实践电磁兼容技术(2)
“电磁兼容技术”课程案例导入式教学实践

me h d t a r u h t e p fc s — p r e e c i g t o o c r y o tt e a t m t o a e i o t d t a h n .Th a e r e e t d c r f l e e d n n m e c s s a e s lc e a e u l d p n i g o y
人 式 教 学法 的尝 试 , 据教 学 进 度 , 心选 择 案 例 , 学生 参 与 进 来 , 而 实现 了理 论 和 实践 相 结 合 , 得 了 良好 的教 学 效 果 。 依 精 让 从 取 关键词: 电磁 兼 容 ; 教学 改 革 ; 例 导 人式 教 学 案
中 图 分类 号 : TM6 5 4 文献 标 识 码 : A 文 章编 号 : 0 80 8 ( 0 1 0 — 0 40 1 0 — 6 6 2 1 ) 40 9 — 2
tc sa hive . W e lt a h ng r s ls a e r a h d i e i c e d l e c i e u t r e c e .
Ke wo d : l c r ma ne i o p tbiiy;t a h n e or to y r s e e t o g tc c m a i lt e c i g r f ma i n;c s —mp t d t a h ng a e i or e e c i
t e s ud n s ha e o i t r s i . The ut o s c m bi h i w n r s a c x e i n e n o h e c i g h t e t v n n e e tng a h r o ne t e r o e e r h e p re c s i t t e t a h n
电子通信行业电磁兼容技术与优化研究

电子通信行业电磁兼容技术与优化研究第一章电磁兼容基础理论 (2)1.1 电磁兼容概述 (2)1.2 电磁兼容基本参数 (2)1.3 电磁干扰源与传输途径 (3)1.4 电磁兼容标准与规范 (3)第二章电磁干扰抑制技术 (3)2.1 滤波器设计与应用 (3)2.2 屏蔽技术及其应用 (4)2.3 接地与搭接技术 (4)2.4 电磁干扰抑制材料 (4)第三章电磁兼容设计原则与方法 (5)3.1 电磁兼容设计原则 (5)3.2 电磁兼容设计流程 (5)3.3 电磁兼容设计方法 (6)3.4 电磁兼容设计案例分析 (6)第四章电磁兼容测试与评估 (6)4.1 电磁兼容测试方法 (7)4.2 电磁兼容测试设备 (7)4.3 电磁兼容评估方法 (7)4.4 电磁兼容测试与评估案例分析 (7)第五章电磁兼容技术在通信设备中的应用 (8)5.1 通信设备电磁兼容问题分析 (8)5.2 通信设备电磁兼容设计要点 (8)5.3 通信设备电磁兼容测试与评估 (8)5.4 通信设备电磁兼容案例分析 (9)第六章电磁兼容技术在无线通信系统中的应用 (9)6.1 无线通信系统电磁兼容问题分析 (9)6.2 无线通信系统电磁兼容设计要点 (9)6.3 无线通信系统电磁兼容测试与评估 (10)6.4 无线通信系统电磁兼容案例分析 (10)第七章电磁兼容技术在数据通信设备中的应用 (10)7.1 数据通信设备电磁兼容问题分析 (10)7.2 数据通信设备电磁兼容设计要点 (11)7.3 数据通信设备电磁兼容测试与评估 (11)7.4 数据通信设备电磁兼容案例分析 (11)第八章电磁兼容技术在电力系统中的应用 (12)8.1 电力系统电磁兼容问题分析 (12)8.1.1 电力系统的电磁环境特点 (12)8.1.2 电力系统电磁兼容问题类型 (12)8.2 电力系统电磁兼容设计要点 (12)8.2.1 设备选型与布局 (12)8.2.2 屏蔽与接地 (13)8.2.3 电路设计与滤波 (13)8.3 电力系统电磁兼容测试与评估 (13)8.3.1 测试方法 (13)8.3.2 测试设备 (13)8.3.3 评估方法 (14)8.4 电力系统电磁兼容案例分析 (14)第九章电磁兼容技术在电子战系统中的应用 (14)9.1 电子战系统电磁兼容问题分析 (14)9.1.1 电子战系统概述 (14)9.1.2 电子战系统电磁兼容问题来源 (14)9.1.3 电子战系统电磁兼容问题分析 (15)9.2 电子战系统电磁兼容设计要点 (15)9.2.1 电磁兼容设计原则 (15)9.2.2 电磁兼容设计要点 (15)9.3 电子战系统电磁兼容测试与评估 (15)9.3.1 电磁兼容测试方法 (15)9.3.2 电磁兼容评估方法 (16)9.4 电子战系统电磁兼容案例分析 (16)9.4.1 案例一:某型电子战系统电磁兼容设计 (16)9.4.2 案例二:某型电子战系统电磁兼容问题处理 (16)第十章电磁兼容技术发展趋势与优化研究 (16)10.1 电磁兼容技术发展趋势 (16)10.2 电磁兼容技术优化方法 (17)10.3 电磁兼容技术优化案例分析 (17)10.4 电磁兼容技术未来发展展望 (17)第一章电磁兼容基础理论1.1 电磁兼容概述电磁兼容(Electromagnetic Compatibility, 简称EMC)是指电子设备或系统在其电磁环境中,能正常工作且不对其环境产生不可接受的电磁干扰的能力。
电磁兼容试验和测量技术

电磁兼容试验和测量技术电磁兼容试验和测量技术是电磁兼容性领域中不可或缺的重要方面,它对于保障电子设备的正常运行以及维护通信系统的稳定性发挥着关键作用。
电磁兼容试验和测量技术可具备以下几个方面:1. 电磁兼容试验技术电磁兼容试验技术是指对电子设备进行电磁兼容性试验,以评估其在电磁环境下的工作能力。
其中包括:(1) 辐射发射试验:通过外部电磁波源在电磁环境下对待测设备的辐射发射进行测试。
(2) 抗干扰试验:是针对设备在电磁环境中承受外界电磁影响而采取的试验措施。
(3) 静电放电试验:在模拟静电放电干扰环境下,对设备进行静电放电测试,以模拟实际工作环境。
2. 电磁兼容测量技术电磁兼容测量技术是指测量电磁环境下设备的电磁参数,以验证其符合电磁兼容性要求,包括:(1) 辐射场测量:是对电子设备周围辐射场进行的测量,并对其辐射程度进行分析。
(2) 反射场测量:是对电子设备所反射出来的信号进行的测量,可通过调整反射屏幕的结构改变设备的反射特性。
(3) 传导场测量:是对电子设备周围传导场强度的测量,以确定其对设备的影响。
3. 电磁兼容性评估电磁兼容性评估是根据电磁兼容性试验和测量的结果来对设备进行评估,以确定其是否符合要求,包括:(1) 辐射发射评估:通过对设备的辐射发射测试,评估设备对周围环境的辐射干扰程度,以确定是否满足相关标准和要求。
(2) 抗干扰评估:通过对设备的抗干扰试验和测量,评估设备的抗干扰能力,以确保其能够在恶劣环境下正常工作。
(3) 辐射耐受性评估:根据设备在电磁环境中的工作特性,对其所能接受的辐射程度进行评估,以确保设备能够在不同强度的辐射环境下均能正常工作。
综上所述,电磁兼容试验和测量技术是保障电子设备正常工作和维护通信系统稳定性的关键技术之一。
在实际应用中,需要综合运用多种方法和技术手段,确保设备的电磁兼容性能得到充分保证。
电磁兼容技术实验报告

电磁兼容技术实验报告实验目的:本实验旨在通过实际操作,使学生了解电磁兼容性(EMC)的基本概念,掌握电磁干扰(EMI)的测试方法,以及学习如何评估和改进设备或系统的电磁兼容性。
实验原理:电磁兼容性是指设备或系统在电磁环境中能够正常工作,同时不对其他设备产生不可接受的电磁干扰。
电磁干扰主要来源于电源线、信号线和空间辐射。
通过测量设备在特定条件下的辐射和传导干扰水平,可以评估其电磁兼容性。
实验设备与材料:1. 电磁兼容性测试设备一套,包括接收机、天线、测试软件等。
2. 待测设备,例如个人电脑、手机等。
3. 屏蔽室或开放场,用于进行辐射干扰测试。
4. 电源线、信号线等连接线。
实验步骤:1. 准备实验环境,确保测试设备和待测设备均处于正常工作状态。
2. 将待测设备放置在屏蔽室内或开放场中,连接好所有必要的电源线和信号线。
3. 打开测试设备,设置测试参数,包括频率范围、测试模式等。
4. 进行辐射干扰测试,记录待测设备在不同频率下的干扰水平。
5. 进行传导干扰测试,使用接收机测量待测设备通过电源线和信号线产生的干扰。
6. 分析测试结果,评估待测设备的电磁兼容性。
实验结果:在本次实验中,我们对个人电脑和手机进行了电磁兼容性测试。
测试结果显示,个人电脑在高频段的辐射干扰水平较高,而手机在低频段的传导干扰水平较高。
这可能与设备内部的电路设计和屏蔽措施有关。
实验结论:通过本次实验,我们了解到电磁兼容性的重要性,以及如何通过测试来评估设备的电磁兼容性。
实验结果表明,不同设备在不同频率下的干扰水平存在差异,这提示我们在设计和使用电子设备时,需要考虑其电磁兼容性,以减少对其他设备的干扰。
建议:1. 加强对电子设备内部电路的屏蔽,减少辐射干扰。
2. 优化电源线和信号线的布局,降低传导干扰。
3. 在设计电子设备时,应充分考虑电磁兼容性标准,确保设备能够在复杂的电磁环境中稳定工作。
实验心得:通过本次电磁兼容技术实验,我们不仅学习到了理论知识,还通过实际操作加深了对电磁兼容性的认识。
电磁兼容与可靠性

电磁兼容与可靠性电磁兼容(Electromagnetic Compatibility,简称EMC)和可靠性是电子与电气工程中非常重要的概念。
在现代社会中,电子设备的广泛应用使得电磁兼容和可靠性成为了我们不可忽视的问题。
本文将从理论与实践两个方面探讨电磁兼容与可靠性的重要性及其相关的技术。
一、电磁兼容的概念与意义电磁兼容是指电子设备在电磁环境中能够正常工作,同时不对周围电子设备和系统造成干扰的能力。
在现代社会中,电子设备的密集使用导致了电磁环境的复杂性和电磁干扰的增加。
如果电子设备之间相互干扰,将会导致通信中断、数据丢失、设备损坏等问题,甚至可能对人身安全造成威胁。
因此,电磁兼容的研究和应用对于保障电子设备的正常运行和社会的稳定发展具有重要意义。
二、电磁兼容的技术与方法1. 电磁干扰的特点与来源电磁干扰是指电子设备之间或电子设备与电磁环境之间相互作用导致的不良影响。
电磁干扰主要来源于电磁波的传播和电磁辐射。
电磁波的传播路径包括导线传输、空间传播和电磁波辐射。
电磁辐射主要包括电磁波的辐射和电磁波的散射。
了解电磁干扰的特点和来源,有助于我们制定相应的电磁兼容技术和方法。
2. 电磁兼容的技术措施为了提高电子设备的电磁兼容性,我们可以采取一系列的技术措施。
例如,通过合理的电磁屏蔽设计,减少电磁波的传播路径,降低电磁辐射的强度。
同时,通过合理的布线和接地设计,减少电磁波的辐射和散射。
此外,还可以采用滤波器、隔离器、抑制器等电磁兼容器件,对电磁干扰进行有效的抑制和控制。
这些技术措施的应用可以显著提高电子设备的电磁兼容性。
三、可靠性的概念与意义可靠性是指电子设备在一定时间内正常工作的能力。
在电子与电气工程中,可靠性是评价和保证电子设备性能的重要指标。
电子设备的可靠性不仅关系到设备的使用寿命和性能稳定性,还关系到用户的安全和财产的保护。
因此,提高电子设备的可靠性对于保证设备的正常运行和用户的满意度具有重要意义。
四、可靠性的评估与提高1. 可靠性的评估方法可靠性的评估是指通过一系列的测试和分析,对电子设备的可靠性进行定量或定性的评估。
电磁兼容技术(第二章)

电容引线电感对策
高频(不能滤掉)
短
短引线电容、贴片电容
三端电容,
四端电容
三端电容
插入损耗:没有接入时,从噪声源传输到负载的噪声功 率P1和接入后噪声源传输到负载的噪声功率P2的比值
片状固态电容器阵列
数个三端电容的集成 各信号线之间的串扰很低 简化印制板板的设计、减少对印制板的占 用面积,方便滤波器的安装
3. 大部分干扰在进入系统后都会演变成传导干扰。
4. 抑制传导的关键在于找出传导干扰与信号之间可 以被利用的差异。
5. 分布参数的存在,使得EMC更加复杂和困难。
6. 如果传导干扰无法利用“一般”方法剔除,可以 考虑数字化、运算处理等“先进”方法。
§2 公共阻抗干扰
A
B
C
DC
Za
Zb
Zc
Za、Zb、Zc的存在会对电路的工作产生什么影响? 噪声电流在系统间的公共阻抗上产生噪声电压,并 由此对系统的工作产生干扰。
LPF 信号+干扰 信号
加设各种滤波器,其中最常用的滤波 器是低通滤波器(LPF)
常用的几种无源低通滤波电路
d B
敏感电 路
fo
f
1 2 LC
高通滤波器
d B
f
帯通(带阻)滤波器
(带通带阻滤波器)
d B
+
f
d B
dB
=
f f
无源滤波器与有源滤波器有什么区别?
无源滤波器:这种电路主要有无源元件R、L和C组 成。 有源滤波器:集成运放和R、C组成,具有不用电 感、体积小、重量轻等优点。
电容的使用
电容的等效电路 不同类型电容,特点不同,适用场合也不同 电容值不是越大越好 电容的容值越大,谐振频率越低,电容能有效补 偿电流的频率范围也越小。 同样容量的电容,并不是并联越多的小电容越好 焊点阻抗、漏电阻 电容都有一定的耐压值,要合理选择
电磁兼容实习报告

一、实习目的电磁兼容(Electromagnetic Compatibility,简称EMC)是电子设备在正常使用条件下,对所在环境中的电磁场干扰信号的抑制能力以及设备本身产生的电磁干扰信号的抑制能力。
为了更好地了解电磁兼容知识,提高自己的实践能力,我参加了本次电磁兼容实习。
二、实习单位及岗位介绍实习单位为我国某知名电子企业,主要从事电子产品研发、生产和销售。
在实习期间,我担任电磁兼容工程师助理,负责协助工程师进行电磁兼容测试及整改工作。
三、实习内容及过程1. 电磁兼容基础知识学习在实习初期,我学习了电磁兼容的基本概念、原理、测试方法和整改措施等知识。
通过学习,我对电磁兼容有了初步的认识,为后续实习工作奠定了基础。
2. 电磁兼容测试在工程师的指导下,我参与了电磁兼容测试工作。
测试过程中,我负责操作测试设备、记录测试数据、分析测试结果。
主要测试内容包括:辐射骚扰测试、传导骚扰测试、抗干扰能力测试等。
3. 电磁兼容整改针对测试过程中发现的问题,我协助工程师进行电磁兼容整改。
整改措施包括:优化电路设计、改进布局布线、增加滤波器、屏蔽等。
在整改过程中,我学会了如何根据测试结果提出整改方案,并协助工程师实施整改。
4. 电磁兼容报告撰写在实习期间,我参与了电磁兼容测试报告的撰写工作。
通过整理测试数据、分析测试结果,撰写了详细的电磁兼容测试报告,为产品研发和销售提供了有力支持。
四、实习收获1. 电磁兼容理论知识得到了巩固和提高。
2. 掌握了电磁兼容测试方法和整改措施。
3. 提高了团队合作能力和沟通能力。
4. 增强了在实际工作中解决问题的能力。
五、总结通过本次电磁兼容实习,我对电磁兼容有了更深入的了解,掌握了电磁兼容测试和整改的基本技能。
在今后的学习和工作中,我将不断努力,提高自己的电磁兼容水平,为我国电子行业的发展贡献自己的力量。
电磁兼容原理实验教案

电磁兼容原理实验教案一、实验目的1. 理解电磁兼容的基本概念。
2. 掌握电磁兼容的基本设计原则。
3. 学习电磁兼容的实验方法和技巧。
4. 培养实验操作能力和团队协作能力。
二、实验原理1. 电磁兼容的基本概念:电磁兼容是指电子设备或系统在同一电磁环境中能正常工作,并不干扰其他设备正常工作的能力。
2. 电磁兼容的基本设计原则:a) 屏蔽:采用金属屏蔽或导电涂层等方法减少电磁干扰。
b) 滤波:利用滤波器去除电源线和信号线上的干扰信号。
c) 接地:合理设置接地,降低设备之间的干扰。
d) 布线:按照电磁兼容原则进行合理布线,减少信号间的相互干扰。
三、实验器材与设备1. 实验桌椅2. 计算机3. 示波器4. 信号发生器5. 功率放大器6. 接收器7. 屏蔽盒8. 滤波器9. 接地线10. 导线四、实验内容与步骤1. 实验一:电磁干扰的产生与检测a) 连接信号发生器、功率放大器和接收器。
b) 设置信号发生器产生一定频率的信号。
c) 通过功率放大器放大信号,观察接收器接收到的干扰信号。
d) 分析干扰产生的原因和特点。
2. 实验二:屏蔽对电磁干扰的影响a) 在实验一的基础上,加入屏蔽盒。
b) 将信号发生器、功率放大器和接收器放入屏蔽盒内。
c) 重复实验一的操作,观察屏蔽对电磁干扰的影响。
d) 分析屏蔽的作用和效果。
3. 实验三:滤波对电磁干扰的影响a) 在实验一的基础上,加入滤波器。
b) 将滤波器串联在信号发生器和功率放大器之间。
c) 重复实验一的操作,观察滤波对电磁干扰的影响。
d) 分析滤波的作用和效果。
4. 实验四:接地对电磁干扰的影响a) 在实验一的基础上,合理设置接地。
b) 将信号发生器、功率放大器和接收器分别接地。
c) 重复实验一的操作,观察接地对电磁干扰的影响。
d) 分析接地的作用和效果。
5. 实验五:布线对电磁干扰的影响a) 在实验一的基础上,按照电磁兼容原则进行布线。
b) 重复实验一的操作,观察布线对电磁干扰的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
减小电感寄生电容的方法
如果磁芯是导体,首先: 用介电常数低的材料增加绕组导体与磁芯之间的距离 然后: 1. 起始端与终止端远离(夹角大于40度) 2. 尽量单层绕制,并增加匝间距离 3. 多层绕制时, 采用“渐进”方式绕,不要来回绕 4. 分组绕制 (要求高时,用大电感和小电感串联起 来使用)
28
V
ICM
4
开关电源噪声
1. 50Hz的奇次谐波(1、3、5、7 ) 2. 开关频率的基频和谐波(1MHz以下差模为主,
1MHz以上共模为主)
5
干扰滤波器的种类
衰减
低通
衰减
高通
截止频率
3dB
衰减
带通
衰减 带阻
6
低通滤波器类型
C
L
反
T
7
电路与插入损耗的关系
100 插 80 入 损 60 耗 dB 40
C = 3.48pf 19%
C = 51pf
4%
26
1.什么是传统机械按键设计?
传统的机械按键设计是需要手动按压按键触动PCBA上的 开关按键来实现功能的一种设计方式。
传统机械按键结构层图:
按
PCBA
键
开关 键
传统机械按键设计要点: 1.合理的选择按键的类型, 尽量选择平头类的按键,以 防按键下陷。 2.开关按键和塑胶按键设计 间隙建议留0.05~0.1mm, 以防按键死键。 3.要考虑成型工艺,合理计 算累积公差,以防按键手感 不良。
20
fc
5阶 4阶 3阶 2阶
1阶
20N/十倍频程 6N/倍频程
10fc
100fc
1000fc
8
确定滤波器阶数
欲衰减20dB
50 100
L、C的数值决定截止频率
欲衰减20dB
10
100
4 6=24 20 至少4阶滤波器
阶数决定过渡带的陡度
1 20 = 20 1阶滤波器就可以了 为了保险,可用2阶
地线电感起 着不良作用
19
三端电容的正确使用
接地点要求: 1 干净地 2 与机箱或其它较大
的金属件射频搭接
✓
20
三端电容器的不足
寄生电容造成输入 端、输出端耦合
接地电感造成旁 路效果下降
21
穿心电容更胜一筹
金属板隔离 输入输出端
一周接地 电感很小
22
穿心电容的插入损耗
插入损耗
普通电容
理想电容 穿心电容
无屏蔽的场合
滤波器靠近被滤 波导线的靠近器 件或线路板一端。
有屏蔽的场合:在屏蔽界面上
板上滤波器
35
板上滤波器的注意事项
滤波器靠近接口
为滤波设置干净地
滤波器要并排安装 在接口处设置档板
线路板的干净地与金属机 箱或大金属板紧密搭3接6
31
干扰抑制用铁氧体
Z = jL + R
L
R(f)
Z
R
1MHz 10MHz 100MHz 1000MHz
32
铁氧体磁环使用方面的一些问题
125
600
300个
1250
30个
4500
1
10
100
1000
0.1 1 10 100 1000
½匝
无偏置
1½ 匝
有偏置
33
低通滤波器对脉冲信号的影响
34
信号滤波器的安装位置
第四章 干扰滤波技术
干扰滤波在EMC设计中作用 差模干扰和共模干扰 常用滤波电路 怎样制作有效的滤波器 正确使用滤波器
1
滤波器的作用
信号滤波器
电源滤波器
切断干扰沿信号线或电源线传播的路径,与屏蔽共同构 成完善的干扰防护。
2
共模和差模电流
~ ~
3
共模/差模干扰的产生
IDM
ICM
V
ICM
磁芯为导体时,CTC为主要因素, 磁芯为非导体时,CTT为主要因素。
17
克服电容非理想性的方法
大容量
衰减
大电容
小容量 并联电容
小电容
电容并联 LC并联 电感并联
频率
18
三端电容器的原理
60 普通电容 40
三端电容
20
30 70 1GHz
引线电感与电容 一起构成了一个T 形低通滤波器
在引线上安装两 个磁珠滤波效果 更好
1GHz
频率
23
馈通滤波器使用注意事项
• 必须安装在金属板上,并在一周接地 • 最好焊接,螺纹安装时要使用带齿垫片 • 焊接时间不能过长 • 上上使用馈通滤波器
上面 底面
线路板地线面
25
磁芯对电感寄生电容的影响
铁粉芯
C = 4.28pf
铁氧体(锰锌) C = 49pf
COG X7R
Y5V
-80 0 20 40 60 80 100
%额定电压(Vdc)
15
实际电感器的特性
ZL
实际电感
理想电感
1/2 LC
f
L
C
绕在铁粉芯上的电感
电感量 (H)
3.4 8.8 68 125 500
谐振频率
(MHZ)
45 28
5.7 2.6 1.2
16
电感寄生电容的来源
每圈之间的电容 CTT 导线与磁芯之间的电容CTC
L
R
R
C
L = R / 2FC
C = 1 / 2RFC
对于T形(多级T)和 形(多级)电路,最外 边的电感或电容取 L/2 和 C/2,中间的不变。
12
实际电容器的特性
ZC
实际电容
理想电容
1/2 LC
f
C
L
引线长1.6mm的陶瓷电容器
电容量 谐振频率(MHZ)
1 F
1.7
0.1 F
4
0.01F
12.6
共模扼流圈
有意增加漏磁, 利用差模电感 共模扼流圈中的负载电流产生的磁场相互抵销,因此磁 芯不会饱和。
29
电感磁芯的选用
铁粉磁芯:不易饱和、导磁率低,作差模扼流圈的磁芯
铁氧体:最常用
锰锌:r = 500 ~ 10000,R = 0.1~100m 镍锌:r = 10 ~ 100,R = 1k ~ 1Mm
3300 pF
19.3
1100 pF
33
680 pF
42.5
330 pF
60
13
温度对陶瓷电容容量的影响
0.15 COG
%C 0
5 0
X7R
%C -5
-10
-0.15
-15
-55
125
-55
125
20 Y5V
0
%C -30
-60
-30
30
90
14
电压对陶瓷电容容量的影响
20 0
-20 %C
-40 -60
超微晶:r > 10000,做大电感量共模扼流圈的磁心
30
电感量与饱和电流的计算
S
饱和电流:
电感量
Imax = Bmax S (D1-D2)/2L
D1 D2
厂家手册给出
电感量: L (nH)= 0.2 N2 r S(mm) ln (D1/D2)
厂家经常给出每匝的电感量“AL”,则 L (nH)= AL N2
9
根据阻抗选用滤波电路
源阻抗 高 高 低
低
电路结构 C、、多级 、多级 反、多级反
L、多级L
负载阻抗 高 低 高
低
规律:电容对高阻,电感对低阻
10
插入损耗的估算
IL
Zs
C
ZL
~
Fco = 1/(2 Rp C) Fco = Rs/(2 L)
Zs
L
ZL
~
Zs、ZL串联
Zs、ZL并联
11
器件参数的确定