差分方程求解讲课稿
合集下载
数学建模差分方程PPT课件

或 G(x , yi , yi1 , , yin ) 0 或 H (x , yi , yi , , n yi ) 0
的方程都是差分方程。 方程中所含未知函数角标的最大值与最小值的差数称为差分
方程的阶。 若一个函数代入差分方程后,方程两端恒等,则称此函数为
差分方程的解。如果解中所含相互独立的任意常数的个数等于方 程的阶数,则称该解为差分方程的通解。满足初始条件的解称为 特解。
• 第一阶段: w(k)每周减1千克, c(k)减至下限10000千卡
w (k)w (k1)1 w ( k 1 ) w ( k ) c ( k 1 ) w ( k )
c(k1) 1[w(k)1] w (k)w (0)k
c(k1) w (0) 1(1k)
1 8000
0.025
120 200 k 00Cm 10000 k 10
2 x k 2 x k 1 x k 2 ( 1 ) x 0 , k 1 , 2 ,
二阶线性常系数差分方程
x0为平衡点 研究平衡点稳定,即k, xkx0的条件
模型的推广 2 x k 2 x k 1 x k 2 ( 1 ) x 0
方程通解
xk
c1
k 1
c2
k 2
(c1, c2由初始条件确定)
相当于70千克的人每天消耗2000千卡 ~ 3200千卡;
3)运动引起的体重减少正比于体重,且与运动 形式有关;
4)为了安全与健康,每周体重减少不宜超过1.5 千克,每周吸收热量不要小于10000千卡。
减肥计划
某甲体重100千克,目前每周吸收20000千卡热量, 体重维持不变。现欲减肥至75千克。
1 2 k 是(3)的 k 重根,则只要将 Y1 (i),Y2 (i),,Yk (i) 换为
的方程都是差分方程。 方程中所含未知函数角标的最大值与最小值的差数称为差分
方程的阶。 若一个函数代入差分方程后,方程两端恒等,则称此函数为
差分方程的解。如果解中所含相互独立的任意常数的个数等于方 程的阶数,则称该解为差分方程的通解。满足初始条件的解称为 特解。
• 第一阶段: w(k)每周减1千克, c(k)减至下限10000千卡
w (k)w (k1)1 w ( k 1 ) w ( k ) c ( k 1 ) w ( k )
c(k1) 1[w(k)1] w (k)w (0)k
c(k1) w (0) 1(1k)
1 8000
0.025
120 200 k 00Cm 10000 k 10
2 x k 2 x k 1 x k 2 ( 1 ) x 0 , k 1 , 2 ,
二阶线性常系数差分方程
x0为平衡点 研究平衡点稳定,即k, xkx0的条件
模型的推广 2 x k 2 x k 1 x k 2 ( 1 ) x 0
方程通解
xk
c1
k 1
c2
k 2
(c1, c2由初始条件确定)
相当于70千克的人每天消耗2000千卡 ~ 3200千卡;
3)运动引起的体重减少正比于体重,且与运动 形式有关;
4)为了安全与健康,每周体重减少不宜超过1.5 千克,每周吸收热量不要小于10000千卡。
减肥计划
某甲体重100千克,目前每周吸收20000千卡热量, 体重维持不变。现欲减肥至75千克。
1 2 k 是(3)的 k 重根,则只要将 Y1 (i),Y2 (i),,Yk (i) 换为
第章差分方程上课讲义

序言
• 什么是时间序列? • 时间序列的研究内容和方法——模型? • 时间序列分析的应用?
第 1 章 差分方程
(选自Walter Enders的书“Applied Econometric Time Series”)
1.1 时间序列模型
I. 一般原理: 时间序列通常可以分解为趋势性、季节性、 循环或周期性、和无规律性这四项。前三项 具有可预测性,第四项对前三项有干扰性。 如果其干扰或波动大小可以被估计,那么, 时间序列的预测是可以进行的。
值对yt的当期值的影响越来越小。
IV. 非收敛序列(或收敛性)
当 | a1 |1,式(1.20)收敛到解(1.21)。
当 | a1 |1,式(1.20)不收敛或发散,但只要给出初始
条件 y0,则可使用解(1.18)。
当 | a1 |1,一阶差分方程(1.17)可写为
yt a0yt1t
(1.17*)
使用迭代法,可得到
t
yt a0t i y0 i1
(1.26)
当初始条件 y0 给定时,(1.26)是(1.17*)的一个解。
若没有初始条件,式(1.26)可能是不收敛或发散的,y 0
又未知,因此不是一个解。
• 收敛性图示
右图为一个计 算机随机模拟 的解(1.18) 的表现性质。 其中,细线为 解的序列,实 线为解的确定 性部分的序列。
III. 一般差分方程的解法
对于一般差分方程(1.10),其求解方法通常为 第1步:建立齐次方程(1.30),求出它的n个齐次解
yth1,yth2,,ythn; 第2步:求出(1.10)的一个特解 y tp;
第3步:通解为所有齐次解的线性组合与特解之和,即
n
yt ytp Ai ythi i1
• 什么是时间序列? • 时间序列的研究内容和方法——模型? • 时间序列分析的应用?
第 1 章 差分方程
(选自Walter Enders的书“Applied Econometric Time Series”)
1.1 时间序列模型
I. 一般原理: 时间序列通常可以分解为趋势性、季节性、 循环或周期性、和无规律性这四项。前三项 具有可预测性,第四项对前三项有干扰性。 如果其干扰或波动大小可以被估计,那么, 时间序列的预测是可以进行的。
值对yt的当期值的影响越来越小。
IV. 非收敛序列(或收敛性)
当 | a1 |1,式(1.20)收敛到解(1.21)。
当 | a1 |1,式(1.20)不收敛或发散,但只要给出初始
条件 y0,则可使用解(1.18)。
当 | a1 |1,一阶差分方程(1.17)可写为
yt a0yt1t
(1.17*)
使用迭代法,可得到
t
yt a0t i y0 i1
(1.26)
当初始条件 y0 给定时,(1.26)是(1.17*)的一个解。
若没有初始条件,式(1.26)可能是不收敛或发散的,y 0
又未知,因此不是一个解。
• 收敛性图示
右图为一个计 算机随机模拟 的解(1.18) 的表现性质。 其中,细线为 解的序列,实 线为解的确定 性部分的序列。
III. 一般差分方程的解法
对于一般差分方程(1.10),其求解方法通常为 第1步:建立齐次方程(1.30),求出它的n个齐次解
yth1,yth2,,ythn; 第2步:求出(1.10)的一个特解 y tp;
第3步:通解为所有齐次解的线性组合与特解之和,即
n
yt ytp Ai ythi i1
信号与系统4-2差分方程的解法课件

10
例 4.6
差分方程为
y(k 1) 1.1y(k) P
齐次解为 yh (k) C(1.1)k
特解为 y p (k) 10 P
全解为
y(k) C(1.1)k 10P
代入初始条件,可得 C 10P 20000
y(k) (10P 20000)(1.1)k 10P
令y(10)=0,有 0 (10P 20000 )(1.1)10 10P
将yp(k)代入原差分方程,得:
P(2)k 3P(2)k1 2P(2)k2 2k
P(2)k 3 P(2)k 2 P(2)k 2k
2
4
y
p
(k
)
1 3
(2)k
解得:P 1
3
8
例 4.5
(3)用初始值求常数:
全响应为: y(k )
yh (k)
yp (k)
C1 (1) k
C2 (2)k
1 3
这个模型也可以用来计算还贷余额。其中,f(k)代表每 年开始时还贷的金额,y(k)代表扣除当期还贷金额后的 还贷余额,若向银行贷款20000元,每年利息是10%, 即或r=0.1。按等额还贷法计算10年归还贷款本息时每年 所需的还贷额。
解 设每年所需的还贷额为P,则f(k)=P。
初始条件是贷款y(0)=-20000 。注意,由于还贷10次后将 全部还清贷款余额,必须找出使y(10)=0的每年所需还贷 额P。
解 Matlab程序如下:
k=-2:10;n=length(k)-2; y=[1,2,zeros(1,n)];f=k.*u(k); for i=3:n+2 y(i)=y(i-1)-0.24*y(i-2)+f(i)-2*f(i-1); end clf;stem(k,y);xlabel('k');ylabel('y(k)'); disp('k y');disp([num2str([k',y'])])
例 4.6
差分方程为
y(k 1) 1.1y(k) P
齐次解为 yh (k) C(1.1)k
特解为 y p (k) 10 P
全解为
y(k) C(1.1)k 10P
代入初始条件,可得 C 10P 20000
y(k) (10P 20000)(1.1)k 10P
令y(10)=0,有 0 (10P 20000 )(1.1)10 10P
将yp(k)代入原差分方程,得:
P(2)k 3P(2)k1 2P(2)k2 2k
P(2)k 3 P(2)k 2 P(2)k 2k
2
4
y
p
(k
)
1 3
(2)k
解得:P 1
3
8
例 4.5
(3)用初始值求常数:
全响应为: y(k )
yh (k)
yp (k)
C1 (1) k
C2 (2)k
1 3
这个模型也可以用来计算还贷余额。其中,f(k)代表每 年开始时还贷的金额,y(k)代表扣除当期还贷金额后的 还贷余额,若向银行贷款20000元,每年利息是10%, 即或r=0.1。按等额还贷法计算10年归还贷款本息时每年 所需的还贷额。
解 设每年所需的还贷额为P,则f(k)=P。
初始条件是贷款y(0)=-20000 。注意,由于还贷10次后将 全部还清贷款余额,必须找出使y(10)=0的每年所需还贷 额P。
解 Matlab程序如下:
k=-2:10;n=length(k)-2; y=[1,2,zeros(1,n)];f=k.*u(k); for i=3:n+2 y(i)=y(i-1)-0.24*y(i-2)+f(i)-2*f(i-1); end clf;stem(k,y);xlabel('k');ylabel('y(k)'); disp('k y');disp([num2str([k',y'])])
经济数学 CH6 差分方程PPT精品文档29页

2020/4/16
8
蛛网模型
❖ 将需求曲线和供给曲线代 pt 入到均衡方程,得到:
❖ pt=(a+c)/b-(d/b)pt-1 ❖ 这是一个一阶非齐次线性
差分方程。
❖ 当价格不变时,供求达到 均衡。
❖ p*=(a+c)/b-(d/b)p* ❖ 均衡价格p*=(a+c)/(b+d)
p*
Pt-1
当(d/b)>1时,模型 是发散的;反之则是 收敛的。
a≠-1
yt
A(a)t
c ,a1 1a
假设t 0时,yt
y0,得到Ay0
c 1a
yt
(y0
c )(a)t 1a
c ,a1 1a
a=-1 y t A ( a )t c t A c t,a 1
假 设 t0时 , yt y0,得 到 Ay0 yt y0ct,a1
2020/4/16
13
练习
❖ 求解一阶线性差分方程:
❖ 一阶差分: △yt=yt+1-yt ❖ 二阶差分:
❖ △2yt= △ (△ yt) = △(yt+1-yt)= (yt+2-yt+1)- (yt+1-yt)
2020/4/16
1
❖ 一阶差分方程:yt+1=f(yt) ❖ 例子:一阶线性差分方程
❖ △yt=2→yt+1-yt=2 ❖ △yt=yt → yt+1-yt=yt →yt+1=2yt ❖ 一阶线性差分方程一般形式:
如果f(y*) 1,那么均衡点是稳定的。 如果f(y*) 1,那么均衡点是不稳定的。 如果f(y*) 1,无法判断。
f(y*)dyt1 dyt
第4讲 差分方程方法(new)PPT课件

它的平衡点 x* 0 是稳定的充要条件是 A 的所有特
征根都有 i 1(i 1,2,, n) 。
对于一阶线性常系数非齐次差分方程组
x(k 1) Ax(k) B(k 0,1,2,)
的情况同样给出。
11
2020年11月23日
二 差分方程的平衡点及其稳定性
3.二阶线性常系数差分方程的平衡点
二阶线性常系数齐次差分方程的一般形式为
则 x* 也是一阶线性差分方程 xk1 f (x*)(xk x*) f (x*)
的平衡点. 故平衡点 x* 稳定的充要条件是 f (x* ) 1 。
2020年11月23日
三 连续模型的差分方法
1. 微分的差分方法
问题:已知 f (x) 在点 xk 处的函数值 f (xk )(k 0,1,, n 1) ,且 a x0 x1 xn1 b,试求函数的导数值 f (xk )(k 1,2,, n) 。
二 差分方程的平衡点及其稳定性
4.一阶非线性差分方程的平衡点
一阶非线性差分方程的一般形式为
xk1 f (xk ),k 0,1,2,
其中 f 为已知函数,其平衡点定义为方程 x f (x) 的解 x* 。
事实上:将 f (xk ) 在 x* 处作一阶的台勒展开有
xk1 f (x* )( xk x* ) f (x* )
, n)
14
2020年11月23日
三 连续模型的差分方法
2. 定积分的差分方法
问题:已知 f (x) 在点 xk 处的函数值 f (xk )(k 0,1,, n) ,
b
且在[a,b]上可积,试求 f (x) 在[a,b] 上的积分值 f (x)dx 。 a
对应代数方程:
k a1k1 a2k2 ak 0
征根都有 i 1(i 1,2,, n) 。
对于一阶线性常系数非齐次差分方程组
x(k 1) Ax(k) B(k 0,1,2,)
的情况同样给出。
11
2020年11月23日
二 差分方程的平衡点及其稳定性
3.二阶线性常系数差分方程的平衡点
二阶线性常系数齐次差分方程的一般形式为
则 x* 也是一阶线性差分方程 xk1 f (x*)(xk x*) f (x*)
的平衡点. 故平衡点 x* 稳定的充要条件是 f (x* ) 1 。
2020年11月23日
三 连续模型的差分方法
1. 微分的差分方法
问题:已知 f (x) 在点 xk 处的函数值 f (xk )(k 0,1,, n 1) ,且 a x0 x1 xn1 b,试求函数的导数值 f (xk )(k 1,2,, n) 。
二 差分方程的平衡点及其稳定性
4.一阶非线性差分方程的平衡点
一阶非线性差分方程的一般形式为
xk1 f (xk ),k 0,1,2,
其中 f 为已知函数,其平衡点定义为方程 x f (x) 的解 x* 。
事实上:将 f (xk ) 在 x* 处作一阶的台勒展开有
xk1 f (x* )( xk x* ) f (x* )
, n)
14
2020年11月23日
三 连续模型的差分方法
2. 定积分的差分方法
问题:已知 f (x) 在点 xk 处的函数值 f (xk )(k 0,1,, n) ,
b
且在[a,b]上可积,试求 f (x) 在[a,b] 上的积分值 f (x)dx 。 a
对应代数方程:
k a1k1 a2k2 ak 0
《高数3差分方程》PPT课件

( yt2 yt1 ) ( yt1 yt ) yt1 yt 2 yt ,
则原方程还可化为 2 yt 3t.
10
又如: 可化为
yt2 2 yt1 yt 3t , yt 2 yt1 yt2 3t2 ,
2 yt 2 yt 3t.
定义5.1.3 如果一个函数代入差分方程后,方程两边 恒等,则称此函数为差分方程的解.
yt (t 2 ) (t 1)2 t 2 2t 1,
2( yt ) 2(t 2 ) (yt ) (2t 1)
2(t 1) 1 (2t 1) 2,
3( yt ) (2 yt ) (2) 2 2 0. 例2 设 yt at (0 a 1), 求 ( yt ). 解 ( yt ) at1 at at (a 1).
kbt1 akbt cbt 即 k(b a) c ,
于是
yt*
b
c
a
bt
.
28
(2) 当 b a 时 , 令yt* ktbt 代 入 方 程(6) , 得 :
k(t 1)bt1 aktbt cbt
即 k(t 1)b akt c ,
解得 k c . a
于是
yt*
c a
tbt
ctbt1 .
当b a 和 b a 时,方程(6) 的通解分别为:
yt
c ba
bt
Aa t
和
yt ctbt1 Aat .
29
例6 求差分方程
yt 1
1 2
yt
5 t
的2 通解。
解 对应齐次差分方程的通解为 Y A 1 t .
2
由于 a 1 , b 5 , a b,
22
故可设其特解为: yt* kbt .
差分方程求解课件

yx = C(2)x .
再讨论非齐次差分方程 yx+1 ayx = f (x)解的结
构 定理 设 y0*是非齐次差分方程(3)对应的齐次 差分方程(4)的y通x 是解(,3)的一个特解, yx y*x yx 是方
程(3)的通解. 则
下面用待定系数法来求两种类型函数的特解.
(1) 令f (x) = b0 + b1x + +bmxm
2(x3) = (3x2 + 3x + 1) = 3(x + 1)2 + 3(x + 1) + 1 (3x2 += 36x + 16),
3(x3) = (6x + 6) = 6(x + 1) + 6 (6x + 6=) 6,
4(x3) = (6) 6 =
0.
二、差分方程的概念
2 yx = (yx) = yx+2 2 yx+1 + yx
同样可定义三阶差分3yx, 四阶差分4yx,
即
3yx = (2yx),
(3yx) .
4yx =
例1 求(x3), 2(x3), 3(x3), 4(x3).
解 + 1,
(x3) = (x + 1)3 x3 = 3x2 + 3x
称为齐次差分(方4)程; 当 f (x) 0时, 称为非齐次差分 方程.
先求齐次差分方程 yx+1 ayx = 0的
设解 y0 已知, 代入方程可知
y1 =
ay0,
y2 =
a2y0,
yx =
令y0ax=y0C,, 则得齐次差分方程的通解为
再讨论非齐次差分方程 yx+1 ayx = f (x)解的结
构 定理 设 y0*是非齐次差分方程(3)对应的齐次 差分方程(4)的y通x 是解(,3)的一个特解, yx y*x yx 是方
程(3)的通解. 则
下面用待定系数法来求两种类型函数的特解.
(1) 令f (x) = b0 + b1x + +bmxm
2(x3) = (3x2 + 3x + 1) = 3(x + 1)2 + 3(x + 1) + 1 (3x2 += 36x + 16),
3(x3) = (6x + 6) = 6(x + 1) + 6 (6x + 6=) 6,
4(x3) = (6) 6 =
0.
二、差分方程的概念
2 yx = (yx) = yx+2 2 yx+1 + yx
同样可定义三阶差分3yx, 四阶差分4yx,
即
3yx = (2yx),
(3yx) .
4yx =
例1 求(x3), 2(x3), 3(x3), 4(x3).
解 + 1,
(x3) = (x + 1)3 x3 = 3x2 + 3x
称为齐次差分(方4)程; 当 f (x) 0时, 称为非齐次差分 方程.
先求齐次差分方程 yx+1 ayx = 0的
设解 y0 已知, 代入方程可知
y1 =
ay0,
y2 =
a2y0,
yx =
令y0ax=y0C,, 则得齐次差分方程的通解为
§2.8 差分方程的求解

X
第
例2-8-3
学 院
9 页
求方程yn 6 y n 1 12 yn 2 8 y n 3 0的解。
特征方程
y n C1 2 C 2 n 2 C 3 n工 2 程
n n 2
r 6 r 2 0 电r 12 r 8 0 邮 京 所以r 2 三重根 北
3
学 2 大
电
子
工
程
3
院 学 n
学 C1 , C 2 , C 3 给定初始(边界)条件即可求出常数 大 北 京 邮 电
电
子
X
第
例2-8-4
j r2 Me j 设 r1 Me n n 院 y n C 1 r1 C 2 r2 学
10 页
C 1 Me Me n 大学 cos n j sin n C 2 M n cos n j sin n C1 M 电 邮 n n P C1 C2 京 PM cos n QM sin n 北 Q j (C 院 1 C2 ) P,Q为待定系数 学 程 M 1 y n 为等幅正弦序列 子工 子 C2 电
j n
工
程
j n
M 1 M 1
yn 为增幅正弦序列 大 电 邮 为减幅正弦序列 京 yn 北学 电 NhomakorabeaX
第
2.特解
线性时不变系统输入与输出有相同的形式。
输入 输出
j n
11 页
x n e an
电 邮 x n cos 京 n 北
x n e
电 jn 学 y n A e 大
院
2 学 r 特征方程 电大 5r 6 0 r 2r 3 0 特征根 京邮 r1 2, r2 3 北 n n y n C1 2 C 2 3 齐次解 院 学 n 0 y 0 C1 C 2 2 工程 定 C1 , C 2 子 电 n 1 y 1 2C1 3C学 2 1 大 解出 C1 5, C 2 3 邮电 n 京 n 所以y n 52北 33
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)
称为齐次差分方程; 当 f (x) 0时, 称为非齐次差分方程.
先求齐次差分方程 yx+1 ayx = 0的解 设 y0 已知, 代入方程可知
y1 = ay0, y2 = a2y0,
yx = axy0,
令y0 = C, 则得齐次差分方程的通解为
yx = Cax.
(5)
例4 求差分方程 yx+1 + 2yx = 0的通解. 解 这里 a = 2, 由公式(5)得, 通解为
yx = C(2)x .
再讨论非齐次差分方程 yx+1 ayx = f (x)解的结构
定理 设 y0*是非齐次差分方程(3)对应的齐次差分方
程(4)的通解, °y x 是(3)的一个特解, 则 yx y*x °yx 是方
程(3)的通解.
下面用待定系数法来求两种类型函数的特解.
(1) 令f (x) = b0 + b1x + +bmxm 设特解的待定式为
y
* x
C.
这里 a = 1, 设 °yxx(B0B1x),代入差分方程, 得
(x+1)[B0+B1(x+1)] x(B0+B1x) = x +1.
整理, 得
2B1 x + B0 + B1 = x +1.
比较系数, 得
2B1 = 1,
解出 故所求通解为
B0 + B1 = 1, B0 B°y1x12C, 12x(x1).
2
2
°y x
k
5 2
x
,
则
k52x112k52x 52x,
解出
k 1. 2
则所求通解为
yx
1 2
5x 2
1x 2
.
四、二阶常系数线性差分方程
形如
yx+2 + ayx+1 + byx = f (x).
(10)
(其中 a , b 0, 且均为常数)的方程, 称为二阶常系数线性 差分方程. 当 f (x) = 0 时, 即
(2) f (x) = Cbx
设特解的待定式为
°yx kbx (b a)
(8)
或
°yx kxbx (b a)
(9)
其中 k 为待定系数.
例7
求差分方程
yx1
1 2
yx
5 2
x
的通解.
解
对应的齐次方程
yx1
1 2
yx
0
的通解为
y
* x
C
1 2
x
,
因为 a 1 , b 5 , 故可设特解为
定义3 含有未知函数几个时期值的符号的方程, 称 为差分方程.
其一般形式为
G(x, yx, yx+1, , yx+n) = 0.
(2)
定义3中要求 x, yx, yx+1, , yx+n不少于两个.
例如, yx+2 + yx+1 = 0为差分方程, yx = x不是差分方 程.
差分方程式(2)中, 未知函数下标的最大差数为 n, 则 称差分方程为n 阶差分方程.
(B0+B1 +B2)+ ( B1+2B2) xB2x2=3x2.
比较系数, 得
B0+B1 +B2=0,
B1+2B2 = 0,
B2 = 3.
解出
B0= 9, B1 = 6, B2 = 3,
故所求特解为 °yx96x3x2.
例6 求差分方程 yx+1 yx = x +1 的通解.
解 对应的齐次方程 yx+1 yx = 0的通解为
3(x3) = (6x + 6) = 6(x + 1) + 6 (6x + 6)
= 6, 4(x3) = (6) 6 = 0.
二、差分方程的概念
定义2 含有自变量、未知函数及其差分的方程, 称 为差分方程.
差分方程的一般形式为
F(x, yx, yx, , n yx) = 0.
(1)
差分方程中可以不含自变量 x 和未知函数 yx, 但必须含 有差分.
°yxB0B1xBmxm (a1) (6)
或
° yx(B0B1xBmxm)x(a1) (7)
其中B0 , B1 , , Bm为待定系数.
例5 求差分方程 yx+1 2yx = 3x2 的一个特解.
解 这里 a = 2, 设 ° yxB0B 1xB2x2,
代入差分方程, 得
B0+B1(x+1)+B2(x+1)2 2(B0+B1x+B2x2)=3x2. 整理, 得
式(1)中, 当 n = 1时, 称为一阶差分方程;当n = 2时, 称为二阶差分方程.
例2 将差分方程 2yx + 2yx = 0
表示成不含差分的形式. 解 yx = yx+1 yx , 2yx = yx+2 yx+1 + yx ,
代入得 yx+2 yx = 0.
由此可以看出, 差分方程能化为含有某些不同下标 的整标函数的方程.
定义5 差分方程的解中含有任意常数, 且任意常数 的个数与差分方程的阶数相等, 这样的解称为差分方程 的解通.
三、一阶常系数线性差分方程
一阶常系数线性差分方程的一般形式为
yx+1 ayx = f (x).
(3)
其中 a 为不等于零的常数. 当 f (x) = 0 时, 即
yx+1 ayx = 0
4yx = (3yx) .
例1 求(x3), 2(x3), 3(x3), 4(x3). 解 (x3) = (x + 1)3 x3 = 3x2 + 3x + 1,
2(x3) = (3x2 + 3x + 1) = 3(x + 1)2 + 3(x + 1) + 1 (3x2 + 3x + 1) = 6x + 6,
定义4 如果一个函数代入差分后, 方程两边恒等, 则 称此函数为该差分方程的解.
例3 验证函数 yx = 2x + 1是差分方程 yx+1 yx = 2的 解.
解 yx+1 = 2(x + 1) + 1 = 2x +3, yx+1 yx = 2x + 3 (2x +1) = 2,
所以yx = 2x + 1是差分方程 yx+1 yx = 2的解.
差分方程求解
(yx) = yx+1 yx = (yx+2 yx+1) (yx+1 yx) = yx+2 2 yx+1 + yx
为二阶差分, 记为2 yx, 即 2 yx = (yx) = yx+2 2 yx+1 + yx
同样可定义三阶差分3yx, 四阶差分4yx, 即 3yx = (2yx),
yx+2 + ayx+1 + byx = 0
(பைடு நூலகம்1)
称为齐次差分方程; 当 f (x) 0时, 称为非齐次差分方程.
类似于二阶线性常微分方程, 二阶线性差分方程与 其有相同的解的结构. 故先求齐次方程(11)的通解.
当 为常数时, yx = x和它的各阶差商有倍数关系, 所以可设 yx = x为方程(11)的解.