小学数学奥数题100题(附答案)
小学奥数题100道及答案

小学奥数题100道及答案1. 简单加法:3 + 7 = ()答案:102. 简单减法:9 5 = ()答案:43. 简单乘法:4 × 6 = ()答案:244. 简单除法:18 ÷ 3 = ()答案:65. 填空题:5 + ()= 12答案:76. 填空题:20 ()= 9答案:117. 填空题:8 × ()= 48答案:68. 填空题:36 ÷ ()= 6答案:69. 应用题:小明有10个苹果,吃掉了3个,还剩几个?答案:7个10. 应用题:小红有5个橘子,妈妈又买了8个,现在一共有多少个橘子?答案:13个11. 逻辑推理题:小华比小刚高,小刚比小明高,请问谁最高?答案:小华12. 逻辑推理题:小猫比小狗轻,小狗比小猪轻,请问谁最重?答案:小猪答案:选项A答案:选项B15. 数字排列题:将1、2、3、4四个数字排列,使它们组成的四位数最小。
答案:16. 数字排列题:将5、6、7、8四个数字排列,使它们组成的四位数最大。
答案:876517. 数字推理题:1、3、5、7、(),请填写下一个数字。
答案:918. 数字推理题:2、4、8、16、(),请填写下一个数字。
答案:3219. 时间计算题:如果现在是上午9点,再过3小时是几点?答案:中午12点20. 时间计算题:如果现在是下午3点,2小时前是几点?答案:下午1点答案:一组是水果(苹果、橘子),另一组是学习用品和体育用品(书本、铅笔、篮球)。
22. 重量比较题:一个西瓜重5千克,一个菠萝重2千克,哪个更重?答案:西瓜更重。
23. 长度比较题:一根绳子长10米,另一根绳子长15米,哪根绳子更长?答案:15米长的绳子更长。
答案:选项C25. 速度计算题:小明骑自行车,每小时行驶15公里,2小时能行驶多远?答案:30公里26. 温度转换题:摄氏度0度等于华氏度多少度?答案:32度27. 面积计算题:一个长方形的长是8厘米,宽是4厘米,它的面积是多少?答案:32平方厘米28. 体积计算题:一个正方体的边长是3厘米,它的体积是多少?答案:27立方厘米29. 平均数计算题:小明、小红、小华的年龄分别是8岁、10岁、12岁,他们的平均年龄是多少?答案:10岁答案:731. 因数分解题:将数字24分解成两个因数的乘积。
小学数学奥数应用题100道及答案(完整版)

小学数学奥数应用题100道及答案(完整版)1. 小明和小红共有图书76 本,小明的图书本数是小红的3 倍。
小明和小红各有图书多少本?答案:设小红有图书x 本,则小明有3x 本。
x + 3x = 76,解得x = 19,小明有57 本。
解题思路:根据图书总数的关系列方程求解。
2. 一个长方形的周长是48 厘米,长是宽的3 倍。
这个长方形的长和宽各是多少厘米?答案:设宽为x 厘米,则长为3x 厘米。
2×(x + 3x) = 48,解得x = 6,长为18 厘米。
解题思路:根据周长公式和长与宽的关系列方程求解。
3. 甲、乙两数的和是120,甲数是乙数的3 倍。
甲、乙两数各是多少?答案:设乙数为x,则甲数为3x。
x + 3x = 120,解得x = 30,甲数为90。
解题思路:同1。
4. 果园里有苹果树和梨树共180 棵,苹果树的棵数是梨树的2 倍。
苹果树和梨树各有多少棵?答案:设梨树有x 棵,则苹果树有2x 棵。
x + 2x = 180,解得x = 60,苹果树有120 棵。
解题思路:根据数量关系列方程求解。
5. 学校买了一批图书,故事书的本数是科技书的3 倍,故事书比科技书多120 本。
故事书和科技书各有多少本?答案:设科技书有x 本,则故事书有3x 本。
3x - x = 120,解得x = 60,故事书有180 本。
解题思路:根据数量差列方程求解。
6. 有两袋大米,甲袋大米的重量是乙袋的3 倍,如果从甲袋中取出20 千克放入乙袋,两袋大米就一样重。
原来两袋大米各有多少千克?答案:设乙袋大米有x 千克,则甲袋有3x 千克。
3x - 20 = x + 20,解得x = 20,甲袋有60 千克。
解题思路:根据重量变化后的关系列方程求解。
7. 一个三角形的内角和是180 度,其中一个角是另一个角的2 倍,第三个角是这两个角和的3 倍。
这个三角形的三个角分别是多少度?答案:设其中一个角为x 度,则另一个角为2x 度,第三个角为3×(x + 2x)=9x 度。
小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。
答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。
第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。
此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。
题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。
每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。
题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。
一楼到六楼走5 层楼梯,用时5×9 = 45 秒。
(完整版)小学奥数题100道及答案

一、计算题。
( 共 100 题)1.一家三口人,三人年纪之和是72 岁,妈妈和爸爸同岁,妈妈的年纪是孩子的 4 倍,三人各是多少岁?答案:妈妈的年纪是孩子的 4 倍,爸爸和妈妈同岁,那么爸爸的年纪也是孩子的 4 倍,把孩子的年纪作为 1 倍数,已知三口人年纪和是72 岁,那么孩子的年纪为72÷( 1+4+4) =8(岁),妈妈的年纪是 8×4=32(岁),爸爸和妈妈同岁为32 岁 .2.甲乙丙丁各自参加篮球、排球、足球和象棋。
此刻知道:(1) 甲的身材比排球运动员高。
(2) 几年前,丁因为事故,失掉了双腿。
(3) 足球运动员比丙和篮球运动员都矮。
猜猜就甲乙丙丁各参加什么项目?答案:由 (2) 可知丁必定是象棋运动员,由(1)(3)可知甲不是排球和足球运动员,那么甲只好是篮球运动员,由 (3) 可知丙不是足球运动员,那么只好是排球运动员了,剩下的乙就是足球运动员了。
3.联欢会上,要把 10 个水果装在 6 个袋子里,要求每个袋子中装的水果都是双数,并且水果和袋子都不剩。
应当如何装?答案:每个袋子放 2 个,再把 5 个袋子装在最后一个袋子里4.调皮有 300 元钱,买书用去 56 元,买文具用去 128 元,调皮剩下的钱比本来少多少元?答案:比本来少的钱就是花掉的钱,小调皮一共花了:56+128=184( 元 ) ,所以比本来的钱少了184 元5.察看以下各组图的变化规律,并在方框里画出有关的图形?答案:6.兄弟两人去垂钓,一共钓了23 条,哥哥钓的鱼比弟弟的三倍还多 3 条,哥哥弟弟各钓了多少条?答案: 23-3=2020/ ( 3+1)=5 条弟弟钓了 5 条哥哥钓了 5*3+3=18 条。
7. 某个外星人到达地球上,随身带有本星球上的硬币假如他想买 7 分钱的一件商品,他应如何付款?买商品呢?他又将如何付款?1 分、2 分、 4 分、 8 分各一枚,9 分、 10 分、 13 分、 14 分和 15 分的答案:这道题目的本质是要求把7、9、 10、 13、 14、 15 各数按1、 2、4、8 进行分拆 . 7=1+2+4 9=1+8 10=2+8 13=1+4+8 14=2+4+8 15=1+2+4+8 外星人可按以上方式付款.8.盘子里有香蕉、苹果、桔子三种水果。
小学数学经典奥数应用题100道及答案(完整版)

小学数学经典奥数应用题100道及答案(完整版)1. 甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:(60×3 + 40)÷2 = 110(千米)2. 一个圆形花坛的周长是60 米,沿圆周每隔4 米放一盆红花,每两盆红花之间放3 盆黄花。
花坛周围一共放了多少盆花?答案:60÷4 = 15(盆)红花,15×3 = 45(盆)黄花,共15 + 45 = 60(盆)3. 一列火车通过530 米的桥需40 秒钟,以同样的速度穿过380 米的山洞需30 秒钟。
求这列火车的速度是每秒多少米?车长多少米?答案:速度:(530 - 380)÷(40 - 30) = 15(米/秒),车长:40×15 - 530 = 70(米)4. 用绳子测井深,把绳子三折来量,井外余16 分米,把绳子四折来量,井外余4 分米。
求井深和绳长。
答案:井深:(16×3 - 4×4)÷(4 - 3) = 32(分米),绳长:(32 + 16)×3 = 144(分米)5. 有一堆棋子,把它四等分后剩下一枚,取走三份又一枚;剩下的再四等分又剩一枚,再取走三份又一枚;剩下的再四等分又剩一枚。
问:原来至少有多少枚棋子?答案:从最后的情况倒推,最后至少有5 枚棋子。
则之前有(5×4 + 1)×4 + 1 = 85(枚)6. 甲、乙、丙三人共有人民币168 元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。
这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱?答案:168÷3 = 56(元),倒推得出原来甲有77 元,乙有49 元,甲比乙多28 元。
小学生奥数应用题100道及答案解析完整版

小学生奥数应用题100道及答案解析完整版1. 鸡兔同笼,共有30 个头,88 只脚。
求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只。
解析:假设全是鸡,共有脚30×2 = 60 只,比实际少88 - 60 = 28 只。
每把一只鸡换成一只兔,脚增加4 - 2 = 2 只,所以兔有28÷2 = 14 只,鸡有30 - 14 = 16 只。
2. 小明用10 元钱正好买了20 分和50 分的邮票共35 张,求这两种邮票各买了多少张?答案:20 分邮票25 张,50 分邮票10 张。
解析:假设全买的是20 分邮票,则一共用20×35 = 700 分,比10 元(1000 分)少1000 - 700 = 300 分。
每把一张20 分邮票换成50 分邮票,多用50 - 20 = 30 分,所以50 分邮票有300÷30 = 10 张,20 分邮票有35 - 10 = 25 张。
3. 停车场上停了35 辆小轿车和两轮摩托车,地面上数一数共有100 个轮子,请问小轿车和摩托车各有多少辆?答案:小轿车15 辆,摩托车20 辆。
解析:假设全是小轿车,则有轮子35×4 = 140 个,比实际多140 - 100 = 40 个。
每把一辆小轿车换成摩托车,轮子减少4 - 2 = 2 个,所以摩托车有40÷2 = 20 辆,小轿车有35 - 20 = 15 辆。
4. 一次数学竞赛共有20 道题。
做对一道题得5 分,做错一题倒扣3 分,刘冬考了52 分,你知道刘冬做对了几道题?答案:14 道。
解析:假设全做对,应得20×5 = 100 分,比实际多100 - 52 = 48 分。
做错一题比做对一题少得5 + 3 = 8 分,所以做错48÷8 = 6 道,做对20 - 6 = 14 道。
5. 50 名同学去划船,一共乘坐11 只船,其中每条大船坐6 人,每条小船坐4 人。
小学奥数思维训练100题及答案解析(完整版)

小学奥数思维训练100题及答案解析(完整版)1. 计算:1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = ()A. 50B. 55C. 60D. 65答案:B解析:运用加法结合律,(1 + 10) + (2 + 9) + (3 + 8) + (4 + 7) + (5 + 6) = 11×5 = 552. 一个等差数列:2,5,8,11,14,······,第10 个数是()A. 29B. 31C. 32D. 35答案:A解析:公差为3,第10 个数为2 + (10 - 1)×3 = 2 + 27 = 293. 鸡兔同笼,共有15 个头,40 只脚,鸡有()只。
A. 10B. 5C. 8D. 7答案:B解析:假设全是兔,应有脚15×4 = 60 只,比实际多60 - 40 = 20 只。
一只兔比一只鸡多4 - 2 = 2 只脚,所以鸡有20÷2 = 10 只。
4. 小明从一楼到三楼用了6 分钟,照这样计算,他从一楼到六楼要用()分钟。
A. 15B. 18C. 12D. 10答案:A解析:从一楼到三楼走了2 层,每层用时6÷2 = 3 分钟。
从一楼到六楼走5 层,要用3×5 = 15 分钟。
5. 有10 个小朋友排成一队,每两人之间相隔1 米,这个队伍长()米。
A. 9B. 10C. 11D. 8答案:A解析:10 个小朋友中间有9 个间隔,每个间隔1 米,队伍长9×1 = 9 米。
6. 一个长方形的周长是20 厘米,长是7 厘米,宽是()厘米。
A. 3B. 4C. 6D. 5答案:A解析:宽= 周长÷2 -长= 20÷2 - 7 = 3 厘米7. 一根绳子对折3 次后,每段长5 米,这根绳子原来长()米。
A. 40B. 30C. 80D. 60答案:A解析:对折3 次,绳子被平均分成8 段,原来长5×8 = 40 米8. 小红有20 本书,小明有10 本书,小红给小明()本书,两人的书就一样多。
小学奥数题及答案 奥数题100道及答案

5.观察以下各组图的变化规律,并在方框里画出相关的图形?答案:
答案:
17.都是哪几环吗?
19.把写着1到100这100个号码的牌子,像下面这样一次分给四个人,你知道第73号牌子会落在谁的手里吗?
25.下面两个图形能拼成一个长方体吗?
39.认真观察,找规律填数
41.你能把下边的图形分成2块,使它们的大小、形状都一样吗?试试看。
答案:
47.在下面由火柴棍摆成的算式中,添上或去掉一根火柴棍,使算式成立.
52.把以下图分割成 4 块形状大小一样的图形,使每个图形中都含有一只小猴,你能做到吗?
57.顺序观察下面图形,并按其变化规律在“?〞处填上适宜的图形.
60.根据图中数字的规律,在最上边的空格中填上适宜的数。
67.找规律,在空格里填上适宜的数
77.如以下图所示是一个由小立方体构成的塔,请你数一数并计算出共有多少块?
81.观察下面的图形,并在空白处填上适当的图形答案:
91.看以下图,彤彤做语文作业用几分钟?做数学作业用几分钟?一共用几小时?
92.找规律,在空格里填上适宜的数
99.一块圆形烧饼,切1刀、切2刀、切3刀、切4刀,最多各能切成几块? 答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1001.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=15300 2.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000(500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+ (2)1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。
去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。
求去掉的两个数的乘积。
解:7*18-6*19=126-114=126*19-5*20=114-100=14去掉的两个数是12和14它们的乘积是12*14=16810.有七个排成一列的数,它们的平均数是30,前三个数的平均数是28,后五个数的平均数是33。
求第三个数。
解:28×3+33×5-30×7=39。
11.有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。
问:第二组有多少个数?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。
12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。
如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。
因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
13.妈妈每4天要去一次副食商店,每5天要去一次百货商店。
妈妈平均每星期去这两个商店几次?(用小数表示)解:每20天去9次,9÷20×7=3.15(次)。
14.乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。
解:以甲数为7份,则乙、丙两数共13×2=26(份)所以甲乙丙的平均数是(26+7)/3=11(份)因此甲乙丙三数的平均数与甲数之比是11:7。
15.五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。
已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。
糊得最快的同学最多糊了多少个?解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人)。
因此糊得最快的同学最多糊了74×6-70×5=94(个)。
16.甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。
问:甲、乙两班谁将获胜?解:快速行走的路程越长,所用时间越短。
甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。
17.轮船从A城到B城需行3天,而从B城到A城需行4天。
从A城放一个无动力的木筏,它漂到B城需多少天?解:轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。
所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天。
18.小红和小强同时从家里出发相向而行。
小红每分走52米,小强每分走70米,二人在途中的A处相遇。
若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。
小红和小强两人的家相距多少米?解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。
也就是说,小强第二次比第一次少走4分。
由(70×4)÷(90-70)=14(分)可知,小强第二次走了14分,推知第一次走了18分,两人的家相距(52+70)×18=2196(米)。
19.小明和小军分别从甲、乙两地同时出发,相向而行。
若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。
甲、乙两地相距多少千米?解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。
所以甲、乙两地相距6×4=24(千米)20.甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。
求甲原来的速度。
解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。
设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。
因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。
21.甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?解:9∶24。
解:甲车到达C站时,乙车还需16-5=11(时)才能到达C站。
乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24。
22.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。
坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为1123.甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。
问:两人每秒各跑多少米?解:甲乙速度差为10/5=2速度比为(4+2):4=6:4所以甲每秒跑6米,乙每秒跑4米。
24.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。
问:(1)A,B相距多少米?(2)如果丙从A跑到B用24秒,那么甲的速度是多少?解:解:(1)乙跑最后20米时,丙跑了40-24=16(米),丙的速度25.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。
已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?解:设车速为a,小光的速度为b,则小明骑车的速度为3b。
根据追及问题“追及时间×速度差=追及距离”,可列方程10(a-b)=20(a-3b),解得a=5b,即车速是小光速度的5倍。
小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车。
26.一只野兔逃出80步后猎狗才追它,野兔跑8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。
猎狗至少要跑多少步才能追上野兔?解:狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间。
所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。
27.甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过。
问:(1)火车速度是甲的速度的几倍?(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?解:(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的是行人速度的11倍;(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒)。
28.辆车从甲地开往乙地,如果把车速提高20%,那么可以比原定时间提前1时到达;如果以原速行驶100千米后再将车速提高30%,那么也比原定时间提前1时到达。
求甲、乙两地的距离。
29.完成一件工作,需要甲干5天、乙干6天,或者甲干7天、乙干2天。
问:甲、乙单独干这件工作各需多少天?解:甲需要(7*3-5)/2=8(天)乙需要(6*7-2*5)/2=16(天)30.一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。
如果放水管开了2时后再打开排水管,那么再过多长时间池内将积有半池水?31.小松读一本书,已读与未读的页数之比是3∶4,后来又读了33页,已读与未读的页数之比变为5∶3。
这本书共有多少页?解:开始读了3/7 后来总共读了5/833/(5/8-3/7)=33/(11/56)=56*3=168页32.一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成。
如果甲做3时后由乙接着做,那么还需多少时间才能完成?解:甲做2小时的等于乙做6小时的,所以乙单独做需要6*3+12=30(小时)甲单独做需要10小时因此乙还需要(1-3/10)/(1/30)=21天才可以完成。