解析几何第四版吕林根课后习题答案定稿版
5-7解析几何吕林根第四版

利用三角函数关系
cos2 α = 1 + cos 2α , sin2 α = 1 − cos 2α ,
2
2
sinα ⋅ cosα = sin 2α ,
2
(2)可化为:
a
'11
= a11 + a22 2
+
a11
− 2
a12
cos 2α
+
a12
sin 2α ,
a
'22
= a11 + a22 2
−
a11
5 −3 −3 2
I3 = −3 5 2 = −128. −3 2 2 −4
所以
I3 = −128 = −8, I2 16
而特征方程λ 2 − 10λ + 16 = 0 的两根为 = λ1 2= , λ2 8,
所以曲线的简化方程(略去撇号)为:
2x2 + 8 y2 − 8 =0,
曲线的标准方程(略去撇号)为
I '1 = a '11 + a '22 = a11 + a22 = I1,
= I '2
a '1= 1 a '12 a '12 a '22
a= 11 a12 a12 a22
I2;
而
a '11 a '12 a '13
I '3 = a '12 a '22 a '23
a '13 a '23 a '33
a11 a12 a11x0 + a12 y0 + a13
a22 ( y '+ y0 )2 + a33= a22 y '2 + 2a22 y0 y '+ a22 y02 + a33
解析几何第四版吕林根课后习题答案第四章

第四章 柱面、锥面、旋转曲面与二次曲面§ 4.1柱面1、已知柱面的准线为:⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。
解:(1)从方程⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(222=-+++--z y y z 即:0235622=----+z y yz z y 此即为要求的柱面方程。
(2)取准线上一点),,(0000z y x M ,过0M 且平行于直线⎩⎨⎧==c z yx 的直线方程为:⎪⎩⎪⎨⎧=-=-=⇒⎪⎩⎪⎨⎧=+=+=z z t y y tx x zz t y y tx x 000000 而0M 在准线上,所以⎩⎨⎧=+--+=-++-+--02225)2()3()1(222t z y x z t y t x 上式中消去t 后得到:02688823222=--+--++z y x xy z y x 此即为要求的柱面方程。
2、设柱面的准线为⎩⎨⎧=+=z x z y x 222,母线垂直于准线所在的平面,求这柱面的方程。
解:由题意知:母线平行于矢量{}2,0,1- 任取准线上一点),,(0000z y x M ,过0M 的母线方程为:⎪⎩⎪⎨⎧+==-=⇒⎪⎩⎪⎨⎧-==+=t z z yy tx x tz z y y tx x 2200000而0M 在准线上,所以:⎩⎨⎧+=-++=-)2(2)2(22t z t x t z y t x 消去t ,得到:010*******22=--+++z x xz z y x 此即为所求的方程。
3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。
解:过原点且垂直于已知三直线的平面为0=++z y x :它与已知直线的交点为())34,31,31(),1,0,1(,0,0,0--,这三点所定的在平面0=++z y x 上的圆的圆心为)1513,1511,152(0--M ,圆的方程为: ⎪⎩⎪⎨⎧=++=-++++07598)1513()1511()152(222z y x z y x 此即为欲求的圆柱面的准线。
【推荐下载】解析几何第四版答案-推荐word版 (17页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==解析几何第四版答案篇一:解析几何第四版吕林根课后习题答案第三章第三章平面与空间直线3.1平面的方程1.求下列各平面的坐标式参数方程和一般方程:(1)通过点M1(3,1,?1)和点M2(1,?1,0)且平行于矢量{?1,0,2}的平面(2)通过点M1(1,?5,1)和M2(3,2,?2)且垂直于xoy坐标面的平面;(3)已知四点A(5,1,3),B(1,6,2),C(5,0,4)D(4,0,6)。
求通过直线AB且平行于直线CD的平面,并求通过直线AB且与?ABC平面垂直的平面。
解:(1)? M1M2?{?2,?2,1},又矢量{?1,0,2}平行于所求平面,故所求的平面方程为:?x?3?2u?v??y?1?2u?z??1?u?2v?一般方程为:4x?3y?2z?7?0(2)由于平面垂直于xoy面,所以它平行于z轴,即{0,0,1}与所求的平面平行,又M1M2?{2,7,?3},平行于所求的平面,所以要求的平面的参数方程为:?x?1?2u??y??5?7u ?z?1?3u?v?一般方程为:7(x?1)?2(y?5)?0,即7x?2y?17?0。
(3)(ⅰ)设平面?通过直线AB,且平行于直线CD: ?{?4,5,?1},?{?1,0,2} 从而?的参数方程为:?x?5?4u?v??y?1?5u?z?3?u?2v?一般方程为:10x?9y?5z?74?0。
(ⅱ)设平面??通过直线AB,且垂直于?ABC所在的平面? ?{?4,5,?1}, ??{?4,5,?1}?{0,?1,1}?{4,4,4}?4{1,1,1}均与??平行,所以??的参数式方程为:?x?5?4u?v??y?1?5u?v ?z?3?u?v?一般方程为:2x?y?3z?2?0.2.化一般方程为截距式与参数式: ?:x?2y?z?4?0. 解:?与三个坐标轴的交点为:(?4,0,0),(0?2,0),(0,0,4),xyz???1. ?4?24所以,它的截距式方程为:又与所给平面方程平行的矢量为:{4,?2,0},{4,0,4},? 所求平面的参数式方程为:?x??4?2u?v??y??u?z?v?3.证明矢量v?{X,Y,Z}平行与平面Ax?By?Cz?D?0的充要条件为:AX?BY?CZ?0. 证明:不妨设A?0,则平面Ax?By?Cz?D?0的参数式方程为:DBC?x???u?v?AAA??y?u?z?v??BC故其方位矢量为:{?,1,0},{?,0,1},AA从而平行于平面Ax?By?Cz?D?0的充要条件为:v,{?BC,1,0},{?,0,1}共面? AAXYB?1AC?0A? AX?BY?CZ?0.Z0?0 14. 已知连接两点A(3,10,?5),B(0,12,z)的线段平行于平面7x?4y?z?1?0,求B 点的z坐标.解: ??{?3,2,5?z} 而AB平行于7x?4y?z?1?0 由题3知:(?3)?7?2?4?(z?5)?0 从而z?18.5. 求下列平面的一般方程.⑴通过点?1?2,?1,1?和?2?3,?2,1?且分别平行于三坐标轴的三个平面; ⑵过点??3,2,?4?且在x轴和y轴上截距分别为?2和?3的平面; ⑶与平面5x?y?2z?3?0垂直且分别通过三个坐标轴的三个平面; ⑷已知两点?1?3,?1,2?,?2?4,?2,?1?,求通过?1且垂直于?1,?2的平面; ⑸原点?在所求平面上的正射影为??2,9,?6?;⑹求过点?1?3,?5,1?和?2?4,1,2?且垂直于平面x?8y?3z?1?0的平面.x?2解:平行于x轴的平面方程为y?1z?1?1000?0.即z?1?0.11同理可知平行于y轴,z轴的平面的方程分别为z?1?0,x?y?1?0. ⑵设该平面的截距式方程为xyz24???1,把点??3,2,?4?代入得c?? ?2?3c19故一般方程为12x?8y?19z?24?0.⑶若所求平面经过x轴,则?0,0,0?为平面内一个点,?5,1,?2?和?1,0,0?为所求平面的方位矢量,x?0∴点法式方程为y?0z?010?2?0 051∴一般方程为2y?z?0.同理经过y轴,z轴的平面的一般方程分别为2x?5z?0,x?5y?0.1,?1,?3?.?1?2垂直于平面?, ⑷?1?2??1,?1,?3?,平面?通过点?1?3,?1,2?, ∴该平面的法向量n??因此平面?的点位式方程为?x?3???y?1??3?z?2??0. 化简得x?y?3z?2?0.??. (5) op??2,9,?6?p?op????4?81?36?11.op?p?n0?11?cos?,cos?,cos????2,9,?6?. 296,cos??,cos???. 111111296y?z?11?0. 则该平面的法式方程为:x?111111∴ cos??既 2x?9y?6z?121?0.1,?8,3?,M1M2??(6)平面x?8y?3z?1?0的法向量为n??1,6,1?,点从?4,1,2? ?x?4写出平面的点位式方程为y?1z?2?863111?83?0,则A???26,61B?313?2,C??14,D??26?4?2?28??74, 111则一般方程Ax?By?Cz?D?0,即:13x?y?7z?37?0. 6.将下列平面的一般方程化为法式方程。
《解析几何》(第四版)吕林根 许子道 编第3章平面与空间直线3.2平面与点的相关位置

容易看出,点与平面间的离差 :
(3.2-1)
当且仅当点
M
和原点在平面
0
的不同侧
(图3
4),
0; 在同一侧(图3 5) 0;
当且仅当点
M
在平面
0
上时,
0.
z
R
M0
P
n
r0
o
q
Q
y
zபைடு நூலகம்
P
o n
R
q
r0
Q
M0
y
x
图3-4
x
图3-5
显然, 即是点M0与平面间的距离d,即
d,
定理3.2.1
MM , M 为垂足,
M
P为上任一点, 则总有
图3-3
MM MP ,
当且仅当点P与M 重合
P
M
时,式中等号成立,所以MM 为点M与平面的距离.
点关于平面的离差
定义3.2.2 若自点M0到平面引垂线,其垂足为
Q, 则QM0在的单位法向量n上的射影叫点M0与
间的离差, 记作
Pr
j
n
QM
0
间的离差与距离, 求出该平面的法式方程,问题迎刃而解.
例 1 求两平面 z x 2y 1, 3x 6y 3z 4间的距离.
解 先判断两平面是否平行.
n1
(1,2, 1),
n2
(3,6,
3),
1 2 1 3 6 3 n1 // n2 .
在第一个平面内任取一点,比如(0,0,1),
则点M
1,
M
2在由
1
,
所构成的相邻的二面角
2
内;
如图(3 8).
解析几何吕林根课后习题解答一到五.docx

第一章矢量与坐标§ 1.1矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点;(3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点.解:2.设点 O 是正六边形 ABCDEF的中心,在矢量 OA 、 OB 、 OC 、 OD 、 OE 、OF 、 AB 、 BC 、 CD、DE 、 EF O和 FA 中,哪些矢量是相等的?[解 ]:图 1-13.设在平面上给了一个四边形ABCD,点 K、L、 M、N 分别是边AB、BC、CD、DA的中点,求证:KL = NM .当ABCD是空间四边形时,这等式是否也成立?[证明 ]:.4.如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) AB、; (2) AE、; (3)AC 、CD CGEG ;(4)AD 、 GF ;(5)BE 、 CH .解:图1—3§ 1.2矢量的加法1.要使下列各式成立,矢量a,b 应满足什么条件?(1)a b a b;(2)a b a b ;(3)a b a b ;(4)a b a b ;(5)a b a b .解:§ 1.3数量乘矢量1试解下列各题.⑴化简 (x y) (a b) (x y) (a b) .⑵已知a e1 2 e2e3,b 3e12e2 2 e3,求a b , a b 和 3 a 2 b .⑶ 从矢量方程组解:3 x 4 ya,解出矢量 x ,y.2 x 3 y b2 已知四边形ABCD 中, AB a 2 c ,CD 5 a 6 b 8 c ,对角线AC 、 BD 的中点分别为 E 、 F ,求EF.解:3 设AB a 5 b , BC 2 a 8 b ,CD3( a b) ,证明: A 、 B 、 D 三点共线.解:4在四边形 ABCD 中, AB a 2 b , BC 4 a b ,CD 5 a 3 b ,证明 ABCD 为梯形.解:6. 设 L、 M、 N 分别是 ABC 的三边 BC、 CA、 AB 的中点,证明:三中线矢量AL,BM,CN 可以构成一个三角形.7.设 L、 M 、N 是△ ABC的三边的中点, O 是任意一点,证明OA OB + OC = OL + OM + ON .解:8.如图 1-5,设 M 是平行四边形 ABCD的中心, O 是任意一点,证明OA + OB + OC + OD =4 OM .解:9在平行六面体 ABCDEFGH (参看第一节第4题图)中,证明AC AF AH 2 AG .证明:.10.用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.解11.用矢量法证明,平行四边行的对角线互相平分 .解图1-412. 设点 O 是平面上正多边形A1A2A n的中心,证明:OA1 + OA2 ++OA n=0 .解,13.在 12 题的条件下,设P 是任意点,证明证明:§ 1.4矢量的线性关系与矢量的分解1.在平行四边形ABCD中,(1)设对角线AZ a, BD b, 求 AB, BC, CD, DA.解(2)设边 BC和 CD的中点 M 和 N,且AM P, AN q 求 BC, CD 。
解析几何第四版吕林根课后习题答案第三章名师制作优质教学资料

第三章平面与空间直线§ 3.1平面的方程1.求下列各平面的坐标式参数方程和一般方程:(1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点)1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面;(3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。
求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ∆平面垂直的平面。
解: (1) }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为:⎪⎩⎪⎨⎧++-=-=--=v u z u y vu x 212123一般方程为:07234=-+-z y x(2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为:⎪⎩⎪⎨⎧+-=+-=+=v u z u y u x 317521 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。
(3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=AB ,}2,0,1{-=CD 从而π的参数方程为:⎪⎩⎪⎨⎧+-=+=--=v u z uy vu x 235145 一般方程为:0745910=-++z y x 。
(ⅱ)设平面π'通过直线AB ,且垂直于ABC ∆所在的平面}1,5,4{--=, }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-⨯--=⨯均与π'平行,所以π'的参数式方程为:⎪⎩⎪⎨⎧+-=++=+-=v u z v u y vu x 35145 一般方程为:0232=--+z y x .2.化一般方程为截距式与参数式: 042:=+-+z y x π.解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为:1424=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-, 所求平面的参数式方程为:⎪⎩⎪⎨⎧=-=++-=v z uy v u x 24 3.证明矢量},,{Z Y X v =平行与平面0=+++D Cz By Ax 的充要条件为:0=++CZ BY AX . 证明: 不妨设0≠A ,则平面0=+++D Cz By Ax 的参数式方程为:⎪⎪⎩⎪⎪⎨⎧==---=v z uy v A C u A B A D x 故其方位矢量为:}1,0,{},0,1,{ACA B --,从而v 平行于平面0=+++D Cz By Ax 的充要条件为:,}1,0,{},0,1,{ACA B --共面⇔01001=--AC A B Z Y X ⇔ 0=++CZ BY AX .4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标.解: }5,2,3{z +-= 而AB 平行于0147=--+z y x 由题3知:0)5(427)3(=+-⨯+⨯-z 从而18=z .5. 求下列平面的一般方程.⑴通过点()1,1,21-M 和()1,2,32-M 且分别平行于三坐标轴的三个平面; ⑵过点()4,2,3-M 且在x 轴和y 轴上截距分别为2-和3-的平面; ⑶与平面0325=+-+z y x 垂直且分别通过三个坐标轴的三个平面; ⑷已知两点()()1,2,4,2,1,321--M -M ,求通过1M 且垂直于21,M M 的平面; ⑸原点O 在所求平面上的正射影为()6,9,2-P ;⑹求过点()1,5,31-M 和()2,1,42M 且垂直于平面0138=-+-z y x 的平面.解:平行于x 轴的平面方程为001011112=--+-z y x .即01=-z .同理可知平行于y 轴,z 轴的平面的方程分别为01,01=-+=-y x z . ⑵设该平面的截距式方程为132=+-+-c z y x ,把点()4,2,3-M 代入得1924-=c 故一般方程为02419812=+++z y x .⑶若所求平面经过x 轴,则()0,0,0为平面内一个点,{}2,1,5-和{}0,0,1为所求平面的方位矢量,∴点法式方程为001215000=----z y x ∴一般方程为02=+z y .同理经过y 轴,z 轴的平面的一般方程分别为05,052=-=+y x z x . ⑷{}2121.3,1,1M M --=M M →垂直于平面π,∴该平面的法向量{}3,1,1--=→n ,平面∂通过点()2,1,31-M , 因此平面π的点位式方程为()()()02313=--+--z y x . 化简得023=+--z y x . (5) {}.6,9,2-=→op .1136814=++==→op p()().6,9,2cos ,cos ,cos 110-=∂=⋅=→γβn p op∴ .116cos ,119cos ,112cos -===∂γβ 则该平面的法式方程为:.011116119112=--+z y x既 .0121692=--+z y x(6)平面0138=-+-z y x 的法向量为{}3,8,1-=→n ,{}1,6,121=M M ,点从()2,1,4写出平面的点位式方程为0161381214=----z y x ,则,261638-=-=A74282426,141131,21113-=++⨯-=====D C B ,则一般方程,0=+++D Cz By Ax 即:.037713=---z y x 6.将下列平面的一般方程化为法式方程。
《解析几何》(第四版)吕林根 许子道 编第3章平面与空间直线3.1平面的方程

M0 b
e3
r0
r
o e1
e2
M a
y
程,u, v为参数.
图3-1
若设点
M0 r0
(x0 , y0
x0 ,
, z0 y0 ,
), M
z0 ,
(x , r
y, x
z), 则 , y, z
,
再设
a
X 1 , Y1 ,
Z1,
b X 2 ,Y2 , Z2,
则由(3.11)得
x y
x0 y0
并设点
M (x, y, z)为上任一点(图3 2), 则
r
x
,
y,
z
OM
,
ri
OM i
xi ,
yi , zi ,
(i 1,2,3)
a M1M 2 r2 r1
x2
x1,
y2
y1,
z2
z1,
b M1M3 r3 r1
x3 x1, y3 y1, z3 z1,
x
z
M2
e3
rM1 r12r3 r
o e1
e2
M3 M
y
图3-2
故平面的向量式参数方程 r r1 u(r2 r1) v(r3 r1),
(3.1-5)
坐标式参数方程
x y
x1 y1
u ( x2 u( y2
x1 ) y1 )
v( x3 v( y3
x1 ) , y1 ) ,
z z1 u(z2 z1) v(z3 z1).
过z轴( y轴或x轴); (3) A, B,C中有两个为0,则 D 0, B C 0(A C 0 或 A B 0) 平面
(3.110)平行于yz面(xz面或xy面); D 0, B C 0(A C 0 或 A B 0) 平面
《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.1平面曲线的方程

[串点成面·握全局]
一、近代交通业发展的原因、特点及影响 1.原因 (1)先进的中国人为救国救民,积极兴办近代交通业,促 进中国社会发展。 (2)列强侵华的需要。为扩大在华利益,加强控制、镇压 中国人民的反抗,控制和操纵中国交通建设。 (3)工业革命的成果传入中国,为近代交通业的发展提供 了物质条件。
轮船正招式成商立局,标志着中国新式航运业的诞生。
(2)1900年前后,民间兴办的各种轮船航运公司近百家,几乎都是
在列强排挤中艰难求生。
2.航空
(1)起步:1918年,附设在福建马尾造船厂的海军飞机工程处开始
研制 。
(2)发展水:上1飞918机年,北洋政府在交通部下设“
”;此后十年间,航空事业获得较快发展。
曲线的参数方程与普通方程的互化
曲线的参数方程 ,是解析几何联系实际的 一个重 要工具.
(1)化参数方程为普通方程 时,关键在于消去参 数t.
此时,还应注意 ①同一条曲线可以有多种不 同形式的参数方程,如
x 1t,
y
2
t.
与
x 1 3t, y 2 3t.
在消去t后都表示同一直线 x y 3.
ct, c, t
(t 0)
则其上任意三点P, Q,
R的坐标可以分别取
y
Q
H R
P
o
x
为
c
c
c
P(ct1, t1 ), Q(ct2 , t2 ) R(ct3, t3 ),
历史ⅱ岳麓版第13课交通与通讯 的变化资料
精品课件欢迎使用
[自读教材·填要点]
一、铁路,更多的铁路 1.地位 铁路是 交通建运设输的重点,便于国计民生,成为国民经济 发展的动脉。 2.出现 1881年,中国自建的第一条铁路——唐山 至开胥平各庄铁 路建成通车。 1888年,宫廷专用铁路落成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何第四版吕林根课后习题答案精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】第三章 平面与空间直线§ 3.1平面的方程1.求下列各平面的坐标式参数方程和一般方程:(1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点)1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面;(3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。
求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ∆平面垂直的平面。
解: (1) }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为:一般方程为:07234=-+-z y x(2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。
(3)(ⅰ)设平面π通过直线AB ,且平行于直线CD :}1,5,4{--=,}2,0,1{-=从而π的参数方程为:一般方程为:0745910=-++z y x 。
(ⅱ)设平面π'通过直线AB ,且垂直于ABC ∆所在的平面∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-⨯--=⨯AC AB均与π'平行,所以π'的参数式方程为:一般方程为:0232=--+z y x .2.化一般方程为截距式与参数式:042:=+-+z y x π.解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--,所以,它的截距式方程为:1424=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-,∴ 所求平面的参数式方程为:3.证明矢量},,{Z Y X =平行与平面0=+++D Cz By Ax 的充要条件为:0=++CZ BY AX .证明: 不妨设0≠A ,则平面0=+++D Cz By Ax 的参数式方程为:故其方位矢量为:}1,0,{},0,1,{ACA B --, 从而平行于平面0=+++D Cz By Ax 的充要条件为:,}1,0,{},0,1,{ACA B --共面⇔⇔ 0=++CZ BY AX .4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标.解: }5,2,3{z +-=而平行于0147=--+z y x由题3知:0)5(427)3(=+-⨯+⨯-z从而18=z .5. 求下列平面的一般方程.⑴通过点()1,1,21-M 和()1,2,32-M 且分别平行于三坐标轴的三个平面; ⑵过点()4,2,3-M 且在x 轴和y 轴上截距分别为2-和3-的平面;⑶与平面0325=+-+z y x 垂直且分别通过三个坐标轴的三个平面; ⑷已知两点()()1,2,4,2,1,321--M -M ,求通过1M 且垂直于21,M M 的平面; ⑸原点O 在所求平面上的正射影为()6,9,2-P ;⑹求过点()1,5,31-M 和()2,1,42M 且垂直于平面0138=-+-z y x 的平面.解:平行于x 轴的平面方程为001011112=--+-z y x .即01=-z .同理可知平行于y 轴,z 轴的平面的方程分别为01,01=-+=-y x z .⑵设该平面的截距式方程为132=+-+-c z y x ,把点()4,2,3-M 代入得1924-=c 故一般方程为02419812=+++z y x .⑶若所求平面经过x 轴,则()0,0,0为平面内一个点,{}2,1,5-和{}0,0,1为所求平面的方位矢量,∴点法式方程为001215000=----z y x ∴一般方程为02=+z y .同理经过y 轴,z 轴的平面的一般方程分别为05,052=-=+y x z x .⑷{}2121.3,1,1M M --=M M →垂直于平面π, ∴该平面的法向量{}3,1,1--=→n ,平面∂通过点()2,1,31-M , 因此平面π的点位式方程为()()()02313=--+--z y x .化简得023=+--z y x .(5) {}.6,9,2-=→op ∴ .116cos ,119cos ,112cos -===∂γβ 则该平面的法式方程为:.011116119112=--+z y x既 .0121692=--+z y x(6)平面0138=-+-z y x 的法向量为{}3,8,1-=→n ,{}1,6,121=M M ,点从()2,1,4写出平面的点位式方程为0161381214=----z y x ,则,261638-=-=A74282426,141131,21113-=++⨯-=====D C B ,则一般方程,0=+++D Cz By Ax 即:.037713=---z y x6.将下列平面的一般方程化为法式方程。
解:.3-=D∴将已知的一般方程乘上.301=λ得法式方程.030330530230=-+-z y x()∴-=∴=.21.12λD 将已知的一般方程乘上.21-=λ得法式方程.0212121=-+-y x()∴-=∴=.1.2.3λD 将已知的一般方程乘上.1-=λ得法式方程.02=--x().91.0.4±=∴=λD 即91=λ或91-=λ将已知的一般方程乘上91=λ或.91-=λ得法式方程为0979494=+-z y x 或.0979494=-+-z y x7.求自坐标原点自以下各平面所引垂线的长和指向平面的单位法矢量的方向余弦。
解:().71.35.1=-=λD 化为法式方程为05767372=-++z y x 原点指向平面π的单位法矢量为,76,73,72⎭⎬⎫⎩⎨⎧=u 它的方向余弦为.76cos ,73cos ,72cos ===γβα原点o 到平面π的距离为.5=-=D P λ().31.21.2-==λD 化为法式方程为-07323231=--+-z y x 原点指向平面π的单位法矢量为,32,32,310⎭⎬⎫⎩⎨⎧--=n 它的方向余弦为122cos ,cos ,cos .333αβγ=-==-原点o 到平面π的距离7.p D λ=-=第20页8.已知三角形顶点()()()0,7,0,2,1,1,2,2,2.A B C --求平行于ABC 所在的平面且与她相距为2各单位的平面方程。
解:设,.AB a AC b ==点()0,7,0.A -则{}{}2,6,1,2,9,2a b ==写出平面的点位式方程72610292x y z += 设一般方程0. 3.2,6,140.Ax By Cz D A B C D +++=∴====-<则1. 2.7p D λλ==-=相距为2个单位。
则当4p =时28.D =-当0p =时0.D =∴所求平面为326280.x y z -+-=和3260.x y z -+=9.求与原点距离为6个单位,且在三坐标轴,ox oy 与oz 上的截距之比为::1:3:2a b c =-的平面。
解:设,3,2.0.a x b x c x abc =-==≠∴设平面的截距方程为 1.x y za b c ++=即.bcx acy abz abc ++=又原点到此平面的距离 6.d =6.=∴所求方程为7.32y zx -++= 10.平面1x y za b c++=分别与三个坐标轴交于点,,.A B C 求ABC 的面积。
解 (,0,0)A a , (0,,0)B b ,(0,0,)C c {},,0AB a b =-,{},0,AC a c =-. {},,AB AC bc ca ab ⨯=;2AB AC b ⨯=. ∴S ABC11.设从坐标原点到平面的距离为。
求证1.p p =∴= 从而有22221111.p a b c =++ § 3.2 平面与点的相关位置1.计算下列点和平面间的离差和距离:(1))3,4,2(-M , :π 0322=++-z y x ;(2))3,2,1(-M , :π 0435=++-z y x .解: 将π的方程法式化,得:01323132=--+-z y x , 故离差为:311332431)2()32()(-=-⨯-⨯+-⨯-=M δ,M 到π的距离.31)(==M d δ(2)类似(1),可求得0354353356355)(=-++-=M δ,M 到π的距离.0)(==M d δ2.求下列各点的坐标:(1)在y 轴上且到平面02222=--+z y 的距离等于4个单位的点;(2)在z 轴上且到点)0,2,1(-M 与到平面09623=-+-z y x 距离相等的点;(3)在x 轴上且到平面01151612=++-z y x 和0122=--+z y x 距离相等的点。
解:(1)设要求的点为)0,,0(0y M 则由题意∴ 610=-y ⇒50-=y 或7.即所求的点为(0,-5,0)及(0,7,0)。
(2)设所求的点为),0,0(0z 则由题意知:由此,20-=z 或-82/13。
故,要求的点为)2,0,0(-及)1382,0,0(-。
(3)设所求的点为)0,0,(0x ,由题意知:由此解得:20=x 或11/43。
所求点即(2,0,0)及(11/43,0,0)。
3.已知四面体的四个顶点为)4,1,1(),5,11,2(),3,5,3(),4,6,0(---C B A S ,计算从顶点S 向底面ABC 所引的高。
解:地面ABC 的方程为:所以,高335426=+⨯--=h 。
4.求中心在)2,5,3(-C 且与平面01132=+--z y x 相切的球面方程。
解:球面的半径为C 到平面π:01132=+--z y x 的距离,它为:142142814116532==+++⨯=R ,所以,要求的球面的方程为:56)2()5()3(222=++++-z y x .即:0184106222=-++-++z y x z y x .5.求通过x 轴其与点()5,4,13M 相距8个单位的平面方程。
解:设通过x 轴的平面为0.By Cz +=它与点()5,4,13M 相距8个单位,从而228.481041050.B BC C =∴--=因此()()1235430.B C B C -+=从而得12350B C -=或430.B C +=于是有:35:12B C =或():3:4.B C =-∴所求平面为35120y z +=或340.y z -=6. 求与下列各对平面距离相等的点的轨迹.⑴053407263=--=--+y x z y x 和;⑵062901429=++-=-+-z y x z y x 和.解: ⑴ ()0726371:1=--+z y x π 令()()53451726371--=--+y x z y x 化简整理可得:0105113=+-z y x 与07010943=--+z y x .⑵对应项系数相同,可求42614221'-=+-=+=D D D ,从而直接写出所求的方程:0429=-+-z y x .9 判别点M (2 -1 1)和N (1 2 -3)在由下列相交平面所构成的同一个二面角内,还是在相邻二面角内,或是在对顶的二面角内?(1)1:3230x y z π-+-=与2:240x y z π--+= (2)1:2510x y z -+-=与2:32610x y z π-+-=解:(1)将M (2 -1 1),N (1 2 -3)代入1π,得: 6123032630++-〉⎧⎨---〈⎩则M ,N 在1π的异侧再代入2π,得:221470143440+-+=〉⎧⎨-++=〉⎩∴MN 在2π的同侧∴MN 在相邻二面角内(2)将M (2 -1 1)N (1 2 -3)代入1π,得:4151902215180++-=〉⎧⎨---=-〈⎩则MN 在1π的异侧。