是增函数,则=m .16.已知函数3)2016(,1log ln )(2=++=f x b x a x f ,则=)20161(f . 17.当0>a ,且1≠a 时,函数3)(2-=-x a x f 必过定点 .18.函数)3(log )(ax x f a -=在区间)6,2(上递增,则实数a 的取值范围是 . 三、解答题19. (本小题满分12分)已知幂函数12)22()(+++-=m x m m x f 为偶函数. (1)求)(x f 的解析式;(2)若函数1)1(2)(+--=x a x f y 在区间(2,3)上为单调函数,求实数a 的取值范围.20. (本小题满分12分)设()()()()log 1log 30,1a a f x x x a a =++->≠,且()12f =. (1)求a 的值及()f x 的定义域; (2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的值域.21. (本小题满分12分)已知函数b ax ax x g ++-=12)(2(0>a )在区间]3,2[上有最小值1和最大值4,设xx g x f )()(=(1)求a 、b 的值;(2)若不等式02)2(≥⋅-xxk f 在]1,1[-∈x 上有解,求实数k 的取值范围.高一年级(必修1)寒假作业9答案一、选择题1-5: CAADC 6-10: ABCAB 11:A 12:A 二、填空题13. 12 14. []8,4 15. 2 16.-1 17. )2,2(- 18. 210≤<a 三、解答题 19. 解析(1)由)(x f 为幂函数知1222=++-m m ,得1=m 或21-=m 当1=m 时,2)(x x f =,符合题意;当21-=m 时,21)(-=x x f ,不合题意,舍去.∴2)(x x f =.(2)由(1)得1)1(22+--=x a x y , 即函数的对称轴为1-=a x ,由题意知1)1(22+--=x a x y 在(2,3)上为单调函数, 所以21≤-a 或31≥-a , 即3≤a 或4≥a .(2)()()()()()()22222log 1log 3log 13log 14f x x x x x x ⎡⎤=++-=+-=--+⎣⎦,∴当(]1,1x ∈-时,()f x 是增函数;当()1,3x ∈时,()f x 是减函数, 函数()f x 在30,2⎡⎤⎢⎥⎣⎦上的最大值是()21log 42f ==,函数()f x 在30,2⎡⎤⎢⎥⎣⎦上的最小值是()20log 3f =,∴()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的值域是[]2log 3,2.21. 解析(1)a b x a x g -++-=1)1()(2,因为0>a ,所以)(x g 在区间]3,2[上是增函数,故⎩⎨⎧==4)3(1)2(g g ,解得⎩⎨⎧==01b a .(2)由已知可得21)(-+=xx x f , 所以02)2(≥⋅-x x k f 可化为xx x k 22212⋅≥-+,化为k x x ≥⋅-⎪⎭⎫ ⎝⎛+2122112,令x t 21=,则122+-≤t t k ,因]1,1[-∈x ,故⎥⎦⎤⎢⎣⎡∈2,21t ,记=)(t h 122+-t t ,因为⎥⎦⎤⎢⎣⎡∈1,21t ,故1)(max =t h , 所以k 的取值范围是]1,(-∞.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学寒假作业(人教A 版必修一)集合
1.已知集合,集合,集合,则集合的子集的个数为( )
A . 1
B . 2
C . 3
D . 4
【答案】D
2.已知集合A={1,2,3,4},B={y|y=3x ﹣2,x∈A},则A∩B=( )
A . {1}
B . {4}
C . {1,3}
D . {1,4}
【答案】D
【解析】B={1,4,7,10},A∩B={1,4},故选D .
3.若集合{}{}1,2,4,8,|25x A B x ==<,则A B ⋂=( )
A . {}1
B . {}2
C . {}1,2
D . {}1,2,3
【答案】C
【解析】{}|25x B x =< (){}2,log 51,2A B =-∞∴⋂=,选B .
4.集合A={-1,0,1},A 的子集中含有元素0的子集共有( )
A . 2个
B . 4个
C . 6个
D . 8个
【答案】B
【解析】含有元素0的子集有{0},{0,-1},{0,1},{0,-1,1},共4个.
故选B .
5.已知集合A={x│x -1>0},B={y│y 2-2y -3≤0},则A∩B=( )
A . (1,3)
B . [1,3)
C . [1,3]
D . (1,3]
【答案】D
【解析】{}{}{}2|20|2|230{|13}A x x x x B y y y y y =+>=>-=≤=-≤≤,--,所以A∩B= [1,3]. 故选D .
6.已知集合A={﹣2,0,2},B={x|x 2﹣x ﹣2=0},则A∩B=( )
A . ∅
B . {0}
C . {2}
D . {﹣2}
【答案】C
点睛:在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍
7.集合A={x|﹣1≤x≤2},B={x|x <1},则A∩(C R B )=( )
A . {x|x >1}
B . {x|x≥1} C. {x|1<x≤2} D. {x|1≤x≤2}
【答案】D
【解析】由{|12}{|1}A x x B x x =≤≤=<﹣,得: {}| 1 R C B x x =≥,则{}|1 2 R A C B x x ⋂
=≤≤(),故选D .
8.已知全集{|08}U x Z x =∈<≤,集合{|2}(28)A x Z x m m =∈<<<<,若U C A 的元素的个数为4,则m 的取值范围为( )
A . (]6,7
B . [)6,7
C . []6,7
D . ()6,7
【答案】A
【解析】若U C A 的元素的个数为4,则{}1,2,7,8,67.U C A m =∴<≤
本题选择A 选项.
9.设全集R U =,集合{}02A x x =<≤, {}1B x x =<,则集合A B ⋃=( )
A . ()2,+∞
B . [)2,+∞
C . (],2-∞
D . (],1-∞
【答案】C 【解析】∵集合{}02A x x =<≤, {}1B x x =<,
∴A B ⋃= (],2-∞
点睛:本题是道易错题,看清所问问题求并集而不是交集.
10.若函数)32(log 22--=x x y 的定义域,值域分别是M 、N ,则=N M C R )(( )
A .]3,1[-
B .)3,1(-
C .]3,0(
D .),3[+∞ 【答案】A
考点:一元二次不等式,集合交并补.
【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系.注意区间端点的取舍.
11.设全集U 是实数集R ,2{4}M x x =>,{13}N x x =<≤,则图中阴影部分所表示的集合是( )
A .{21}x x -≤<
B .{22}x x -≤≤
C .{12}x x <≤
D .{2}x x <
【答案】C
考点:集合的运算.
12.已知集合{}|5A x N x =∈<,则下列关系式错误的是( )
A .5A ∈
B .1.5A ∉
C .1A -∉
D .0A ∈
【答案】A
考点:集合与元素的关系.。

相关文档
最新文档