解析几何第四版吕林根课后习题集规范标准答案第一章
《解析几何》(第四版)吕林根许子道编第一章向量与坐标1.8两向量的向量积

j
i
a
bYX(1XX1X12i(2(jiY1kiji))ZY1X1kY1)2Y(2j((iXk2ji)j) YY21XZj
(a
b)
c
a
c
b
c.
(1.8-5)
证
若
a,
b,
c中至少有一个是零矢
,
或a,
b,
c为一组
共线矢, (1.8 5)成立.
现假设不是上述情况.
设c 为c的单(a位矢b ),先c 证
a
c
b
c
.
证明向量积的分配律: (a+b)c=(a c)+(b c)
引理 a c a2
证明 两矢方向: 一致;引入
成立;
若
a
//
b ,则
a
b
a
b
b
sin (a, b )
a
ba
b a sin (a, b ),
即
a
b 与b
a模相等.
又由向量积定义,a
b 与b
a同时垂直于
a与b,
所其以次, a因 从 b与abba的共终线点. 来看
a,
b 决定的平面
,
顺序
b,
a,
b
a构成右手标架
o; b, a,b a
,
所以a
b与
b
a的方向相反 ,
从而得
a b b a.
定理1.8.4 向量积满足数因子的结 合律,即
为数,(a,ab)为 b任 意a向(量b.)
(a
b ).
(1.8-3)
推论 , 为任意实数,则
(a) (b ) ( )(a b ).
解析几何教程习题答案

第一章 向量代数习题1.11. 试证向量加法的结合律,即对任意向量,,a b c 成立()().a b c a b c ++=++证明:作向量,,AB a BC b CD c ===(如下图),则 ()(),a b c AB BC CD AC CD AD ++=++=+=()(),a b c AB BC CD AB BD AD ++=++=+=故()().a b c a b c ++=++2. 设,,a b c 两两不共线,试证顺次将它们的终点与始点相连而成一个三角形的充要条件是0.a b c ++=证明:必要性,设,,a b c 的终点与始点相连而成一个三角形ABC ∆,则0.a b c AB BC CA AC CA AA ++=++=+== 充分性,作向量,,AB a BC b CD c ===,由于ABCabcABCDabca b +b c +0,a b c AB BC CD AC CD AD =++=++=+=所以点A 与D 重合,即三向量,,a b c 的终点与始点相连构成一个三角形。
3. 试证三角形的三中线可以构成一个三角形。
证明:设三角形ABC ∆三边,,AB BC CA 的中点分别是,,D E F (如下图),并且记,,a AB b BC c CA ===,则根据书中例 1.1.1,三条中线表示的向量分别是111(),(),(),222CD c b AE a c BF b a =-=-=- 所以,111()()()0,222CD AE BF c b a c b a ++=-+-+-=故由上题结论得三角形的三中线,,CD AE BF 可以构成一个三角形。
4. 用向量法证明梯形两腰中点连线平行于上、下底且等于它们长度和的一半。
证明:如下图,梯形ABCD 两腰,BC AD 中点分别为,E F ,记向量,AB a FA b ==,则,DF b =而向量DC 与AB 共线且同向,所以存在实数0,λ>使得.DC AB λ=现在,FB b a =+,FC b a λ=-+由于E 是BC 的中点,所以1111()()(1)(1).2222FE FB FC b a a b a AB λλλ=+=++-=+=+且A BabcE FD C111(1)()().222FE AB AB AB AB DC λλ=+=+=+ 故梯形两腰中点连线平行于上、下底且等于它们长度和的一半。
解析几何 第四版 课后答案

由上题结论知: AL + BM + CN = 0
∴OA + OB + OC = OL + OM + ON
4. 用矢量法证明,平行四边行的对角线互相平分. [证明]:如图 1-4,在平行四边形 ABCD 中,O 是对角线 AC,BD 的交点
∵ AD = OD − OA
BC = OC − OB
但 AD = BC
BM = 1 (BA + BC) 2
CN = 1 (CA + CB) 2
∴ AL + BM + CN = 1 ( AB + AC + BA + BC + CA + CB) = 0 2
从而三中线矢量 AL, BM ,CN 构成一个三角形。
3. 设 L、M、N 是△ABC 的三边的中点,O 是任意一点,证明
第 1 章 矢量与坐标
§1.1 矢量的概念
1.下列情形中的矢量终点各构成什么图形?
(1)把空间中一切单位矢量归结到共同的始点;
(2)把平行于某一平面的一切单位矢量归结到共同的始点;
(3)把平行于某一直线的一切矢量归结到共同的始点;
(4)把平行于某一直线的一切单位矢量归结到共同的始点.
[解]:(1Байду номын сангаас单位球面; (2)单位圆
=3 PiGi ,
从而 OPi
= OAi + 3OGi 1+ 3
,
设 Ai (xi, yi, zi)(i=1, 2, 3, 4),则
G1
⎜⎛ ⎝
x2
+
x3 3
+
x4
,
y2 + y3 + y4 , 3
解析几何第四版吕林根课后习题答案一至三章

PA1 PO PA2 PO PAn PO 0
即
PA1 PA2 PAn n PO
§1.4 向量的线性关系与向量的分解
1.在平行四边形 ABCD 中, (1)设对角线 AZ a, BD b, 求 AB, BC , CD, DA. 解: AB
解?a?b?b?a?b?a?b?a?b?a?b?a?b?a?????????????????yxyyxxyyxxyxyx22?e?e?e?e?e?e?e?e?b?a?????????3132132142232?e?e?e?e?e?e?e?e?e?b?a???????????3213213213422232?e?e?e?e?e?e?e?e?e?b?a???????????321321321710322322323
OA OB + OC = OL + OM + ON .
7. 设 L、M、N 是△ABC 的三边的中点,O 是任意一点,证明 [证明] OA OL LA
OB OM MB OC ON NC OA OB OC OL OM ON ( LA MB NC )
1 1 1 1 b a , BC b a , CD b a , DA b a .设边 BC 和 CD 的 2 2 2 2
(2)中点 M 和 N,且 AM P, AN q 求 BC , CD 。 解: AC
1 1 q P , BC 2MC 2 q P P q 3P 2 2
解析几何 第四版 课后答案

吕林根解析几何(第四版)(完整课件)(1)

即( ,但 e 0 ,则 x .即 x ' 0 x xe ' ) 0
xx'.
定理1.4.2 如果向量 e1 , e 2 不共线, 则向量
r 与 e1 , e 2 共面的充分必要条件是 r 可以用向
量 e1 , e 2 线性表示,即
r x e y e 1 2
并且系数 x , y 被 e1,e2, r 唯一确定.
而O M a ,O N b ,
O
M P m M B m ( O B O M ) m ( b a ) ,
N P n N A n ( O A O N ) n () a b ,
p a m () b am ( 1 ) a m b ,
10 ,所以 aa ,2 , , a 因为 1 n线性相关.
定理1.4.5 如果一组向量中的一部分向量
线性相关那么这一组向量就线性相关.
证明: 设有一组向量 a , , a , , a , , a ( s r ) 1 2 s r 其中一部分,如 aa 线性相关 , 即存在不 , , , a 1 2 s 全为0的 ,使得 ( i 1 , 2 , s )
F
C
P1
B
定义1.4.2 对于 n(n 1) 个向量 aa , ,2 , , a 1 n 如果存在不全为零的 n 个数 使得 , , , 1 2 n
a a a 0 .
1 1 2 2 n n
1 2 n
那么 n 个向量 aa 叫做线性相关,不是 ,2 , , a 1 n
充分性 设 a 中有一个向量是其 ( i 1 , 2 , n ) i 余向量的线性组合.设这个向量为 a n ,即 则
吕林根解析几何(第四版)(完整课件)1.7

cC
AB PC
所以三高交于一点.
直角坐标系下数量积的坐标运算
定理1.7.3 设 a X1i Y1 j Z1k,b X 2i Y2 j Z2 k, 则 a b X1X 2 Y1Y2 Z1Z2.
证明: a b ( X1i Y1 j Z1k )( X 2i Y2 j Z2 k )
若 a,b 中没有 0 ,则(1)和(4)显然成立.
(2) 若 0 ,则等式成立.若 0,则
(a) b | b |射影 (a) | b | ( 射影 a )
b
b
( | b | 射影 b a) (a b) .
又 a (b) (b) a (b a) (a b), 所以
(a) b a (b) (a b).
2
X1X 2 i X1Y2i j X1Z1i k
2
Y1X 2 j i Y1Y2 j Y1Z2 j k
2
Z1X 2 k i Z1Y2 k j Z1Z2 k .
而 i, j,k是两两垂直的单位向量,则有
i j j i 0, j k k j 0, i k k i 0,
于各边平方和.
B
C
证明: 如图, OACB 中,
设 OA a,OB b,OC m, O
A
BA n ,则有 m a b,n a b ,所以
2
2
2
2
2
2
m a 2a b b , n a 2a b b .
所以
2
m
2
n
2
2a
2b2 ,即|
m
|2
|
n
|2
2
|
a
|2
2
|
b
|2
例2 证明: 如果一条直线与一个平面内的
解析几何版吕林根课后习题答案

第四章 柱面、锥面、旋转曲面与二次曲面§ 4.1柱面1、已知柱面的准线为:⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。
解:(1)从方程⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(222=-+++--z y y z 即:0235622=----+z y yz z y 此即为要求的柱面方程。
(2)取准线上一点),,(0000z y x M ,过0M 且平行于直线⎩⎨⎧==c z yx 的直线方程为:⎪⎩⎪⎨⎧=-=-=⇒⎪⎩⎪⎨⎧=+=+=z z t y y tx x zz t y y tx x 000000 而0M 在准线上,所以⎩⎨⎧=+--+=-++-+--02225)2()3()1(222t z y x z t y t x 上式中消去t 后得到:02688823222=--+--++z y x xy z y x 此即为要求的柱面方程。
2、设柱面的准线为⎩⎨⎧=+=z x z y x 222,母线垂直于准线所在的平面,求这柱面的方程。
解:由题意知:母线平行于矢量{}2,0,1- 任取准线上一点),,(0000z y x M ,过0M 的母线方程为:⎪⎩⎪⎨⎧+==-=⇒⎪⎩⎪⎨⎧-==+=t z z y y tx x tz z y y tx x 2200000而0M 在准线上,所以:⎩⎨⎧+=-++=-)2(2)2(22t z t x t z y t x 消去t ,得到:010*******22=--+++z x xz z y x 此即为所求的方程。
3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。
解:过原点且垂直于已知三直线的平面为0=++z y x :它与已知直线的交点为())34,31,31(),1,0,1(,0,0,0--,这三点所定的在平面0=++z y x 上的圆的圆心为)1513,1511,152(0--M ,圆的方程为: ⎪⎩⎪⎨⎧=++=-++++07598)1513()1511()152(222z y x z y x 此即为欲求的圆柱面的准线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 矢量与坐标§1.1 矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面; (2)单位圆(3)直线; (4)相距为2的两点2. 设点O 是正六边形ABCDEF 的中心,在矢量、OB 、 、OD 、OE 、OF 、AB 、BC 、CD 、 DE 、 和中,哪些矢量是相等的?[解]:如图1-1,在正六边形ABCDEF 中,相等的矢量对是: 图1-1 .和和和和和3. 设在平面上给了一个四边形ABCD ,点K 、L 、M 、N 分别是边AB、BC、CD、DA的中点,求证:KL =NM . 当ABCD 是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC , 则在∆BAC 中,21AC. KL 与方向相同;在∆DAC 中,21AC . NM 与AC 方向相同,从而KL =NM 且KL 与NM 方向相同,所以KL =NM .4. 如图1-3,设ABCD -EFGH 是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) AB 、; (2) AE 、;(3) 、;(4) AD 、GF ; (5) BE 、CH . [解]:相等的矢量对是(2)、(3)和(5);互为反矢量的矢量对是(1)和(4)。
§1.2 矢量的加法1.要使下列各式成立,矢量b a ,应满足什么条件?C(1-=+ (2+=+ (3-=+ (4+= (5-=-[解]:(1),-=+;(2),+=+(3≥且,=+ (4),+=(5),≥-=-§1.3 数量乘矢量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从矢量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出矢量→x ,→y .解 ⑴→→→→→→→→→→→→→→-=+-+---+=-⋅+--⋅-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a , →→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解 →→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.6. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM ,可 以构成一个三角形.[证明]: )(21AC AB AL +=Θ )(21BC BA BM +=)(21CB CA CN +=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线矢量,,构成一个三角形。
7. 设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明 OB OA ++OC =OL ++.[证明] LA OL OA +=Θ OM += NC ON OC +=)(NC MB LA ON OM OL OC OB OA +++++=++∴ =)(OM ++-++ 由上题结论知:0=++CN BM ALOM ++=++∴8. 如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明OA +OB ++OD =4OM .[证明]:因为OM =21(OA +OC ), =21(OB +), 所以 2OM =21(OA +OB ++OD ) 所以OA +OB +OC +=4.9 在平行六面体ABCDEFGH (参看第一节第4题图)中,证明图1-5→→→→=++AG AH AF AC 2.证明 →→→→→→→→→→→→=+++=+++=++AG CG FG AF AC DH AD AF AC AH AF AC 2. 10. 用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半. 证明 已知梯形ABCD ,两腰中点分别为M 、N ,连接AN 、BN . →→→→→→++=+=DN AD MA AN MA MN ,→→→→→→++=+=CN BC MB BN MB MN ,∴ →→→+=BC AD MN ,即)(21→→→+=BC AD MN ,故→MN 平行且等于)(21→→+BC AD .11. 用矢量法证明,平行四边行的对角线互相平分.[证明]:如图1-4,在平行四边形ABCD 中,O 是对角线AC ,BD的交点但 OB OCOA OD BCAD OBOC BC OA OD AD +=+-=-∴=-=-=Θ由于)(OC OA +∥,AC )(OD OB +∥,BD 而AC 不平行于BD ,∴0=+=+OB OD OC OA ,从而OA=OC ,OB=OD 。
12. 设点O 是平面上正多边形A 1A 2…A n 的中心,证明: 1OA +2OA +…+n OA =0ρ.[证明]:因为1OA +3OA =λ2OA , 2OA +4OA =λ3OA , ……1-n OA +1OA =λn OA ,n OA +2OA =λ1OA ,所以 2(1OA +2OA +…+n OA )=λ(1OA +2OA +…+n OA ),所以 (λ-2)(1OA +2OA +…+n OA )=0ρ. 显然 λ≠2, 即 λ-2≠0.所以 1OA +2OA +…+n OA =0ρ.13.在12题的条件下,设P 是任意点,证明:n PA PA PA n =+++K 21图1-4证明:21=+++n OA OA OA ΛΘ()()()21=-++-+-∴PA PA n Λ 即 n PA PA n =+++Λ21§1.4 矢量的线性关系与矢量的分解 1.在平行四边形ABCD 中,(1)设对角线,,==求.,,, 解:()()()()+-=-=+=--=21,21,21,21.设边BC 和CD 的(2)中点M 和N ,且==,求,。
解:()()P q P P q MC BC P q AC 32122,21-=⎪⎭⎫⎝⎛--==-=()+=⎪⎭⎫ ⎝⎛++-=-==21212222.在平行六面体ABCD-EFGH 中,设,,,321e e e ===三个面上对角线矢量设为,,,r AF q AH p AC ===试把矢量r q p a γμλ++=写成321,,e e e 的线性组合。
证明:2312,e e e e -==-==, 13e e r AF -==,γμλ++=()()()321e e e γμμλγλ++-++-=3. 设一直线上三点A , B , P 满足AP =λ(λ≠-1),O 是空间任意一点,求证:OP =λλ++1OBOA[证明]:如图1-7,因为AP =OP -,PB =-OP ,所以 OP -=λ (-OP ),(1+λ)=OA +λOB ,从而 OP =λλ++1OBOA .4. 在ABC ∆中,设,1e =2e =.(1) 设E D 、是边BC 三等分点,将矢量,分解为21,e e 的线性组合; (2)设AT 是角A 的平分线(它与BC 交于T 点),将AT 分解为21,e e 的线性组合 解:(1)()12123131,e e e e -==-=-=Θ, 2111231323131e e e e e +=-+=+=,同理123132e e +=(2)因为||||TC =||11e e , 且 BT 与方向相同,所以 BT ||21e . 由上题结论有||||1||22211e e e e e e +||||212112e e +5.在四面体OABC 中,设点G 是ABC ∆的重心(三中线之交点),求矢量OG 对于矢量,,,的分解式。
解:G Θ是ABC ∆的重心。
∴连接并延长与BC 交于P()()()AC AB AC AB AP AG AC AB AP +=+•==+=31213232,21Θ 同理()()+=+=31,31 C O()++=+=∴31(1) G P()++=+=31(2) A B()CB CA OC CG OC OG ++=+=31(3) (图1)由(1)(2)(3)得()()++++++++=31313++= 即()OC OB OA OG ++=316.用矢量法证明以下各题 (1)三角形三中线共点证明:设BC ,CA ,AB 中,点分别为L ,M ,N 。
AL 与BM 交于1P ,AL 于CN 交于2P BM 于CN 交于3P ,取空间任一点O ,则 A()BC BA OB BM OB BP OB OP ++=+=+=313211 ()()OC OB OA OB OC OB OA OB ++=-+-+=3131 A同理()OP ++=312 N M()OP ++=313 B L C321,,P P P ∴三点重合 O ∴三角形三中线共点 (图2) (第3页)7.已知矢量,不共线,问-=2与23-=是否线性相关? 证明:设存在不全为0的μλ,,使得0=+μλ 即()()()()0232022=--+-⇒=--+-μλμλμλλ故由已知,不共线得{{0003202===-=--⇒μλμλμλ与假设矛盾, 故不存在不全为0的μλ,,使得0=+μλ成立。