解析几何 第四版 课后答案

合集下载

解析几何第四版课后答案

解析几何第四版课后答案

2019北京初中数学真题分类第27题几何综合汇总(一模考题)2019北京各区一模真题之第27题几何综合题01昌平、15西城27.如图,在△ABC中,∠ABC=90°,BA=BC.将线段AB绕点A逆时针旋转90°得到线段AD,E是边BC上的一动点,连接DE交AC于点F,连接BF.(1)求证:FB=FD;(2)点H在边BC上,且BH=CE,连接AH交BF于点N.①判断AH与BF的位置关系,并证明你的结论;②连接CN.若AB=2,请直接写出线段CN长度的最小值.27.如图,在Rt△ABC中,∠A=90°,AB=AC,将线段BC绕点B逆时针旋转α°(0<α<180),得到线段BD,且AD∥BC.(1)依题意补全图形;(2)求满足条件的α的值;(3)若AB=2,求AD的长.27.在Rt△ABC中,∠ACB=90°,CA=CB.点D为线段BC上一个动点(点D不与点B,C重合),连接AD,点E在射线AB上,连接DE,使得DE=DA.作点E关于直线BC 的对称点F,连接BF,DF.(1)依题意补全图形;(2)求证:∠CAD=∠BDF;(3)用等式表示线段AB,BD,BF之间的数量关系,并证明.27.如图,在正方形ABCD中,E是边BC上一动点(不与点B,C重合),连接DE,点C 关于直线DE的对称点为Cʹ,连接ACʹ并延长交直线DE于点P,F是AC′中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP,BP,DP三条线段之间的数量关系,并证明.(3)连接AC ACC′的面积最大值.已知:Rt△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D是BC边上一点(不与点B,C重合),连接AD,过点B作BE⊥AD,交AD的延长线于点E,连接CE.若∠BAD=α,求∠DBE的大小(用含α的式子表示);(2)如图2,点D在线段BC的延长线上时,连接AD,过点B作BE⊥AD,垂足E在线段AD上,连接CE.①依题意补全图2;②用等式表示线段EA,EB和EC之间的数量关系,并证明.图1图206丰台27.在△ABC中,∠ACB=90°,AC=BC,D为AB的中点,点E为AC延长线上一点,连接DE,过点D作DF⊥DE交CB的延长线于点F.(1)求证:BF=CE;(2)若CE=AC,用等式表示线段DF与AB的数量关系,并证明.如图,在等腰直角△ABC中,90>),连接BD,CA CDÐ=°,D是线段AC上一点(2ABC过点C作BD的垂线,交BD的延长线于点E,交BA的延长线于点F.(1)依题意补全图形;(2)若ACEαÐ的大小(用含α的式子表示);Ð=,求ABD(3)若点G在线段CF上,CG BD=,连接DG.①判断DG与BC的位置关系并证明;②用等式表示DG,CG,AB之间的数量关系为.27.如图,等边△ABC中,P是AB上一点,过点P作PD⊥AC于点D,作PE⊥BC于点E,M是AB的中点,连接ME,MD.(1)依题意补全图形;(2)用等式表示线段BE,AD与AB的数量关系,并加以证明;(3)求证:MD=ME.09门头沟27.如图,∠AOB=90°,OC为∠AOB的平分线,点P为OC上一个动点,过点P作射线PE交OA于点E.以点P为旋转中心,将射线PE沿逆时针方向旋转90°,交OB于点F.(1)根据题意补全图1,并证明PE=PF;(2)如图1,如果点E在OA边上,用等式表示线段OE,OP和OF之间的数量关系,并证明;(3)如图2,如果点E在OA边的反向延长线上,直接写出线段OE,OP和OF之间的数量关系.图1图2∆为等边三角形,点D是线段AB上一点(不与A、B重合).将线段CD绕点C 27.已知ABC逆时针旋转60︒得到线段CE.连结DE、BE.(1)依题意补全图1并判断AD与BE的数量关系.⊥交EB延长线于点F.用等式表示线段EB、DB与AF之间的数量关系(2)过点A作AF EB并证明.27.在△ABC中,∠ABC=120°,线段AC绕点A逆时针旋转60°得到线段AD,连接CD,BD 交AC于P.(1)若∠BAC=α,直接写出∠BCD的度数(用含α的代数式表示);(2)求AB,BC,BD之间的数量关系;(3)当α=30°时,直接写出AC,BD的关系.27.如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC ,平移线段BC ,使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G .(1)依题意补全图形;(2)求证:AG =CD ;(3)连接DF 并延长交AB 于点H ,用等式表示线段AH 与CG 的数量关系,并证明.27.已知:如图,在△ABC中,AB>AC,∠B=45°,点D是BC边上一点,且AD=AC,过点C作CF⊥AD于点E,与AB交于点F.(1)若∠CAD=α,求∠BCF的大小(用含α的式子表示);(2)求证:AC=FC;(3)用等式直接表示线段BF与DC的数量关系.△中,点D是线段BC上一点.作射线AD,点B关于射线AD的27.如图,在等边ABC对称点为E.连接CE并延长,交射线AD于点F.(1)设BAFα∠=,用α表示BCF∠的度数;(2)用等式表示线段AF、CF、EF之间的数量关系,并证明.27.已知:四边形ABCD 中,120ABC ∠=︒,60ADC ∠=︒,AD =CD ,对角线AC ,BD相交于点O ,且BD 平分∠ABC ,过点A 作AH BD ⊥,垂足为H .(1)求证:ADB ACB ∠=∠;(2)判断线段BH ,DH ,BC 之间的数量关系;并证明.17燕山27.如图,在△ABC 中,AB =BC ,∠B =90°,点D 为线段BC 上一个动点(不与点B ,C 重合),连接AD ,将线段AD 绕点D 顺时针旋转90°得到线段DE ,连接EC .(1)①依题意补全图1;②求证:∠EDC =∠BAD ;(2)①小方通过观察、实验,提出猜想:在点D 运动的过程中,线段CE 与BD 的数量关系始终不变,用等式表示为:;②小方把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:过点E 作EF ⊥BC ,交BC 延长线于点F ,只需证△ADB ≌△DEF .想法2:在线段AB 上取一点F ,使得BF =BD ,连接DF ,只需证△ADF ≌△DEC .想法3:延长AB 到F ,使得BF =BD ,连接DF ,CF ,只需证四边形DFCE 为平行四边形.……请你参考上面的想法,帮助小方证明①中的猜想.(一种方法即可)备用图图1。

解析几何第四版吕林根课后习题答案一至三章

解析几何第四版吕林根课后习题答案一至三章

第一章向量与坐标§1.1 向量的概念1.下列情形中的向量终点各构成什么图形?(1)把空间中一切单位向量归结到共同的始点;(2)把平行于某一平面的一切单位向量归结到共同的始点;(3)把平行于某一直线的一切向量归结到共同的始点;(4)把平行于某一直线的一切单位向量归结到共同的始点.[解]:(1)单位球面;(2)单位圆(3)直线;(4)相距为2的两点2. 设点O是正六边形ABCDEF的中心,在向量OA、、OC、、、OF、、BC、CD、、EF和FA中,哪些向量是相等的?[解]:如图1-1,在正六边形ABCDEF中,相等的向量对是:图1-1.DEOFCDOEABOCFAOBEFOA和;和;和;和;和3. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=. 当ABCD是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC, 则在∆BAC中,21AC. KL与AC方向相同;在∆DAC中,21AC. NM与AC方向相同,从而KL=NM且KL与NM方向相同,所以KL=.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对向量中,找出相等的向量和互为相反向量的向量:(1) AB、; (2) AE、; (3) 、;(4) AD、; (5) BE、.[解]:相等的向量对是(2)、(3)和(5);互为反向量的向量对是(1)和(4)。

§1.2 向量的加法1.要使下列各式成立,向量ba,应满足什么条件?(1-=+(2+=+(3-=+(4+=-E(5=[解]:(1),-=+(2),+=+(3≥且,=+ (4),+=-(5),≥-=-§1.3 数量乘向量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从向量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出向量→x ,→y . 解 ⑴→→→→→→→→→→→→→→-=+-+---+=-⋅+--⋅-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a , →→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解 →→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.6. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线向量AL , BM ,可 以构成一个三角形.[证明]: )(21+=)(21BC BA BM +=)(21+=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线向量CN BM AL ,,构成一个三角形。

解析几何第四版吕林根期末复习课后习题(重点)详解

解析几何第四版吕林根期末复习课后习题(重点)详解

第一章 矢量与坐标§1.3 数量乘矢量4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线.三点共线.证明证明∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382 ∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.三点共线.6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM ,CN 可 以构成一个三角形.证明:证明: )(21AC AB AL +=Θ)(21BC BA BM +=)(21CB CA CN +=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明是任意一点,证明OB OA ++OC =OL +OM +ON .[证明] LA OL OA +=Θ MB OM OB +=NC ON OC += )(NC MB LA ON OM OL OC OB OA +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++CN BM AL ON OM OL OC OB OA ++=++∴ 从而三中线矢量CN BM AL ,,构成一个三角形。

构成一个三角形。

8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明是任意一点,证明OA +OB +OC +OD =4OM .[证明证明]]:因为OM =21(OA +OC ), OM =21(OB +OD ), 所以所以2OM =21(OA +OB +OC +OD ) 所以所以OA +OB +OC +OD =4OM . 1010、、 用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.图1-5证明证明证明 已知梯形ABCD ,两腰中点分别为M 、N ,连接AN 、BN . →→→→→→++=+=DN AD MA AN MA MN ,→→→→→→++=+=CN BC MB BN MB MN ,∴,∴ →→→+=BC AD MN ,即,即§1.4 矢量的线性关系与矢量的分解3.、设一直线上三点A , B , P 满足AP =λPB (λ≠-1),O 是空间任意一点,求证:是空间任意一点,求证:OP =λλ++1OB OA[证明]:如图1-7,因为,因为AP =OP -OA ,PB =OB -OP ,所以所以OP -OA =λ (OB -OP ), (1+λ)OP =OA +λOB ,从而从而 OP =λλ++1OB OA .4.、在ABC ∆中,设,1e AB =2e AC =.(1) 设E D 、是边BC 三等分点,将矢量AE AD ,分解为21,e e 的线性组合; (2)设AT 是角A 的平分线(它与BC 交于T 点),将AT 分解为21,e e 的线性组合的线性组合解:(1)()12123131,e e BC BD e e AB AC BC -==-=-=Θ,2111231323131e e e e e BD AB AD +=-+=+=,同理123132e e AE +=(2)因为)因为 ||||TC BT =||||11e e ,且 BT 与TC 方向相同,方向相同,所以所以BT =||||21e e TC . 由上题结论有由上题结论有AT =||||1||||212211e e e e e e ++=||||||||212112e e e e e e ++. 5.在四面体OABC 中,设点G 是ABC ∆的重心(三中线之交点),求矢量OG 对于矢量对于矢量OC OB OA ,,,的分解式。

解析几何第四版吕林根课后习题答案第四章

解析几何第四版吕林根课后习题答案第四章

第四章 柱面、锥面、旋转曲面与二次曲面§ 4.1柱面1、已知柱面的准线为:⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。

解:(1)从方程⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(222=-+++--z y y z 即:0235622=----+z y yz z y 此即为要求的柱面方程。

(2)取准线上一点),,(0000z y x M ,过0M 且平行于直线⎩⎨⎧==c z yx 的直线方程为:⎪⎩⎪⎨⎧=-=-=⇒⎪⎩⎪⎨⎧=+=+=z z t y y tx x zz t y y tx x 000000 而0M 在准线上,所以⎩⎨⎧=+--+=-++-+--02225)2()3()1(222t z y x z t y t x 上式中消去t 后得到:02688823222=--+--++z y x xy z y x 此即为要求的柱面方程。

2、设柱面的准线为⎩⎨⎧=+=z x z y x 222,母线垂直于准线所在的平面,求这柱面的方程。

解:由题意知:母线平行于矢量{}2,0,1- 任取准线上一点),,(0000z y x M ,过0M 的母线方程为:⎪⎩⎪⎨⎧+==-=⇒⎪⎩⎪⎨⎧-==+=t z z yy tx x tz z y y tx x 2200000而0M 在准线上,所以:⎩⎨⎧+=-++=-)2(2)2(22t z t x t z y t x 消去t ,得到:010*******22=--+++z x xz z y x 此即为所求的方程。

3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。

解:过原点且垂直于已知三直线的平面为0=++z y x :它与已知直线的交点为())34,31,31(),1,0,1(,0,0,0--,这三点所定的在平面0=++z y x 上的圆的圆心为)1513,1511,152(0--M ,圆的方程为: ⎪⎩⎪⎨⎧=++=-++++07598)1513()1511()152(222z y x z y x 此即为欲求的圆柱面的准线。

最全 解析几何第四版习题答案第四章(完整版)

最全 解析几何第四版习题答案第四章(完整版)

第四章 柱面、锥面、旋转曲面与二次曲面§ 4.1柱面1、已知柱面的准线为:⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。

解:(1)从方程⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(222=-+++--z y y z 即:0235622=----+z y yz z y 此即为要求的柱面方程。

(2)取准线上一点),,(0000z y x M ,过0M 且平行于直线⎩⎨⎧==c z yx 的直线方程为:⎪⎩⎪⎨⎧=-=-=⇒⎪⎩⎪⎨⎧=+=+=z z t y y tx x zz t y y tx x 000000 而0M 在准线上,所以⎩⎨⎧=+--+=-++-+--02225)2()3()1(222t z y x z t y t x 上式中消去t 后得到:02688823222=--+--++z y x xy z y x此即为要求的柱面方程。

2而0M 在准线上,所以:⎩⎨⎧+=-++=-)2(2)2(22t z t x t z y t x 消去t ,得到:010*******22=--+++z x xz z y x此即为所求的方程。

3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。

解:过又过准线上一点),,(1111z y x M ,且方向为{}1,1,1的直线方程为: ⎪⎩⎪⎨⎧-=-=-=⇒⎪⎩⎪⎨⎧+=+=+=t z z t y y tx x tz z t y y tx x 111111 将此式代入准线方程,并消去t 得到:013112)(5222=-++---++z y x zx yz xy z y x此即为所求的圆柱面的方程。

解析几何第四版吕林根课后习题答案第三章名师制作优质教学资料

解析几何第四版吕林根课后习题答案第三章名师制作优质教学资料

第三章平面与空间直线§ 3.1平面的方程1.求下列各平面的坐标式参数方程和一般方程:(1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点)1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面;(3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。

求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ∆平面垂直的平面。

解: (1) }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为:⎪⎩⎪⎨⎧++-=-=--=v u z u y vu x 212123一般方程为:07234=-+-z y x(2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为:⎪⎩⎪⎨⎧+-=+-=+=v u z u y u x 317521 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。

(3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=AB ,}2,0,1{-=CD 从而π的参数方程为:⎪⎩⎪⎨⎧+-=+=--=v u z uy vu x 235145 一般方程为:0745910=-++z y x 。

(ⅱ)设平面π'通过直线AB ,且垂直于ABC ∆所在的平面}1,5,4{--=, }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-⨯--=⨯均与π'平行,所以π'的参数式方程为:⎪⎩⎪⎨⎧+-=++=+-=v u z v u y vu x 35145 一般方程为:0232=--+z y x .2.化一般方程为截距式与参数式: 042:=+-+z y x π.解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为:1424=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-, 所求平面的参数式方程为:⎪⎩⎪⎨⎧=-=++-=v z uy v u x 24 3.证明矢量},,{Z Y X v =平行与平面0=+++D Cz By Ax 的充要条件为:0=++CZ BY AX . 证明: 不妨设0≠A ,则平面0=+++D Cz By Ax 的参数式方程为:⎪⎪⎩⎪⎪⎨⎧==---=v z uy v A C u A B A D x 故其方位矢量为:}1,0,{},0,1,{ACA B --,从而v 平行于平面0=+++D Cz By Ax 的充要条件为:,}1,0,{},0,1,{ACA B --共面⇔01001=--AC A B Z Y X ⇔ 0=++CZ BY AX .4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标.解: }5,2,3{z +-= 而AB 平行于0147=--+z y x 由题3知:0)5(427)3(=+-⨯+⨯-z 从而18=z .5. 求下列平面的一般方程.⑴通过点()1,1,21-M 和()1,2,32-M 且分别平行于三坐标轴的三个平面; ⑵过点()4,2,3-M 且在x 轴和y 轴上截距分别为2-和3-的平面; ⑶与平面0325=+-+z y x 垂直且分别通过三个坐标轴的三个平面; ⑷已知两点()()1,2,4,2,1,321--M -M ,求通过1M 且垂直于21,M M 的平面; ⑸原点O 在所求平面上的正射影为()6,9,2-P ;⑹求过点()1,5,31-M 和()2,1,42M 且垂直于平面0138=-+-z y x 的平面.解:平行于x 轴的平面方程为001011112=--+-z y x .即01=-z .同理可知平行于y 轴,z 轴的平面的方程分别为01,01=-+=-y x z . ⑵设该平面的截距式方程为132=+-+-c z y x ,把点()4,2,3-M 代入得1924-=c 故一般方程为02419812=+++z y x .⑶若所求平面经过x 轴,则()0,0,0为平面内一个点,{}2,1,5-和{}0,0,1为所求平面的方位矢量,∴点法式方程为001215000=----z y x ∴一般方程为02=+z y .同理经过y 轴,z 轴的平面的一般方程分别为05,052=-=+y x z x . ⑷{}2121.3,1,1M M --=M M →垂直于平面π,∴该平面的法向量{}3,1,1--=→n ,平面∂通过点()2,1,31-M , 因此平面π的点位式方程为()()()02313=--+--z y x . 化简得023=+--z y x . (5) {}.6,9,2-=→op .1136814=++==→op p()().6,9,2cos ,cos ,cos 110-=∂=⋅=→γβn p op∴ .116cos ,119cos ,112cos -===∂γβ 则该平面的法式方程为:.011116119112=--+z y x既 .0121692=--+z y x(6)平面0138=-+-z y x 的法向量为{}3,8,1-=→n ,{}1,6,121=M M ,点从()2,1,4写出平面的点位式方程为0161381214=----z y x ,则,261638-=-=A74282426,141131,21113-=++⨯-=====D C B ,则一般方程,0=+++D Cz By Ax 即:.037713=---z y x 6.将下列平面的一般方程化为法式方程。

解析几何第四版课后答案全册

解析几何第四版课后答案全册
NM.
4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:
(1)AB、CD;
(2) AE、CG;
(3)AC、EG;
(4) AD、GF;
(5)
BE、CH.
图 1—3
[解]:相等的矢量对是
(2)、(3)和(5);
互为反矢量的矢量对是(1)和(4)。
[证明]:如图1-4,在平行四边形ABCD中,O是对角线AC,BD的交点
∵ADODOABCOCOB
但ADBC
ODOAOCOB OAOCODOB
由于(OAOC)∥AC, (OBOD)∥BD,而AC不平行于BD,
OAOCODOB0,
从而OA=OC,OB=OD。
5. 如图1-5,设M是平行四边形ABCD的中心,O是任意一点,证明
|BT|=|e1|,
|TC||e1|
且BT与TC方向相同,
所以BT=|e1|TC.
|e2|
图 1-8
由上题结论有
e|e1|e
1|e|2|e|e|e|e
AT=2=2112.
1|e1|
|e2|
|e1||e2|
3.用矢量法证明:P
.
PA+PB+PC=0.
是△ABC
重心的充要条件是
[证明]:“”
若P为△ABC的重心,则
3. 设L、M、N是△ABC的三边的中点,O是任意一点,证明
OAOB+OC=OL+OM+ON.
[证明]
∵OAOLLA OBOMMB OCONNC
OAOBOCOLOMON(LAMBNC)
=OLOMON(ALBMCN)
由上题结论知:ALBMCN0

解析几何第四版吕林根课后习题答案

解析几何第四版吕林根课后习题答案

第三章 平面与空间直线§ 平面的方程1.求下列各平面的坐标式参数方程和一般方程:1通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面2通过点)1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面;3已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D ;求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ∆平面垂直的平面; 解: 1 }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x2由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为:一般方程为:0)5(2)1(7=+--y x ,即01727=--y x ; 3ⅰ设平面π通过直线AB,且平行于直线CD : }1,5,4{--=AB ,}2,0,1{-=CD 从而π的参数方程为:一般方程为:0745910=-++z y x ;ⅱ设平面π'通过直线AB,且垂直于ABC ∆所在的平面∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-⨯--=⨯AC AB均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:042:=+-+z y x π.解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为:1424=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-,∴ 所求平面的参数式方程为:3.证明矢量},,{Z Y X v =平行与平面0=+++D Cz By Ax 的充要条件为:0=++CZ BY AX .证明: 不妨设0≠A ,则平面0=+++D Cz By Ax 的参数式方程为: 故其方位矢量为:}1,0,{},0,1,{AC A B --,从而v 平行于平面0=+++D Cz By Ax 的充要条件为:v ,}1,0,{},0,1,{ACA B --共面⇔ ⇔0=++CZ BY AX . 4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标.解: }5,2,3{z AB +-= 而AB 平行于0147=--+z y x 由题3知:0)5(427)3(=+-⨯+⨯-z 从而18=z .5. 求下列平面的一般方程.⑴通过点()1,1,21-M 和()1,2,32-M 且分别平行于三坐标轴的三个平面; ⑵过点()4,2,3-M 且在x 轴和y 轴上截距分别为2-和3-的平面;⑶与平面0325=+-+z y x 垂直且分别通过三个坐标轴的三个平面; ⑷已知两点()()1,2,4,2,1,321--M -M ,求通过1M 且垂直于21,M M 的平面; ⑸原点O 在所求平面上的正射影为()6,9,2-P ;⑹求过点()1,5,31-M 和()2,1,42M 且垂直于平面0138=-+-z y x 的平面.解:平行于x 轴的平面方程为001011112=--+-z y x .即01=-z .同理可知平行于y 轴,z 轴的平面的方程分别为01,01=-+=-y x z . ⑵设该平面的截距式方程为132=+-+-c z y x ,把点()4,2,3-M 代入得1924-=c 故一般方程为02419812=+++z y x .⑶若所求平面经过x 轴,则()0,0,0为平面内一个点,{}2,1,5-和{}0,0,1为所求平面的方位矢量,∴点法式方程为001215000=----z y x ∴一般方程为02=+z y .同理经过y 轴,z 轴的平面的一般方程分别为05,052=-=+y x z x . ⑷{}2121.3,1,1M M --=M M →垂直于平面π,∴该平面的法向量{}3,1,1--=→n ,平面∂通过点()2,1,31-M , 因此平面π的点位式方程为()()()02313=--+--z y x . 化简得023=+--z y x . 5 {}.6,9,2-=→op∴ .116cos ,119cos ,112cos -===∂γβ 则该平面的法式方程为:.011116119112=--+z y x既 .0121692=--+z y x6平面0138=-+-z y x 的法向量为{}3,8,1-=→n ,{}1,6,121=M M ,点从()2,1,4写出平面的点位式方程为0161381214=----z y x ,则,261638-=-=A74282426,141131,21113-=++⨯-=====D C B ,则一般方程,0=+++D Cz By Ax 即:.037713=---z y x 6.将下列平面的一般方程化为法式方程; 解:.3-=D∴将已知的一般方程乘上.301=λ得法式方程.030330530230=-+-z y x()∴-=∴=.21.12λD 将已知的一般方程乘上.21-=λ得法式方程.0212121=-+-y x()∴-=∴=.1.2.3λD 将已知的一般方程乘上.1-=λ得法式方程.02=--x().91.0.4±=∴=λD 即91=λ或91-=λ将已知的一般方程乘上91=λ或.91-=λ得法式方程为0979494=+-z y x 或.0979494=-+-z y x 7.求自坐标原点自以下各平面所引垂线的长和指向平面的单位法矢量的方向余弦;解:().71.35.1=-=λD 化为法式方程为05767372=-++z y x 原点指向平面π的单位法矢量为,76,73,72⎭⎬⎫⎩⎨⎧=u 它的方向余弦为.76cos ,73cos ,72cos ===γβα原点o 到平面π的距离为.5=-=D P λ().31.21.2-==λD 化为法式方程为-07323231=--+-z y x 原点指向平面π的单位法矢量为,32,32,310⎭⎬⎫⎩⎨⎧--=n 它的方向余弦为122cos ,cos ,cos .333αβγ=-==-原点o到平面π的距离7.p D λ=-= 第20页8.已知三角形顶点()()()0,7,0,2,1,1,2,2,2.A B C --求平行于ABC 所在的平面且与她相距为2各单位的平面方程;解:设,.AB a AC b ==点()0,7,0.A -则{}{}2,6,1,2,9,2a b ==写出平面的点位式方程72610292x y z += 设一般方程0. 3.2,6,140.Ax By Cz D A B C D +++=∴====-< 则1. 2.7p D λλ==-=相距为2个单位;则当4p =时28.D =-当0p =时0.D =∴所求平面为326280.x y z -+-=和3260.x y z -+=9.求与原点距离为6个单位,且在三坐标轴,ox oy 与oz 上的截距之比为::1:3:2a b c =-的平面;解:设,3,2.0.a x b x c x abc =-==≠∴设平面的截距方程为 1.x y z a b c++= 即.bcx acy abz abc ++= 又原点到此平面的距离 6.d =6.=∴所求方程为7.32y zx -++= 10.平面1x y z a b c++=分别与三个坐标轴交于点,,.A B C 求ABC 的面积;解 (,0,0)A a , (0,,0)B b ,(0,0,)C c {},,0AB a b =-,{},0,AC a c =-.{},,AB AC bc ca ab ⨯=;2AB AC b ⨯=.∴S ABC11.设从坐标原点到平面的距离为;求证1.p p =∴= 从而有22221111.p a b c =++ § 平面与点的相关位置1.计算下列点和平面间的离差和距离: 1)3,4,2(-M , :π 0322=++-z y x ; 2)3,2,1(-M , :π 0435=++-z y x . 解: 将π的方程法式化,得:01323132=--+-z y x ,故离差为:311332431)2()32()(-=-⨯-⨯+-⨯-=M δ,M 到π的距离.31)(==M d δ2类似1,可求得0354353356355)(=-++-=M δ,M 到π的距离.0)(==M d δ2.求下列各点的坐标:1在y 轴上且到平面02222=--+z y 的距离等于4个单位的点; 2在z 轴上且到点)0,2,1(-M 与到平面09623=-+-z y x 距离相等的点; 3在x 轴上且到平面01151612=++-z y x 和0122=--+z y x 距离相等的点;解:1设要求的点为)0,,0(0y M 则由题意∴ 610=-y ⇒50-=y 或7.即所求的点为0,-5,0及0,7,0; 2设所求的点为),0,0(0z 则由题意知: 由此,20-=z 或-82/13; 故,要求的点为)2,0,0(-及)1382,0,0(-; 3设所求的点为)0,0,(0x ,由题意知: 由此解得:20=x 或11/43; 所求点即2,0,0及11/43,0,0;3.已知四面体的四个顶点为)4,1,1(),5,11,2(),3,5,3(),4,6,0(---C B A S ,计算从顶点S 向底面ABC 所引的高; 解:地面ABC 的方程为: 所以,高335426=+⨯--=h ;4.求中心在)2,5,3(-C 且与平面01132=+--z y x 相切的球面方程; 解:球面的半径为C 到平面π:01132=+--z y x 的距离,它为:142142814116532==+++⨯=R ,所以,要求的球面的方程为:56)2()5()3(222=++++-z y x .即:0184106222=-++-++z y x z y x .5.求通过x 轴其与点()5,4,13M 相距8个单位的平面方程;解:设通过x 轴的平面为0.By Cz +=它与点()5,4,13M 相距8个单位,从而228.481041050.B BC C =∴--=因此()()1235430.B C B C -+=从而得12350B C -=或430.B C +=于是有:35:12B C =或():3:4.B C =-∴所求平面为35120y z +=或340.y z -=6. 求与下列各对平面距离相等的点的轨迹. ⑴053407263=--=--+y x z y x 和; ⑵062901429=++-=-+-z y x z y x 和. 解: ⑴ ()0726371:1=--+z y x π 令()()53451726371--=--+y x z y x化简整理可得:0105113=+-z y x 与07010943=--+z y x . ⑵对应项系数相同,可求42614221'-=+-=+=D D D ,从而直接写出所求的方程:0429=-+-z y x .9 判别点M2 -1 1和N 1 2 -3在由下列相交平面所构成的同一个二面角内,还是在相邻二面角内,或是在对顶的二面角内 11:3230x y z π-+-=与2:240x y z π--+= 21:2510x y z -+-=与2:32610x y z π-+-= 解:1将M2 -1 1,N1 2 -3代入1π,得: 6123032630++-〉⎧⎨---〈⎩则M,N 在1π的异侧 再代入2π,得:221470143440+-+=〉⎧⎨-++=〉⎩∴MN 在2π的同侧 ∴MN 在相邻二面角内2将M2 -1 1N1 2 -3代入1π,得:4151902215180++-=〉⎧⎨---=-〈⎩则MN 在1π的异侧; 再代入2π,得:662113034181200++-=>⎧⎨---=-<⎩则MN 在2π的异侧∴ MN 在对顶的二面角内10 试求由平面1π:2230x y z -+-=与2π:32610x y z +--=所成的二面角的角平分方程,在此二面角内有点1, 2, -3解:设px y z 为二面角的角平分面上的点,点p 到12ππ的距离相等=5332190(1)234240(2)x y z x y z +--=⎧⎨---=⎩把点p 代入到12ππ上,10δ< 20δ> 在1上取点1850 0代入12ππ,''1200δδ>>; 在2上取点0 0 -6代入12ππ,""1200δδ<>∴2为所求,∴解平面的方程为:34240x y z ---=两平面的相关位置1.判别下列各对直线的相关位置: 10142=+-+z y x 与0324=--+z y x ; 20522=---z y x 与013=--+z y x ; 305426=--+z y x 与029639=--+z y x ;解:1 )1(:21:41)4(:2:1-=-, ∴ 1中的两平面平行不重合; 2 )1(:3:1)2(:)1(:2-≠--, ∴ 2中两平面相交; 3 )6(:3:9)4(:2:6-=-, ∴ 3中两平面平行不重合;2.分别在下列条件下确定n m l ,,的值:1使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面;2使0532=-++z my x 与0266=+--z y lx 表示二平行平面; 3使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面; 解:1欲使所给的二方程表示同一平面,则: 即:从而:97=l ,913=m ,937=n ; 2欲使所给的二方程表示二平行平面,则: 所以:4-=l ,3=m ;3欲使所给的二方程表示二垂直平面,则: 所以: 71-=l ;3.求下列两平行平面间的距离: 10218419=++-z y x ,0428419=++-z y x ; 207263=--+z y x ,014263=+-+z y x ; 解:1将所给的方程化为: 所以两平面间的距离为:2-1=1;2同1可求得两平行平面间的距离为1+2=3; 4.求下列各组平面所成的角: 1011=-+y x ,083=+x ;2012632=-+-z y x ,0722=-++z y x ; 解:1设1π:011=-+y x ,2π:083=+x∴ 4),(21πππ=∠或43π; 2设1π:012632=-+-z y x ,2π:0722=-++z y x218cos ),(121-=∠ππ或218cos ),(121--=∠πππ; 5. 求下列平面的方程:1 通过点()1,0,01M 和()0,0,32M 且与坐标面xOy 成060角的平面;2 过z 轴且与平面0752=--+z y x 成060角的平面. 解 ⑴ 设所求平面的方程为.113=++z b y x 又xoy 面的方程为z=0,所以21113110103160cos 222=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅+⋅=b b ο 解得203±=b ,∴所求平面的方程为12633=+±+z yx , 即03326=-+±z y x⑵设所求平面的方程为0=+By Ax ;则21514260cos 22=+++±+=B A BA ο 3,038322BA B AB A =∴=-+或B A 3-= ∴所求平面的方程为03=+y x 或03=-y x .§ 空间直线的方程1.求下列各直线的方程:1通过点)1,0,3(-A 和点)1,5,2(-B 的直线; 2通过点),,(0000z y x M 且平行于两相交平面i π:)2,1(=i 的直线;3通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线;4通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; 5通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线; 解:1由本节—6式,得所求的直线方程为: 即:01553-=-=+z y x ,亦即01113-=-=+z y x ; 2欲求直线的方向矢量为: 所以,直线方程为:221102211022110B A B A z z A C A C y y C B C B x x -=-=-; 3欲求的直线的方向矢量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为:132511--=+=-z y x ; 4欲求直线的方向矢量为:{}{}{}2,1,10,1,11,1,1---=-⨯-, 所以,直线方程为:22111+==-z y x ; 5欲求的直线的方向矢量为:{}5,3,6--, 所以直线方程为:553362-+=--=-z y x ; 2.求以下各点的坐标: 1在直线381821-=-=-z y x 上与原点相距25个单位的点; 2关于直线⎩⎨⎧=+-+=+--03220124z y x z y x 与点)1,0,2(-P 对称的点;解:1设所求的点为),,(z y x M ,则: 又222225=++z y x即:222225)38()8()21(=+++++t t t ,解得:4=t 或762-所以要求的点的坐标为:)7130,76,7117(),20,12,9(---; 2已知直线的方向矢量为:{}{}{}3,6,62,1,24,1,1-=-⨯--,或为{}1,2,2-, ∴过P 垂直与已知直线的平面为:0)1(2)2(2=++--z y x ,即0322=-+-z y x ,该平面与已知直线的交点为)3,1,1(,所以若令),,(z y x P '为P 的对称点,则:221x +=,201y +=,213z+-= ∴7,2,0===z y x ,即)7,2,0(P ';3.求下列各平面的方程: 1通过点)1,0,2(-p ,且又通过直线32121-=-=+z y x 的平面; 2通过直线115312-+=-+=-z y x 且与直线 平行的平面; 3通过直线223221-=-+=-z y x 且与平面0523=--+z y x 垂直的平面; 4通过直线⎩⎨⎧=-+-=+-+014209385z y x z y x 向三坐标面所引的三个射影平面;解:1因为所求的平面过点)1,0,2(-p 和)2,0,1(-'p ,且它平行于矢量{}3,1,2-,所以要求的平面方程为: 即015=-++z y x ;2已知直线的方向矢量为{}{}{}5,3,11,2,11,1,2-=-⨯-, ∴平面方程为:即015211=-++z y x3要求平面的法矢量为{}{}{}13,8,11,2,32,3,2-=-⨯-,∴平面的方程为:0)2(13)2(8)1(=--+--z y x ,即09138=+--z y x ; 4由已知方程⎩⎨⎧=-+-=+-+014209385z y x z y x分别消去x ,y ,z 得到:0231136=+-z y ,079=+-z x ,06411=+-y x此即为三个射影平面的方程;4.化下列直线的一般方程为射影式方程与标准方程,并求出直线的方向余弦: 1⎩⎨⎧=---=+-+0323012z y x z y x 2⎩⎨⎧=+--=-+064206z y x z x3⎩⎨⎧==-+20x z y x解:1直线的方向数为:)5(:1:)3(1312:3221:2111--=------∴射影式方程为: ⎪⎩⎪⎨⎧-+-=--+--=59515253z y z x , 即⎪⎩⎪⎨⎧--=+=59515253z y z x ,标准方程为:z y x =-+=-51595352, 方向余弦为:35353553cos ±=±=α,35153551cos =-±=β,3555351cos ±=±=γ;2已知直线的方向数为:)4(:3:44201:2111:1410-=----,射影式方程为:⎪⎩⎪⎨⎧--+-=--+-=4184342444z y z x , 即⎪⎩⎪⎨⎧+-=+-=29436z y z x 标准方程为:z y x =--=--432916, 方向余弦为:4144411cos =-±=α,41344143cos =-±=β, 4144411cos ±=±=γ;3已知直线的方向数为:1:1:0)1(:)1(:00111:1011:0011=--=--, ∴射影式方程为: ⎩⎨⎧-==22z y x ,标准式方程为:z y x =+=-1202, 方向余弦为:0cos =α,21cos ±=β,21cos ±=γ;5. 一线与三坐标轴间的角分别为,,αβγ.证明222sin sin sin 2.αβγ++= 证 ∵222cos cos cos 1αβγ++=, ∴2221sin 1sin 1sin 1αβγ-+-+-=,即222sin sin sin 2.αβγ++=§ 直线与平面的相关位置1.判别下列直线与平面的相关位置:137423zy x =-+=--与3224=--z y x ; 2723z y x =-=与8723=+-z y x ; 3⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ; 4⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x ; 解:1 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-, 而017302)4(234≠=-⨯--⨯-⨯,, 所以,直线与平面平行; 2 0717)2(233≠⨯+-⨯-⨯ 所以,直线与平面相交,且因为772233=--=, ∴ 直线与平面垂直;3直线的方向矢量为:{}{}{}1,9,51,1,22,3,5=--⨯-,0179354=⨯+⨯-⨯,而点)0,5,2(--M 在直线上,又07)5(3)2(4=--⨯--⨯, 所以,直线在平面上; 4直线的方向矢量为{}9,2,1-,∴直线与平面相交;2.试验证直线l :21111-=-=-z y x 与平面π:032=--+z y x 相交,并求出它的交点和交角;解: 032111)1(2≠-=⨯-⨯+-⨯∴ 直线与平面相交;又直线的坐标式参数方程为: ⎪⎩⎪⎨⎧+=+=-=t z t y t x 211设交点处对应的参数为0t ,∴10-=t ,从而交点为1,0,-1;又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ, ∴ 6πθ=;3.确定m l ,的值,使: 1直线13241zy x =+=-与平面0153=+-+z y lx 平行; 2直线⎪⎩⎪⎨⎧-=--=+=135422t z t y t x 与平面076=-++z my lx 垂直;解:1欲使所给直线与平面平行,则须: 即1=l ;2欲使所给直线与平面垂直,则须: 所以:8,4-==m l ;4.决定直线⎩⎨⎧=++=++00222111z C y B x A z C y B x A 和平面0)()()(212121=+++++z C C y B B x A A 的相互位置;解:在直线上任取),,(1111z y x M ,有:这表明1M 在平面上,所以已给的直线处在已给的平面上;5.设直线与三坐标平面的交角分别为.,,υμλ证明.2cos cos cos 222=++υμλ 证明 设直线与X,Y,Z 轴的交角分别为.,,γβα而直线与yoz,zox,xoy 面的交角依次为.,,γμλ那么,υπγμπβλπα-=-=-=2,2,2.而.1cos cos cos 222=++γβα∴.12cos 2cos 2cos 222=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-υπμπλπ从而有.2cos cos cos 222=++υμλ 6.求下列球面的方程1与平面x+2y+3=0相切于点()3,1,1-M 且半径r=3的球面;2 与两平行平面6x-3y-2z-35=0和6x-3y-2z+63=0都相切且于其中之一相切于点()1,1,5--M 的球面.解: ⑴⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=+=+=t z t y t x 323321311为过切点M 且垂直与已知平面的直线,显见32,32,31是这条直线的方向余弦. 取3=t ,则得3,2==y x ; 取3-=t ,则得5,1,0-=-==z y x .故所求球面有两个:()()()9132222=++-+-z y x ,与()()951222=++++z y x . ⑵t z t y t x 21,31,65--=--=+=为过点M 且垂直于两平面的直线,将其代入第二个平面方程,得2-=t ,反代回参数方程,得3,5,7==-=z y x .设球之中心为C ,半径为r ,则()()()()49112115,1,2,12222=--+--++=-r C .故所求球面方程为()()()49121222=-+-++z y x .空间直线的相关位置1.直线方程⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 的系数满足什么条件才能使:1直线与x 轴相交; 2直线与x 轴平行; 3直线与x 轴重合; 解:1所给直线与x 轴相交⇔ ∃ 0x 使0101=+D x A 且0202=+D x A⇔02211=D A D A 且 1A ,2A 不全为零;2 x 轴与平面01111=+++D z C y B x A 平行 又x 轴与平面02222=+++D z C y B x A 平行,所以 即021==A A ,但直线不与x 轴重合,∴ 21,D D 不全为零;3参照2有021==A A ,且021==D D ; 2.确定λ值使下列两直线相交: 1⎩⎨⎧=-++=-+-01540623z y x z y x λ与z 轴;2λ12111-=+=-z y x 与z y x ===+11; 解:1若所给直线相交,则有类似题1: 从而 5=λ;2若所给二直线相交,则 从而:45=λ;3.判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面;如果是异面直线,求出它们之间的距离;1⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;2131833-=--=-z y x 与462733-=+=-+z y x ; 3⎪⎩⎪⎨⎧--=+==212t z t y tx 与5217441-+=-=-z y x ; 解:1将所给的直线方程化为标准式,为:-2:3:4=2:-3:-4 ∴二直线平行;又点)0,43,23(与点7,2,0在二直线上,∴矢量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法矢量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x , 即 0919225=++-z y x ;2因为0270423113637833≠-=---++=∆,∴二直线是异面的;二直线的距离:{}{}30327031562704,2,31,1,34231133156222==++=-⨯----=d ;3因为0574121031=--=∆,但是:1:2:-1≠4:7:-5所以,两直线相交,二直线所决定的平面的法矢量为{}{}{}1,1,35,7,412,1--=-⨯-,∴平面的方程为:33++-z y x ;4.给定两异面直线:01123-==-z y x 与10211zy x =-=+,试求它们的公垂线方程;解:因为{}{}{}1,2,11,0,10,1,2--=⨯, ∴公垂线方程为:即⎩⎨⎧=--+=-+-022220852z y x z y x ,亦即⎩⎨⎧=--+=-+-010852z y x z y x ;5.求下列各对直线间的角 1 .61932256231+=-=-=+=-z y x z y x 与 2.02302640220243⎩⎨⎧=+-=--+⎩⎨⎧=-+=--z y z y x z y x z y x 与解 1 777236814436912546cos 222222212121212121±=++++++±=++++++±=z y x z y x z z y y x x θ ∴ .7772arccos 7772arccos -=πθ或(2) 直线43412630230264,11210:0220243+=+=⎩⎨⎧=+-=--+=⎩⎨⎧==-+=--z y x z y z y x zy x z y x z y x 的对称式方程为:的对称式方程为 ∴ .19598arccos 19598arccos-=πθ或 6. 设d 和d '分别是坐标原点到点(,,)M a b c 和(,,)M a b c ''''的距离,证明当aa bb cc dd ''''+++时,直线MM '通过原点.证 {},,OM a b c =,{},,OM a b c ''''=,OM OM aa bb cc ''''⋅=++,而当OM OM OM OM ''⋅=⋅,cos(,)OM OM dd ''=时,必有cos(,)1OM OM '=,∴//OM OM ',∴当aa bb cc dd ''''+++时, 直线MM '通过原点.7.求通过点()2,0,1-P 且与平面0123=-+-z y x 平行,又与直线12341zy x =--=-相交的直线方程.解 设过点()2,0,1-P 的所求直线为∵ 它与已知平面0123=-+-z y x 平行,所以有023=+-z y x 1 又∵ 直线与已知直线相交,那么必共面. ∴ 又有 即 7x+|8y-12z=02由1,2得 31:50:48713:71232:12821::-=----=Z Y X而 ()1:2:431:50:4-≠- ∴ 所求直线的方程为.3125041+==--z y x 8. 求通过点()1,0,4-P 且与两直线⎩⎨⎧=-+=--⎩⎨⎧=--=++4423,221z y x z y x z y x z y x 与都相交的直线方程.解 设所求直线的方向矢量为{}z y x v ,,=→, 则所求直线可写为.14Zz Y y X x +==- ∵ 直线1l 平行于矢量{}{}{}3,3,01,1,21,1,121-=--⨯=⨯→→n n ∴矢量{}3,3,0-=→v 为直线1l 的方向矢量. 由于02111≠-因此令y=o 解方程组得x=1,z=o∴ 点1,o,o 为直线1l 上的一点. ∴ 直线1l 的标准方程为62155+=-=-z y x . ∵ (){}.3,3,01.0,0,1,1121-=→v M l l l l 方向矢量为过点都相交且与∴ 有0330103,,11=--=⎪⎭⎫⎝⎛→→→ZYXv v p m即 X+3Y+3Z=0. 即 X-13Y-3Z=0. 得 X:Y:Z=30:6:-16 又∵ ,3:3:016:6:30-≠- 即 .1→→v v 不平行6:1:516:6:30≠-, 即 .2→→v v 不平行 ∴ 所求直线方程为: 9. 求与直线137182-=-=+z y x 平行且和下列两直线相交的直线. ⑴⎩⎨⎧+=-=⎩⎨⎧+=-=5342,3465y z x z x z x z ⑵⎪⎩⎪⎨⎧=-=+=⎪⎩⎪⎨⎧=+=-=t z t y t x t z t y t x 74105,5332 解 ⑴ 在两直线上分别取两点()(),4,3,0,39,0,921--M M 第一条直线的方向矢量为{}0,1,01→v , 第二条直线的方向矢量为{}6,2,32→v , 作两平面:即 ,03198;03038=---=+-z y x z x将其联立即为所求直线的方程⑵021532,017813253=++-=-+z y x z y x 即1017,0178145710=---=+-z y x z y x 即212联立: .017021532⎩⎨⎧=---=++-z y x z y x这就是所要求的直线方程. 10. .求过点()0,1,2P 且与直线垂直225235:-+==-z y x l 相交的直线方程. 解 设所求直线的方向矢量为{}Z Y X v ,,0=→则所求直线0l 可写为.012Zz Y y X x -=-=- ∴ 3X+2Y-2Z=0 1 即 50X-69Y+6Z=0 2 由1,2得 311:131:120::=Z Y X ∴所求直线0l 为:§ 空间直线与点的相关位置1.直线⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 通过原点的条件是什么解:已知直线通过原点⇔ 故条件为021==D D ; 2.求点)1,3,2(-p 到直线⎩⎨⎧=++-=++-0172230322z y x z y x 的距离;解:直线的标准方程为:所以,p 到直线的距离为:1534532025)2(1212392292421243222222===-++-+--+-=d ; § 平面束1.求通过平面0134=-+-z y x 和025=+-+z y x 的交线且满足下列条件之一的平面:1通过原点; 2与y 轴平行; 3与平面0352=-+-z y x 垂直;解:1设所求的平面为:0)25()134(=+-++-+-z y x z y x λ 欲使平面通过原点,则须:021=+-λ,即21=λ, 故所求的平面方程为: 即:0539=++z y x ; 2同1中所设,可求出51=λ;故所求的平面方程为:0)25()134(5=+-++-+-z y x z y x 即:031421=-+z x ;3如1所设,欲使所求平面与平面0352=-+-z y x 垂直,则须: 从而:3=λ,所以所求平面方程为:05147=++y x ;2.求平面束0)42()53(=+--+-+z y x y x λ,在y x ,两轴上截距相等的平面; 解:所给的方程截距式为: 据要求:λλλλ--=+-345145 ⇒ 1=λ; 所以,所求的平面为:01222=--+z y x ;3.求通过直线⎩⎨⎧=+-=++0405z x zy x 且与平面01284=+--z y x 成4π角的平面;解:设所求的平面为:0)4()5(=+-+++z x z y x λμ 则:22)8()4(1)()5()()8()()4(5)(222222=-+-+-+++-⨯-+-⨯++±λμμλμλμμλμ 从而 ,1:0:=λμ或3:4- 所以所求平面为:04=+-z x或012720=-++z y x ;4.求通过直线32201-=+=+zy x 且与点)2,1,4(p 的距离等于3的平面; 解:直线的一般方程为:设所求的平面的方程为0)223()1(=++++z y x μλ, 据要求,有:∴有λμμλμλ908125)13(92222++=+∴ 1:6:-=μλ或8:3即所求平面为:0)223()1(6=++++-z y x或 0)223(8)1(3=++++z y x即:04236=+--z y x 或01916243=+++z y x ;5. 求与平面0432=-+-z y x 平行且满足下列条件之一的平面. ⑴通过点()3,2,1-; ⑵y 轴上截距为3-; ⑶与原点距离为1.解: ⑴设所求的平面为032=-+-λz y x ,将点()3,2,1-的坐标代入方程得14=λ,则所求平面方程为01432=-+-z y x .⑵设所求的平面为λ=+-z y x 32.6,32,132=-=-=-=-=λλλλλ得令zyx.故所求平面为0632=-+-z y x .⑶设所求的平面为032=++-λz y x ,将其法化为()032141=++-±λz y x ,将原点的坐标代入得141±=λ,故所求平面为014132=±+-z y x .6.设一平面与平面x+3y+2z=0平行,且与三坐标平面围成的四面体体积为6,求这平面的方程;解 设所求平面方程为:x+3y+2z+0=λ 原点到该平面的距离为.14222λ=++=CB A D d∴ λλλ21,31,---分别叫做平面在三坐标轴上的截距. 四面体体积.31Sh V = ∴ )21)(31)((21316λλλ---=∴ .6±=λ∴ 这个平面的方程为0623=±++z y x8.直线⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 的系数满足什么条件才能使直线在坐标平面XOZ 内解 坐标平面XOZ 属于平面束化简为()()()()021212121=+++++++mD lD z mC lC y mB lB x mA lA 设平面XOZ 面.0,0,0≠≠=z x y有⎪⎩⎪⎨⎧=+=+=+000212121mD lD mC lC mA lA ∴.212121D D C C A A ==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中,NM 1 AC. NM 与 AC 方向相同,从而 2
KL=NM 且 KL 与 NM 方向相同,所以 KL = NM .
1 AC. KL 与 AC 方向相同;在ΔDAC 2
4. 如图 1-3,设 ABCD-EFGH 是一个平行六面 体,在下列各对矢量中,找出相等的矢量和互 为相反矢量的矢量:
(1) AB 、 CD ;
(4) a,b 反向时有 a − b = a + b ;
(5) a,b 同向,且 a ≥ b 时有 a − b = a − b.
2. 设 L、M、N 分别是ΔABC 的三边 BC、CA、AB 的中点,证明:三中线矢量 AL , BM , CN 可 以构成一个三角形.
[证明]:
∵ AL = 1 ( AB + AC) 2
由上题结论知: AL + BM + CN = 0
∴OA + OB + OC = OL + OM + ON
4. 用矢量法证明,平行四边行的对角线互相平分. [证明]:如图 1-4,在平行四边形 ABCD 中,O 是对角线 AC,BD 的交点
∵ AD = OD − OA
BC = OC − OB
但 AD = BC
E
C
图 1-1
OA和EF;OB和FA;OC和AB;OE和CD;OF和DE.
3. 设在平面上给了一个四边形 ABCD,点 K、L、M、N 分别是边AB、BC、CD、
DA的中点,求证: KL = NM . 当 ABCD 是空间四边形时,这等式是否也成立?
[证明]:如图 1-2,连结 AC, 则在ΔBAC 中, KL
(3) a + b = a − b ; (4) a − b = a + b ;
(5) a − b = a − b.
[解]:(1) a,b 所在的直线垂直时有 a + b = a − b ;
(2) a,b 同向时有 a + b = a + b ;
(3) a ≥ b , 且 a,b 反向时有 a + b = a − b ;
BM = 1 (BA + BC) 2
CN = 1 (CA + CB) 2
∴ AL + BM + CN = 1 ( AB + AC + BA + BC + CA + CB) = 0 2
从而三中线矢量 AL, BM ,CN 构成一个三角形。
3. 设 L、M、N 是△ABC 的三边的中点,O 是任意一点,证明
[证明]:如图 1-7,因为
AP = OP - OA ,
PB = OB - OP ,
所以 OP - OA =λ ( OB - OP ),
(1+λ) OP = OA +λ OB ,
图 1-7
从而
OP = OA + λOB . 1+ λ
2. 在△ABC 中,设 AB = e1 , AC = e2 ,AT 是角 A 的平
∴OD − OA = OC − OB
图 1-4
OA + OC = OD + OB
由于 (OA + OC) ∥ AC, (OB + OD) ∥ BD, 而 AC 不平行于 BD ,
∴ OA + OC = OD + OB = 0 ,
从而 OA=OC,OB=OD。 5. 如图 1-5,设 M 是平行四边形 ABCD 的中心,O 是任意一点,证明
第 1 章 矢量与坐标
§1.1 矢量的概念
1.下列情形中的矢量终点各构成什么图形?
(1)把空间中一切单位矢量归结到共同的始点;
(2)把平行于某一平面的一切单位矢量归结到共同的始点;
(3)把平行于某一直线的一切矢量归结到共同的始点;
(4)把平行于某一直线的一切单位矢量归结到共同的始点.
பைடு நூலகம்
[解]:(1)单位球面; (2)单位圆
(3)直线;
(4)相距为 2 的两点
2. 设点 O 是正六边形 ABCDEF 的中心,
A
F
在矢量 OA 、 OB 、 OC 、 OD 、 OE 、
OF 、 AB 、 BC 、 CD 、 DE 、 EF
B
O
D
和 FA 中,哪些矢量是相等的?
E
[解]:如图 1-1,在正六边形 ABCDEF 中, 相等的矢量对是:
OA + OB + OC + OD =4 OM .
[证明]:因为 OM = 1 ( OA + OC ), OM = 2 1 ( OB + OD ), 2
所以
2 OM =
1 ( OA + OB + OC + OD ) 2
所以 OA + OB + OC + OD =4 OM .
图 1-5
6. 设点 O 是平面上正多边形 A1A2…An 的中心,证明:
[证明]:因为
OA1 + OA2 +…+ OAn = 0 .
OA1 + OA3 =λ OA2 ,
OA2 + OA4 =λ OA3 , ……
所以
所以 显然
OAn−1 + OA1 =λ OAn , OAn + OA2 =λ OA1 , 2( OA1 + OA2 +…+ OAn ) =λ( OA1 + OA2 +…+ OAn ),
分线(它与 BC 交于 T 点),试将 AT 分解为 e1 , e2 的线性 组合.
[解]:因为 | BT | = | e1 | , | TC | | e1 |
且 BT 与 TC 方向相同, 所以 BT = | e1 | TC .
OA + OB + OC = OL + OM + ON . [证明] ∵OA = OL + LA
OB = OM + MB OC = ON + NC ∴OA + OB + OC = OL + OM + ON + (LA + MB + NC)
= OL + OM + ON − ( AL + BM + CN )
(λ-2)( OA1 + OA2 +…+ OAn )= 0 . λ≠2, 即 λ-2≠0.
所以
OA1 + OA2 +…+ OAn = 0 .
§1.4 矢量的线性关系与矢量的分解
1. 设一直线上三点 A, B, P 满足 AP =λ PB (λ≠-1),O 是空间任意一点,求证:
OP = OA + λOB 1+ λ
(2) AE 、 CG ;
(3) AC 、 EG ; (4) AD 、 GF ;
(5) BE 、 CH . [解]:相等的矢量对是
图 1—3
(2)、(3)和(5);
互为反矢量的矢量对是(1)和(4)。
§1.3 数量乘矢量
1.要使下列各式成立,矢量 a,b 应满足什么条件? (1) a + b = a − b ; (2) a + b = a + b ;
相关文档
最新文档