2001年湖北省宜昌市中考数学试题(word版,附答案)
1-2006年宜昌市中考数学试题及答案

2006年湖北省宜昌市初中毕业生学业考试数 学 试 卷(考试形式:闭卷 全卷共五大题25小题 卷面分数:120分 考试时限:120分钟) 考生注意:1、本试卷分为两卷,解答第Ⅰ卷(1~2页)时请将解答结果填写在第Ⅱ卷(3~8页)上指定的位置,否则答案无效,交卷时只交第Ⅱ卷。
2、答卷时允许使用科学计算器。
以下公式供参考:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标是)442(2ab ac a b --,;扇形面积3602R n S π=。
第Ⅰ卷 (选择题、填空题 共45分)一、选择题:(在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在第Ⅱ卷上指定的位置。
本大题共10个小题,每小题3分,共30分)1、若2与a 互为倒数,则下列结论正确的是( )。
A 、21=a B 、2-=a C 、21-=a D 、2=a 2、如图,圆柱体的表面展开后得到的平面图形是( )。
A 、B 、C 、D 、3、某电视台举行歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题共选手随机抽取作答。
在某场比赛中,前两位选手分别抽走了2号,7号题,第3位选手抽中8号题的概率是( )。
A 、101 B 、91 C 、81 D 、71 4、下列运算正确的是( )。
A 、a 2·a 3=a 6B 、a 8÷a 4=a 2C 、a 3+a 3=2a 6D 、(a 3)2=a 65、如图,小明站在C 处看甲乙两楼楼顶上的点A 和点E 。
C ,E ,A 三点在同一条直线上,点B ,E 分别在点E ,A 的正下方且D ,B ,C 三点在同一条直线上。
B ,C 相距20米,D ,C 相距40米,乙楼高BE 为15米,甲楼高AD 为( )米(小明身高忽略不计)。
A 、40B 、20C 、15D 、306、据统计,宜昌市2005年财政总收入达到105.5亿元,用科学记数法(保留三个有效数字)表示105.5亿元约为( )元。
湖北省宜昌市中考数学试卷含答案解析版

2017年湖北省宜昌市中考数学试卷一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)有理数﹣15的倒数为( ) A .5 B .15 C .−15 D .﹣52.(3分)如下字体的四个汉字中,是轴对称图形的是( )A .B .C .D .3.(3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是( )A .美B .丽C .宜D .昌4.(3分)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为( )A .量角器B .直尺C .三角板D .圆规5.(3分)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC 报验点,电缆拉放长度估计1200千米.其中准确数是( )A .27354B .40000C .50000D .12006.(3分)九一(1)班在参加学校4×100m 接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为( )A .1B .12C .13D .14 7.(3分)下列计算正确的是( )A .a 3+a 2=a 5B .a 3?a 2=a 5C .(a 3)2=a 5D .a 6÷a 2=a 38.(3分)如图,在△AEF 中,尺规作图如下:分别以点E ,点F 为圆心,大于12EF 的长为半径作弧,两弧相交于G ,H 两点,作直线GH ,交EF 于点O ,连接AO ,则下列结论正确的是( )A .AO 平分∠EAFB .AO 垂直平分EFC .GH 垂直平分EFD .GH 平分AF9.(3分)如图,要测定被池塘隔开的A ,B 两点的距离.可以在AB 外选一点C ,连接AC ,BC ,并分别找出它们的中点D ,E ,连接ED .现测得AC=30m ,BC=40m ,DE=24m ,则AB=( )A .50mB .48mC .45mD .35m10.(3分)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是( )A .①②B .①③C .②④D .③④11.(3分)如图,四边形ABCD 内接⊙O ,AC 平分∠BAD ,则下列结论正确的是( )A .AB=ADB .BC=CDC .AB̂=AD ̂ D .∠BCA=∠DCA 12.(3分)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是( )手工制品手串 中国结 手提包 木雕笔筒 总数量(个)200 100 80 70 销售数量(个) 190 100 76 68A .手串B .中国结C .手提包D .木雕笔筒13.(3分)△ABC 在网格中的位置如图所示(每个小正方形边长为1),AD ⊥BC 于D ,下列选项中,错误的是( )A .sin α=cos αB .tanC=2C .sin β=cos βD .tan α=114.(3分)计算(x+y)2−(x−y)24xy 的结果为( ) A .1 B .12 C .14 D .015.(3分)某学校要种植一块面积为100m 2的长方形草坪,要求两边长均不小于5m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( )A. B.C. D.二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)计算:23×(1﹣14)×.17.(6分)解不等式组{x2≥−12(1−x)<4−3x..18.(7分)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00 第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)1500 1200 1300 1300 1200 (1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?19.(7分)“和谐号”火车从车站出发,在行驶过程中速度y(单位:m/s)与时间x(单位:s)的关系如图所示,其中线段BC∥x轴.(1)当0≤x≤10,求y关于x的函数解析式;(2)求C点的坐标.20.(8分)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学着作《九章算术》,其勾股数组公式为:{a=12(m2−n2)b=mnc=12(m2+n2).其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.21.(8分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.22.(10分)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.23.(11分)正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与B ,C 不重合),以O 为顶点在BC 所在直线的上方作∠MON=90°.(1)当OM 经过点A 时,①请直接填空:ON (可能,不可能)过D 点;(图1仅供分析)②如图2,在ON 上截取OE=OA ,过E 点作EF 垂直于直线BC ,垂足为点F ,作EH ⊥CD 于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且OG=1.在ON 上存在点P ,过P 点作PK 垂直于直线BC ,垂足为点K ,使得S △PKO =4S △OBG ,连接GP ,求四边形PKBG 的最大面积.24.(12分)已知抛物线y=ax 2+bx+c ,其中2a=b >0>c ,且a+b+c=0.(1)直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根;(2)证明:抛物线y=ax 2+bx+c 的顶点A 在第三象限;(3)直线y=x+m 与x ,y 轴分别相交于B ,C 两点,与抛物线y=ax 2+bx+c 相交于A ,D 两点.设抛物线y=ax 2+bx+c 的对称轴与x 轴相交于E .如果在对称轴左侧的抛物线上存在点F ,使得△ADF 与△BOC 相似,并且S △ADF =12S △ADE ,求此时抛物线的表达式.2017年湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017?宜昌)有理数﹣15的倒数为()A.5 B.15C.−15D.﹣5【考点】17:倒数.【分析】根据倒数的定义,找出﹣15的倒数为﹣5,此题得解.【解答】解:根据倒数的定义可知:﹣15的倒数为﹣5.故选D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.2.(3分)(2017?宜昌)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:根据轴对称图形的概念可知,A为轴对称图形.故选:A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)(2017?宜昌)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.宜D.昌【考点】I8:专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴有“爱”字一面的相对面上的字是宜.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)(2017?宜昌)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为()A.量角器B.直尺 C.三角板D.圆规【考点】1O:数学常识.【分析】利用圆规的特点直接得到答案即可.【解答】解:圆规有两只脚,一铁脚固定,另一脚旋转,故选D.【点评】本题考查了简单的数学知识,稍有点数学常识的同学就会做出正确的回答,难度不大.5.(3分)(2017?宜昌)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.1200【考点】1H:近似数和有效数字.【分析】利用精确数和近似数的区别进行判断.【解答】解:27354为准确数,4000、50000、1200都是近似数.故选A.【点评】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.6.(3分)(2017?宜昌)九一(1)班在参加学校4×100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为()A.1 B.12C.13D.14【考点】X4:概率公式.【分析】根据概率公式进行解答.【解答】解:甲跑第一棒的概率为14.故选:D.【点评】本题考查了概率公式.随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.7.(3分)(2017?宜昌)下列计算正确的是()A.a3+a2=a5B.a3?a2=a5C.(a3)2=a5D.a6÷a2=a3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】由合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则即可得出结论.【解答】解:A、a3+a2=a5.不正确;B、a3?a2=a5正确;C、(a3)2=a6≠a5,不正确;D、a6÷a2=a4≠a3,不正确;故选:B.【点评】本题考查了合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则;熟记有关法则是关键.8.(3分)(2017?宜昌)如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列于12结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.(3分)(2017?宜昌)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m【考点】KX:三角形中位线定理.【分析】根据中位线定理可得:AB=2DE=48m.【解答】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,AB,∴DE=12∵DE=24m,∴AB=2DE=48m,故选B.【点评】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.10.(3分)(2017?宜昌)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①② B.①③ C.②④ D.③④【考点】L3:多边形内角与外角.【分析】根据多边形的内角和定理即可判断.【解答】解:∵①剪开后的两个图形是四边形,它们的内角和都是360°,③剪开后的两个图形是三角形,它们的内角和都是180°;∴①③剪开后的两个图形的内角和相等,故选B.【点评】本题考查了三角形内角和、四边形的内角和以及多边形的内角和定理.11.(3分)(2017?宜昌)如图,四边形ABCD内接⊙O,AC平分∠BAD,则下列结论正确的是()A .AB=ADB .BC=CDC .AB̂=AD ̂ D .∠BCA=∠DCA 【考点】M4:圆心角、弧、弦的关系.【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可.【解答】解:A 、∵∠ACB 与∠ACD 的大小关系不确定,∴AB 与AD 不一定相等,故本选项错误;B 、∵AC 平分∠BAD ,∴∠BAC=∠DAC ,∴BC=CD ,故本选项正确;C 、∵∠ACB 与∠ACD 的大小关系不确定,∴AB̂与AD ̂不一定相等,故本选项错误; D 、∠BCA 与∠DCA 的大小关系不确定,故本选项错误.故选B .【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.12.(3分)(2017?宜昌)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是( )手工制品手串 中国结 手提包 木雕笔筒 总数量(个)200 100 80 70 销售数量(个) 190 100 76 68A .手串B .中国结C .手提包D .木雕笔筒【考点】18:有理数大小比较;1D :有理数的除法.【分析】分别求出各手工制品的销售率,再比较大小即可.【解答】解:∵手串的销售率=190200=1920<1;中国结的销售率=100100=1;手提包的销售率=7680=1920<1;木雕笔筒的销售率=6870=3435<1,∴销售率最高的是中国结.故选B.【点评】本题考查的是有理数的大小比较,熟知有理数大小比较的法则是解答此题的关键.13.(3分)(2017?宜昌)△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列选项中,错误的是()A.sinα=cosαB.tanC=2 C.sinβ=cosβD.tanα=1【考点】T1:锐角三角函数的定义.【分析】观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2√2,AD=2,CD=1,AC=√5,利用锐角三角函数一一计算即可判断.【解答】解:观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2√2,AD=2,CD=1,AC=√5,∴sinα=cosα=√22,故①正确,tanC=ADCD=2,故②正确,tanα=1,故D正确,③∵sinβ=CDAC =√55,cosβ=2√55,∴sinβ≠cosβ,故C错误.故选C.【点评】本题考查锐角三角函数的应用.等腰直角三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.(3分)(2017?宜昌)计算(x+y)2−(x−y)24xy 的结果为( ) A .1 B .12 C .14 D .0【考点】66:约分.【分析】分子利用平方差公式进行因式分解,然后通过约分进行化简.【解答】解:(x+y)2−(x−y)24xy =(x+y+x−y)(x+y−x+y)4xy =4xy 4xy =1.故选:A .【点评】本题考查了约分.约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.15.(3分)(2017?宜昌)某学校要种植一块面积为100m 2的长方形草坪,要求两边长均不小于5m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( ) A . B . C .D .【考点】GA :反比例函数的应用.【分析】易知x 、y 是反比例函数,再根据边长的取值范围即可解题.【解答】解:∵草坪面积为100m 2,∴x 、y 存在关系y=100x ,∵两边长均不小于5m ,∴x ≥5、y ≥5,则x ≤20,故选 C .【点评】反比例函数确定y 的取值范围,即可求得x 的取值范围,熟练掌握是解题的关键.二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)(2017?宜昌)计算:23×(1﹣14)×.【考点】1G :有理数的混合运算.【专题】11 :计算题;511:实数.【分析】原式先计算括号中的减法运算,再计算乘方运算,最后算乘法运算即可得到结果.【解答】解:原式=8×34×12=3. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(6分)(2017?宜昌)解不等式组{x 2≥−12(1−x)<4−3x.. 【考点】CB :解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:{x2≥−1①2(1−x)<4−3x②,由①得:x≥﹣2,由②得:x<2,故不等式组的解集为﹣2≤x<2.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(7分)(2017?宜昌)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00 第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)1500 1200 1300 1300 1200 (1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?【考点】W4:中位数;V5:用样本估计总体.【分析】(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;(2)根据平均数等于数据之和除以总个数求出平均每天需要租用自行车却未租到车的人数,再加上700即可.【解答】解:(1)表格中5个数据按从小到大的顺序排列为1200,1200,1300,1300,1500,所以中位数是1300;(2)平均每天需要租用自行车却未租到车的人数:(1500+1200+1300+1300+1200)÷5=1300,∵YC市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天需要租用公共自行车的人数是1300+700=2000.【点评】本题考查了中位数,平均数以及用样本估计总体.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷总个数.19.(7分)(2017?宜昌)“和谐号”火车从车站出发,在行驶过程中速度y (单位:m/s )与时间x (单位:s )的关系如图所示,其中线段BC ∥x 轴.(1)当0≤x ≤10,求y 关于x 的函数解析式;(2)求C 点的坐标.【考点】FH :一次函数的应用.【分析】(1)根据函数图象和图象中的数据可以求得当0≤x ≤10,y 关于x 的函数解析式;(2)根据函数图象可以得到当10≤x ≤30时,y 关于x 的函数解析式,然后将x=30代入求出相应的y 值,然后线段BC ∥x 轴,即可求得点C 的坐标.【解答】解:(1)当0≤x ≤10时,设y 关于x 的函数解析式为y=kx ,10k=50,得k=5,即当0≤x ≤10时,y 关于x 的函数解析式为y=5x ;(2)设当10≤x ≤30时,y 关于x 的函数解析式为y=ax+b ,{10a +b =5025a +b =80,得{a =2b =30, 即当10≤x ≤30时,y 关于x 的函数解析式为y=2x+30,当x=30时,y=2×30+30=90,∵线段BC ∥x 轴,∴点C 的坐标为(60,90).【点评】本题考查了一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质解答.20.(8分)(2017?宜昌)阅读:能够成为直角三角形三条边长的三个正整数a ,b ,c ,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学着作《九章算术》,其勾股数组公式为:{a =12(m 2−n 2)b =mn c =12(m 2+n 2).其中m >n >0,m ,n 是互质的奇数. 应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【考点】KT :勾股数;KQ :勾股定理.【分析】由n=1,得到a=12(m 2﹣1)①,b=m ②,c=12(m 2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=12(m 2﹣1)①,b=m ②,c=12(m 2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,12(m 2﹣1)=5,解得:m=±√11(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,12(m 2+1)=5,解得:m=±3,∵m >0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.【点评】本题考查了勾股定理的逆定理,分类讨论是解题的关键.21.(8分)(2017?宜昌)已知,四边形ABCD 中,E 是对角线AC 上一点,DE=EC ,以AE 为直径的⊙O 与边CD 相切于点D .B 点在⊙O 上,连接OB .(1)求证:DE=OE ;(2)若CD ∥AB ,求证:四边形ABCD 是菱形.【考点】MC:切线的性质;L9:菱形的判定.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴AB=CD,∴四边形A∴D是平行四边形,∠DOE=30°,∴∠DAE=12∴∠1=∠DAE,∴CD=AD,∴?ABCD是菱形.【点评】此题是切线的性质,主要考查了同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.22.(10分)(2017?宜昌)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【考点】AD:一元二次方程的应用;B7:分式方程的应用.【分析】(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.(2)设2015年年初,对辅助配套的投资为x 亿元,则线路敷设的投资为2x 亿元,搬迁安置的投资是4x 亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x 、b 的值可得答案.(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y ,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得.【解答】解:(1)三年用于辅助配套的投资将达到54×23=36(亿元);(2)设2015年年初,对辅助配套的投资为x 亿元,则线路敷设的投资为2x 亿元,搬迁安置的投资是4x 亿元,根据题意,得:{2x +2x +b +2x +2b =54x +(1+1.5b 2x )x +x +(1+1.5b 2x )x +4=36, 解得:{x =5b =8, ∴市政府2015年年初对三项工程的总投资是7x=35亿元;(3)由x=5得,2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y ,由题意,得:20(1﹣y )2=5,解得:y 1=,y 2=(舍)答:搬迁安置投资逐年递减的百分数为50%.【点评】本题主要考查一元二次方程、二元一次方程组的应用,理解题意、准确梳理题中所涉数量关系,找到题目蕴含的相等关系是解题的关键.23.(11分)(2017?宜昌)正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与B ,C 不重合),以O 为顶点在BC 所在直线的上方作∠MON=90°.(1)当OM 经过点A 时,①请直接填空:ON 不可能 (可能,不可能)过D 点;(图1仅供分析)②如图2,在ON 上截取OE=OA ,过E 点作EF 垂直于直线BC ,垂足为点F ,作EH ⊥CD 于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且OG=1.在ON 上存在点P ,过P 点作PK 垂直于直线BC,垂足为点K,使得S△PKO=4S△OBG,连接GP,求四边形PKBG的最大面积.【考点】LO:四边形综合题.【分析】(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D点;②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△CBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.【解答】解:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°﹣∠AOB,在正方形ABCD中,∠BAO=90°﹣∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中{∠EOF =∠BAO∠EFO =∠BOE =AO∴△OFE ≌△ABO (AAS ),∴EF=OB ,OF=AB ,又OF=CF+OC=AB=BC=BO+OC=EF+OC ,∴CF=EF ,∴四边形EFCH 为正方形;(2)∵∠POK=∠OGB ,∠PKO=∠OBG ,∴△PKO ∽△OBG ,∵S △PKO =4S △OBG ,∴S △PKOS △OBG =(OP OG )2=4, ∴OP=2,∴S △POG =12OG?OP=12×1×2=1,设OB=a ,BG=b ,则a 2+b 2=OG 2=1,∴b=√1−a 2,∴S △OBG =12ab=12a √1−a 2=12√−a 4+a 2=12√−(a 2−12)2+14,∴当a 2=12时,△OBG 有最大值14,此时S △PKO =4S △OBG =1,∴四边形PKBG 的最大面积为1+1+14=94.【点评】本题为四边形的综合应用,涉及矩形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)①中注意反证法的应用,在(1)②中证得CE=EF是解题的关键,在(2)中确定出△OBG面积的最大值是解题的关键.本题考查知识点较多,综合性较强,难度适中.24.(12分)(2017?宜昌)已知抛物线y=ax2+bx+c,其中2a=b>0>c,且a+b+c=0.(1)直接写出关于x的一元二次方程ax2+bx+c=0的一个根;(2)证明:抛物线y=ax2+bx+c的顶点A在第三象限;(3)直线y=x+m与x,y轴分别相交于B,C两点,与抛物线y=ax2+bx+c相交于A,D两点.设抛物线y=ax2+bx+c的对称轴与x轴相交于E.如果在对称轴左侧的抛物线上存在点F,使得△ADF与△BOC相似,并且S△ADF=1S△ADE,求此时抛物线的表达式.2【考点】HF:二次函数综合题.【专题】15 :综合题;535:二次函数图象及其性质.【分析】(1)根据a+b+c=0,结合方程确定出方程的一个根即可;(2)表示出抛物线的对称轴,将2a=b代入,并结合a+b+c=0,表示出c,判断顶点坐标即可;(3)根据表示出的b与c,求出方程的解确定出抛物线解析式,由直线y=x+m与x,y轴交于B,C两点,表示出OB=OC=|m|,可得出三角形BOC为等腰直角三角形,确定出三角形三角形ADE面积,根据三角形ADF等于三角形ADE面积的一半求出a的值,即可确定出抛物线解析式.【解答】解:(1)∵抛物线y=ax2+bx+c,a+b+c=0,∴关于x的一元二次方程ax2+bx+c=0的一个根为x=1;(2)证明:∵2a=b,∴对称轴x=﹣b=﹣1,2a把b=2a 代入a+b+c=0中得:c=﹣3a ,∵a >0,c <0,∴△=b 2﹣4ac >0,∴4ac−b 24a <0,则顶点A (﹣1,4ac−b 24a )在第三象限;(3)由b=2a ,c=﹣3a ,得到x=−b±√b 2−4ac 2a =−2a±4a 2a ,解得:x 1=﹣3,x 2=1, 二次函数解析式为y=ax 2+2ax ﹣3a ,∵直线y=x+m 与x ,y 轴分别相交于点B ,C 两点,则OB=OC=|m|,∴△BOC 是以∠BOC 为直角的等腰直角三角形,即此时直线y=x+m 与对称轴x=﹣1的夹角∠BAE=45°,∵点F 在对称轴左侧的抛物线上,则∠DAF >45°,此时△ADF 与△BOC 相似,顶点A 只可能对应△BOC 的直角顶点O ,即△ADF 是以A 为直角顶点的等腰直角三角形,且对称轴为x=﹣1,设对称轴x=﹣1与OF 交于点G ,∵直线y=x+m 过顶点A (﹣1,﹣4a ),∴m=1﹣4a ,∴直线解析式为y=x+1﹣4a ,联立得:{y =x +1−4a y =ax 2+2ax −3a, 解得:{x =−1y =−4a 或{x =1a −1y =1a−4a , 这里(﹣1,﹣4a )为顶点A ,(1a ﹣1,1a﹣4a )为点D 坐标, 点D 到对称轴x=﹣1的距离为1a ﹣1﹣(﹣1)=1a ,AE=|﹣4a|=4a ,∴S △ADE =12×1a ×4a=2,即它的面积为定值,。
【新精品卷】湖北省宜昌市中考数学试卷(内含答案详析)

湖北省宜昌市中考数学试卷(考试时间共分钟,满分分)准考证号:__________ 姓名:________ 座位号:_________【请考生认真审题,争取会做的不要错,不会做的冷静思考】一.选择题(下列各小题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前的字母代号,每题3分,计45分)1.(3分)﹣66的相反数是()A.﹣66 B.66 C.D.【解析】选B.﹣66的相反数是66.2.(3分)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.【解析】选D.A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.3.(3分)如图,A,B,C,D是数轴上的四个点,其中最适合表示无理数π的点是()A.点A B.点B C.点C D.点D【解析】选D.因为无理数π大于3,在数轴上表示大于3的点为点D;4.(3分)如图所示的几何体的主视图是()A. B.C.D.【解析】选D.从正面看易得左边比右边高出一个台阶,故选项D符合题意.5.(3分)在纳木错开展的第二次青藏高原综合科学考查研究中,我国自主研发的系留浮空器于5月23日凌晨达到海拔7003米的高度.这一高度也是已知的同类型同量级浮空器驻空高度的世界纪录.数据7003用科学记数法表示为()A.0.7×104 B.70.03×102 C.7.003×103 D.7.003×104【解析】选C.将7003用科学记数法表示为:7.003×103.6.(3分)如图,将一块含有30°角的直角三角板的两个顶点分别放在直尺的两条平行对边上,若∠α=135°,则∠β等于()A.45°B.60°C.75°D.85°【解析】选C.由题意可得:∵∠α=135°,∴∠1=45°,∴∠β=180°﹣45°﹣60°=75°.7.(3分)下列计算正确的是()A.3ab﹣2ab=1 B.(3a2)2=9a4 C.a6÷a2=a3 D.3a2•2a=6a2【解析】选B.A、3ab﹣2ab=ab,故此选项错误;B、(3a2)2=9a4,正确;C、a6÷a2=a4,故此选项错误;D、3a2•2a=6a3,故此选项错误.8.(3分)李大伯前年在驻村扶贫工作队的帮助下种了一片果林,今年收货一批成熟的果子.他选取了5棵果树,采摘后分别称重.每棵果树果子总质量(单位:kg)分别为:90,100,120,110,80.这五个数据的中位数是()A.120 B.110 C.100 D.90【解析】选C.90,100,120,110,80,从小到大排列为:80,90,100,110,120,则这五个数据的中位数是:100.9.(3分)化简(x﹣3)2﹣x(x﹣6)的结果为()A.6x﹣9 B.﹣12x+9 C.9 D.3x+9【解析】选C.原式=x2﹣6x+9﹣x2+6x=9.10.(3分)通过如下尺规作图,能确定点D是BC边中点的是()A. B.C.D.【解析】选A.作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,11.(3分)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.【解析】选D.如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.12.(3分)如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A.50°B.55°C.60°D.65°【解析】选A.∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A=∠BOC=50°.13.(3分)在“践行生态文明,你我一起行动”主题有奖竞赛活动中,903班共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,如果参赛同学抽到每一类别的可能性相同,那么小宇参赛时抽到“生态知识”的概率是()A.B.C.D.【解析】选B.∵共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,参赛同学抽到每一类别的可能性相同,∴小宇参赛时抽到“生态知识”的概率是:.14.(3分)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=,那么三角形的面积为S=.如图,在△ABC中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为()A.6B.6C.18 D.【解析】选A.∵a=7,b=5,c=6.∴p==9,∴△ABC的面积S==6;15.(3分)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B =30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣1,2+)B.(﹣,3)C.(﹣,2+)D.(﹣3,)【解析】选B.如图,作B′H⊥y轴于H.由题意:OA′=A′B′=2,∠B′A′H=60°,∴∠A′B′H=30°,∴AH′=A′B′=1,B′H=,∴OH=3,∴B′(﹣,3),二.解答题(本大题共有9个小题,共75分)16.(6分)已知:x≠y,y=﹣x+8,求代数式+的值.【解析】原式=+==,当x≠y,y=﹣x+8时,原式=x+(﹣x+8)=8.17.(6分)解不等式组,并求此不等式组的整数解.【解析】,由①得:x,由②得:x<4,不等式组的解集为:<x<4.则该不等式组的整数解为:1、2、3.18.(7分)如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=50°,求∠AEB的度数.【解析】(1)证明:∵BE平分∠ABC,∴∠ABE=∠DBE,在△ABE和△DBE中,,∴△ABE≌△DBE(SAS);(2)解:∵∠A=100°,∠C=50°,∴∠ABC=30°,∵BE平分∠ABC,∴∠ABE=∠DBE=∠ABC=15°,在△ABE中,∠AEB=180°﹣∠A﹣∠ABE=180°﹣100°﹣15°=65°.19.(7分)《人民日报》点赞湖北宜昌“智慧停车平台”.作为“全国智慧城市”试点,我市通过“互联网”、“大数据”等新科技,打造“智慧停车平台”,着力化解城市“停车难”问题.市内某智慧公共停车场的收费标准是:停车不超过30分钟,不收费;超过30分钟,不超过60分钟,计1小时,收费3元;超过1小时后,超过1小时的部分按每小时2元收费(不足1小时,按1小时计).(1)填空:若市民张先生某次在该停车场停车2小时10分钟,应交停车费7元.若李先生也在该停车场停车,支付停车费11元,则停车场按5小时(填整数)计时收费.(2)当x取整数且x≥1时,求该停车场停车费y(单位:元)关于停车计时x(单位:小时)的函数解析式.【解析】(1)若市民张先生某次在该停车场停车2小时10分钟,应交停车费为:3+2×2=7(元);若李先生也在该停车场停车,支付停车费11元,则超出时间为(11﹣3)÷2=4(小时),所以停车场按5小时计时收费.答案:7;5;(2)当x取整数且x≥1时,该停车场停车费y(单位:元)关于停车计时x(单位:小时)的函数解析式为:y=3+(2(x﹣1),即y=2x+1.20.(8分)某校在参加了宜昌市教育质量综合评价学业素养测试后,随机抽取八年级部分学生,针对发展水平四个维度“阅读素养、数学素养、科学素养、人文素养”,开展了“你最需要提升的学业素养”问卷调查(每名学生必选且只能选择一项).小明、小颖和小雯在协助老师进行统计后,有这样一段对话:小明:“选科学素养和人文素养的同学分别为16人,12人.”小颖:“选数学素养的同学比选阅读素养的同学少4人.”小雯:“选科学素养的同学占样本总数的20%.”(1)这次抽样调查了多少名学生?(2)样本总数中,选“阅读素养”、“数学素养”的学生各多少人?(3)如图是调查结果整理后绘制成的扇形图.请直接在横线上补全相关百分比;(4)该校八年级有学生400人,请根据调查结果估计全年级选择“阅读素养”的学生有多少人?【解析】(1)16÷20%=80,所以这次抽样调查了80名学生;(2)设样本中选数学素养的同学数为x人,则选阅读素养的同学数为(x+4)人,x+x+4+16+12=80,解得x=24,则x+4=28,所以本总数中,选“阅读素养”的学生数为28人,选“数学素养”的学生数为24人;(3)选数学素养的学生数所占的百分比为×100%=30%;选阅读素养的学生数所占的百分比为×100%=35%;选人文素养的学生数所占的百分比为×100%=15%;如图,(4)400×35%=140,所以估计全年级选择“阅读素养”的学生有140人.21.(8分)如图,点O是线段AH上一点,AH=3,以点O为圆心,OA的长为半径作⊙O,过点H 作AH的垂线交⊙O于C,N两点,点B在线段CN的延长线上,连接AB交⊙O于点M,以AB,BC为边作▱ABCD.(1)求证:AD是⊙O的切线;(2)若OH=AH,求四边形AHCD与⊙O重叠部分的面积;(3)若NH=AH,BN=,连接MN,求OH和MN的长.【解析】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵∠AHC=90°,∴∠HAD=90°,即OA⊥AD,又∵OA为半径,∴AD是⊙O的切线;(2)解:如右图,连接OC,∵OH=OA,AH=3,∴OH=1,OA=2,∵在Rt△OHC中,∠OHC=90°,OH=OC,∴∠OCH=30°,∴∠AOC=∠OHC+∠OCH=120°,∴S扇形OAC==,∵CH==,∴S△OHC=×1×=,∴四边形ABCD与⊙O重叠部分的面积=S扇形OAC+S△OHC=+;(3)设⊙O半径OA=r=OC,OH=3﹣r,在Rt△OHC中,OH2+HC2=OC2,∴(3﹣r)2+12=r2,∴r=,则OH=,在Rt△ABH中,AH=3,BH=+1=,则AB=,在Rt△ACH中,AH=3,CH=NH=1,得AC=,在△BMN和△BCA中,∠B=∠B,∠BMN=∠BCA,∴△BMN∽△BCA,∴=即==,∴MN=,∴OH=,MN=.22.(10分)HW公司使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司生产的全部手机所需芯片的10%.(1)求甲类芯片的产量;(2)HW公司计划生产的手机全部使用自主研发的“QL”系列芯片.从起逐年扩大“QL”芯片的产量,、这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.到,丙类芯片三年的总产量达到1.44亿块.这样,的HW公司的手机产量比全年的手机产量多10%,求丙类芯片的产量及m的值.【解析】(1)设甲类芯片的产量为x万块,由题意得:x+2x+(x+2x)+400=2800,解得:x=400;答:甲类芯片的产量为400万块;(2)万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,∴丙类芯片的产量为1600+2×3200=8000万块,HW公司手机产量为2800÷10%=28000万部,400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,化简得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),∴t=4,∴m%=4,∴m=400;答:丙类芯片的产量为8000万块,m=400.23.(11分)已知:在矩形ABCD中,E,F分别是边AB,AD上的点,过点F作EF的垂线交DC于点H,以EF为直径作半圆O.(1)填空:点A在(填“在”或“不在”)⊙O上;当=时,tan∠AEF的值是;(2)如图1,在△EFH中,当FE=FH时,求证:AD=AE+DH;(3)如图2,当△EFH的顶点F是边AD的中点时,求证:EH=AE+DH;(4)如图3,点M在线段FH的延长线上,若FM=FE,连接EM交DC于点N,连接FN,当AE=AD时,FN=4,HN=3,求tan∠AEF的值.【解析】(1)连接AO,∵∠EAF=90°,O为EF中点,∴AO=EF,∴点A在⊙O上,当=时,∠AEF=45°,∴tan∠AEF=tan45°=1,答案:在,1;(2)∵EF⊥FH,∴∠EFH=90°,在矩形ABCD中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∠AFE+∠DFH=90°,∴∠AEF=∠DFH,又FE=FH,∴△AEF≌△DFH(AAS),∴AF=DH,AE=DF,∴AD=AF+DF=AE+DH;(3)延长EF交HD的延长线于点G,∵F分别是边AD上的中点,∴AF=DF,∵∠A=∠FDG=90°,∠AFE=∠DFG,∴△AEF≌△DGF(ASA),∴AE=DG,EF=FG,∵EF⊥FG,∴EH=GH,∴GH=DH+DG=DH+AE,∴EH=AE+DH;(4)过点M作MQ⊥AD于点Q.设AF=x,AE=a,∵FM=FEEF⊥FH,∴△EFM为等腰直角三角形,∴∠FEM=∠FMN=45°,∵FM=FE,∠A=∠MQF=90°,∠AEF=∠MFQ,∴△AEF≌△QFM(ASA),∴AE=EQ=a,AF=QM,∵AE=AD,∴AF=DQ=QM=x,∵DC∥QM,∴,∵DC∥AB∥QM,∴,∴,∵FE=FM,∴,∠FEM=∠FMN=45°,∴△FEN~△HMN,∴,∴.24.(12分)在平面直角坐标系中,正方形ABCD的四个顶点坐标分别为A(﹣2,4),B(﹣2,﹣2),C(4,﹣2),D(4,4).(1)填空:正方形的面积为36;当双曲线y=(k≠0)与正方形ABCD有四个交点时,k的取值范围是:0<k<4或﹣8<k<0;(2)已知抛物线L:y=a(x﹣m)2+n(a>0)顶点P在边BC上,与边AB,DC分别相交于点E,F,过点B的双曲线y=(k≠0)与边DC交于点N.①点Q(m,﹣m2﹣2m+3)是平面内一动点,在抛物线L的运动过程中,点Q随m运动,分别切运动过程中点Q在最高位置和最低位置时的坐标;②当点F在点N下方,AE=NF,点P不与B,C两点重合时,求﹣的值;③求证:抛物线L与直线x=1的交点M始终位于x轴下方.【解析】(1)由点A(﹣2,4),B(﹣2,﹣2)可知正方形的边长为6,∴正方形面积为36;有四个交点时0<k<4或﹣8<k<0;答案:36,0<k<4或﹣8<k<0;(2)①由题意可知,﹣2≤m≤4,yQ=﹣m2﹣2m+3=﹣(m+1)2+4,当m=﹣1,yQ最大=4,在运动过程中点Q在最高位置时的坐标为(﹣1,4),当m<﹣1时,yQ随m的增大而增大,当m=﹣2时,yQ最小=3,当m>﹣1时,yQ随m的增大而减小,当m=4时,yQ最小=﹣21,∴3>﹣21,∴yQ最小=﹣21,点Q在最低位置时的坐标(4,﹣21),∴在运动过程中点Q在最高位置时的坐标为(﹣1,4),最低位置时的坐标为(4,﹣21);②当双曲线y=经过点B(﹣2,﹣2)时,k=4,∴N(4,1),∵顶点P(m,n)在边BC上,∴n=﹣2,∴BP=m+2,CP=4﹣m,∵抛物线y=a(x﹣m)2﹣2(a>0)与边AB、DC分别交于点E、F,∴E(﹣2,a(﹣2﹣m)2﹣2),F(4,a(4﹣m)2﹣2),∴BE=a(﹣2﹣m)2,CF=a(4﹣m)2,∴=﹣,∴a(m+2)﹣a(4﹣m)=2am﹣2a=2a(m﹣1),∵AE=NF,点F在点N下方,∴6﹣a(﹣2﹣m)2=3﹣a(4﹣m)2,∴12a(m﹣1)=3,∴a(m﹣1)=,∴=;③由题意得,M(1,a(1﹣m)2﹣2),∴yM=a(1﹣m)2﹣2(﹣2≤m≤4),即yM=a(m﹣1)2﹣2(﹣2≤m≤4),∵a>0,∴对应每一个a(a>0)值,当m=1时,yM最小=﹣2,当m=﹣2或4时,yM最大=9a﹣2,当m=4时,y=a(x﹣4)2﹣2,∴F(4,﹣2),E(﹣2,36a﹣2),∵点E在边AB上,且此时不与B重合,∴﹣2<36a﹣2≤4,∴0<a≤,∴﹣2<9a﹣2≤﹣,∴yM≤﹣,同理m=﹣2时,y=y=a(x+2)2﹣2,∴E(﹣2,﹣2),F(4,36a﹣2),∵点F在边CD上,且此时不与C重合,∴﹣2<36a﹣2≤4,解得0<a≤,∴﹣2<9a﹣2≤﹣,∴yM≤﹣,综上所述,抛物线L与直线x=1的交点M始终位于x轴下方;。
湖北省黄冈市2001年中考数学试题及答案

黄冈市2001年初中升学统一考试一、填空题(共8小题,每小题3分,计24分)1.计算21--=_________;()03-=__________;121-_________.2.函数y =x -2中自变量x 的限值范围是________;近似数0.020有______个有效数字;某校办印刷厂今年四月份盈利6万元,记作+6元,五月份亏损了2.5万元,应计作______万元.3.要切一块面积为0.64㎡的正方形铁皮,它的边长是______m ;正六边形的中心角是______度;若等腰三角形底边上的高等于腰长的一半,则这个等腰三角形的顶角是________度.4.已知一组数据1 2 1 0 -1 -2 0 -1,则这组数据的平均数为_______,中位数为_______,方差为_________.5.化简(ab -b 2)÷ba b a +-22的结果是_________.6.已知等腰梯形的周长为80㎝,中位线长与腰长相等,则它的中位线长等于________㎝.7.今年国家为了继续刺激消费,规定私人购买耐用消费品,不超过其价格50%的款项可以用抵押的方式向银行贷款.蒋老师欲购买一辆家用轿车,他现在的全部积蓄用P 元,只够购买车款的60%,刚蒋老师应向银行贷款________元.8.已知⊙O 是△ABC 的外接圆,OD ⊥BC 于D ,且∠BOD =42°,则∠BAC =______度.二、选择题(共5小题,每小题3分,计15分) 9.在-7,cot 45°,sin 60°,()27,9,3---π这六个实数中,有理数的个数有( ).A .1个B .2个C .3个D .4个10.下列运算中:①(-a 3)2=-a 6;②a 3+a 3=2a 3;③(x -y )(-x -y )=y 2-x 2;④ab ab b a =33(a ≥0,b ≤0).其中正确的运算共有( ).A .1个B .2个C .3个D .4个11.如果一个四边形的对角线相等,那么顺次连接这个四边形各边中点所得的四边形一定是( ).A .梯形B .矩形C .菱形D .正方形12.若一元二次方程x 2-2x -m =0无实数根,则一次函数y =(m +1)x +m -1的图像不经过( ).A .第一象限B .第二象限C .第三象限D .第四象限13.某工厂去年积压产品a 件(a >0),今年预计每月销售产品2b 件(b >0),同时每月可生产出产品b 件,如果产品积压量y (件)是今年开工时间 t (月)的函数,则其图像只有是( ).三、解答题(共9小题,计61分)14.(5分)求一次函数y =x -2和反比例函数y =x3的图象的交点坐标. 15.(7分)如图2,在△MNP 中,∠MNP =45°,H 是高MQ 和高NR 的交点,求证:HN =PM .16.(8分)甲、乙两地间铁路长400千米,为了适应两地经济发展的需要,现将火车的行驶速度每小时比原来提高了45千米,因此,火车由甲地至乙地的行驶时间缩短了2小时,求火车原来的速度.17.(8分)去年某省将地处A ,B 两地的两所大学合并成一所综合性大学,为了方便A ,B 两地师生的交往,学校准备在相距2千米的A ,B 两地之间修筑一条笔直公路(即图3中的线段AB ),经测量,在A 地的北偏东60°方向、B 地的西偏北45°方向的C 处有一半公径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?18.(10分)已知,如图4,⊙O 1和⊙O 2内切于点P ,过点P 的直线交⊙O 1于点D ,交⊙O 2于点E ;DA 与⊙O 2相切,切点为C ,(1)求证:PC 平分∠APD ;(2)PE =3,P A =6,求PC 的长.19.(9分)已知:如图5,△ABC 中,AB =AC =10,BC =12,F 为BC 的中点,D 是FC 上的一点,过点D 作BC 的垂线交AC 于点G ,交BA 的延长线于点E ,如果设DC =x ,则(1)图中哪些线段(如线段BD 可记作y BD )可以看成是x 的函数[如y BD =12-x (0<x <6 ,y FD 6-x (0<x <6 请再写出其中的四个函数关系式:①_______;②_______;③____;④________ .(2)图中哪些图形的面积(如△CDG 的面积可记作S △CDG )可以看成是x 的函数[如S △CDG =232x (0<x <6,请再写出其中的两个函数关系式::①_______;②_______.20.(8分)先阅读下列第(1)题的解答过程:(1)已知a ,β是方程x 2+2x -7=0的两个实数根,求a 2+3β2+4β的值. 解法1:∵a ,β是方程x 2+2x -7=0的两个实数根, ∴a 2+2a -7=0,β2+2β-7=0,且a +β=-2.∴a 2=7-2a ,β2=7-2β.∴a 2+3β2+4β=7-2a +3(7-2β)+4β=28-2(a +β)=28-2×(-2)=32.解法2:由求根公式得a =1+22,β=-1-22.∴a 2+3β2+4β=(-1+22)2+3(-1-22)2+4(-1-22) =9-42+3(9+42)-4-82=32.当a =-1-22,β=-1+22时,同理可得a 2+3β2+4β=32. 解法3:由已知得a +β=-2,a β=-7. ∴a 2+β2=(a +β)2-2a β=18. 令a 2+3β2+4β=A ,β2+3a 2+4a =B .∴A +B =4(a 2+β2)+4(a +β)=4³18+4³(-2)=64.①A -B =2(β2- a 2)+4(β-a )=2(β+a )(β-a )+4(β-a )=0.② ①+②,得2A =64,∴A =32.请仿照上面的解法中的一种或自己另外寻注一种方法解答下面的问题:(2)已知x 1,x 2是方程x 2-x -9=0的两个实数根,求代数式x 13+7x 22+3x 2-66的值.21.(10分)南方A 市欲将一批容易变质的水果运往B 市销售,共有飞机、火车、汽车三种运输方式,现只可选其中一种,这三种运输方式的主要参考数据如下表所示:若这批水果在运输(包括装卸)过程中的损耗为200元/小时,记A ,B 两市间的距离为x 千米.(1)如果用W 1,W 2,W 3分别表示使用飞机、火车、汽车的运输时的总支出费用(包括损耗),求出W 1,W 2,W 3与x 间的函数关系式.(2)应采用哪种运输方式,才使运输时的总支出费用最小?22.(16分)已知一个二次函数的图像经过A (4,-3),B (2,1)和C (-1,-8)三点.(1)求这个二次函数的解析式以及它的图像与x 轴的交点M ,N (M 在N 的左边)的坐标.(2)若以线段MN 为直径作⊙G ,过坐标原点O 作⊙G 的切线OD ,切点为D ,求OD 的长.(3)求直线OD 的解析式.(4)在直线OD 上是否存在点P ,使得△MNP 是直角三角形?如果存在,求出点P 的坐标(只需写出结果,不必写出解答过程);如果不存在 ,请说明理由.评析:全卷题量适度,涵盖了初中数学的基本知识点,计算量控制适度,基本上避免了不必要的繁杂演算,即使是压轴题,只要方法得当,也易求得正确结果.并在压轴题中摒弃了复杂的解答过程,只要结果,因为从结果中是可以窥探出解题得思维过程的创新素质,这样做为考生争取了考试时间,不失为一种检测的好方法.全卷题型丰富多彩,基础题与创新题并举,把基本功检测一能力考查融为一体,体现了素质教育特色,整个试卷的命题设计朴实自然,没有人为编造的痕迹.部分试题(如题10)中设置了“陷阱”,重在考查分析能力,较好地检测了考生的思维严密与基本功的扎实与否. 试卷从基本知识入手,以能力考查立意,注重数学思想方法的检测,仅分类讨论思想的教师就有题8,题21,题22等;开放性试题有题19,题22等.考查贴近现实生活的应用题更是本卷特色,代数应用题有题7,题13,题21;几何应用题有题17;阅读理解题有题19,题20,都是检测自学能力的好题型.整个试卷于简炼、平实中见深意,于基础中考能力和素质,不失为一份极有创意的考卷,体现了教育强市的特色,折射出了他们对素质教育和创新教育的理解层次与实施程度.答案:一、填空题 1.-211 12 2.x ≤2 两 -2.5 3.0.8 60 120 4.0 0235.b 6.20 7.328.42°或138°二、选择题 9.D 10.C11.C 12.A 13.C三、解答题14.解方程组⎪⎩⎪⎨⎧=-=x y x y 32,得⎩⎨⎧-=-=⎩⎨⎧-=.3,1;1,32221y x y x 15.如图1∵MQ ⊥PN ,∠MNP =45° ∴∠QMN =45°. ∴∠MNP =∠QMN .∴QM =QN . ∵NR ⊥PM , ∴∠1+∠4=90°.又∠2+∠3=90°,且∠3=∠4, ∴∠1=∠2,在Rt △HQN 和Rt △PQM 中,∵∠1=∠2,QN =QM ,∠HQN =∠PQM ,∴Rt △HQN ≌Rt △PQM . ∴HN =PM .16.设火车原来的速度为x 千米/时,则现在的速度为(x +45)千米/时,依题意可得245400400=+-x x . 去分母整理,得x 2+45x -9000=0.解这个方程得x 1=75,x 2=-120都是所列方程的根.但x =-120不符合题意,应舍去,∴x =75.答:火车原来的速度为75千米/时. 17.过点C 作CD ⊥AB ,如图2,垂足为点D .∵∠B =45°,∴∠BCD =45°. ∴CD =BD .设CD =BD =x ,因∠A =30°,∴AC =2x .由勾股定理得AD =x x x CD AC 342222=-=-.∴由AD +DB =2,得23=+x x .∴x =13- ∴CD =13-≈0.732>0.7. ∴计算修筑的这条公路不会穿过公园.18.(1)过点P 作两圆的公切线PT .∴∠TPC =∠4,∠3=∠D ,∵∠4=∠D +∠5,∴∠2+∠3=∠D +∠5.∴∠2=∠5.又DA 与⊙O 相切于点C , ∴∠5=∠1 ∴∠1=∠2.∴PC 平分∠APD .(2)∵DA 与⊙O 2相切于点C ,∴∠PCA =∠4,由(1)知∠2=∠1.∴△PCA ∽△PEC . ∴PCPAPE PC =,即PC 2=P A ²PE .∵PE =3,P A =6,∴PC 2=18,∴PC =23 .(见图3)19.(1)①y DG =34x ;②y GC =35x ;③y AG =x 35-+10;④y AE =35(6-x )=-35x +10;⑤y DE =34(12-x )=-34x +16;⑥y EG =38(6-x )=-38x +16;⑦y DE =35(12-x )=-35x +20等,其中0<x <6.(2)①S △AEG =34(6-x )2=34x 2-16x +4;②S △BDE =32(12-x )2=32x 2-16x +96;③S 四边形AGDF =32(36-x 2)=-32x 2+24; ④S 四边形ABDG =-32x 2+48;⑤S 四边形AFDE =32(12-x )2-24=32x 2-16x +72;⑥S 四边形BEGC =34(72-12x +x 2)=34x 2+16x +96等,其中0<x <6.20.∵x 1,x 2是方程x 2-x -9=0的两个实数根,∴x 1+x 2=1,21x -x 1-9=0,22x -x 2-9=0,即21x =x 1+9,22x =x 2+9. ∴31x +722x +3x 2-66=x 1(x 1+9)+7(x 2+9)+3x 2-66=21x +9x 1+10x 2-3=x 1+9+9x 1+10x 2-3=10(x 1+x 2)+6=16.21.(1)用飞机、火车、汽车三种运输工具运送这批水果途中所需时间(包括装卸时间)分别为(2200+x )小时、(4100+x )小时、(250+x)小时;所需费用(包括装卸费用)分别为(16x +1000)元、(4x +2000)元、(8x +1000)元.所以,用飞机、火车、汽车这三种运输工具时的总支出费用(包括损耗)分别为W 1=16x +1000+(2200+x)³200=17x +1400; W 2=4x +2000+(4100+x)³200=6x +2800; W 3=8x +1000+(250+x)³200=12x +1400; (2)∵x >0,∴17x +1400>2x +1400,∴W 1>W 3恒成立.由W 1-W 2=0,得x =111400≈127;由W 2-W 3=0,得x =3700≈233;当0<x ≤111400时,W 2>W 1>W 3;当x =111400<x <3700时,W 1>W 2>W 3;当x =3700时,W 1>W 3=W 2;当x >3700时,W 1>W 3>W 2.故当A ,B 两市的距离不超过233千米时,用汽车运输比较合理;当A ,B 两市的距离大约等于233千米时,采用汽车、火车均适合;当A ,B 两市的距离超过233千米时,采用22.(1)设所求的二次函数的解析式为y =ax 2+bx +c ,∵抛物线经过A (4,-3),B (2,1)和C (-1,-8)三点,∴⎪⎩⎪⎨⎧+-=-++=++=-.8,241,4163c b a c b a c b a 解之,得⎪⎩⎪⎨⎧-==-=3,41c b a ∴抛物线为y=-x 2+4x -3,令y =0,得-x 2+4x -3=0,解得x 1=1,x 2=3.∴抛物线与x 轴的交点坐标为M (1,0),N (3,0).(2)过原点O 作⊙G 的切线,切点为D .易知OM =1,ON =3.由切割线定理,得OD 2=OM ²ON =1³3.∴OD =3,即所求的切线OD 长为3.(3)如图4,连结DG ,则∠ODG =90°,DG =1.∵OG =2,∴∠DOG =30°.过D 作DE ⊥OG ,垂足为E ,则DE =OD ²sin 30°=23,DE =OD ²cos 30°=23.∴点D 的坐标为D (23,23)或(23,-23).从而直线OD 的解析式为y =±33x . (4)在直线OD 上存在点P ,使△MNP 是直角三角形.所求P 点的坐标为(1,±33),或(3,±3),或(23,-23)。
湖北省宜昌市中考数学试题及答案解析05(经典珍藏版)

∵AB=BC ∴CD=x ∵AD 是 BC 边上的高 ∴(3x)2+x2=20 x=2
∵AH=5 ∠ABC=∠APH ∴PA=25 PH=20
3
3
过点 G 作 GF’⊥GH
易证△AHP∽△F’GP ∴GF=25 >6 ∴GH 与 GF 相交 4
∴过点 A,B,G 三点的圆与直线 EF 相交
24. 解:(1)∵抛物线 y=-1 x2+bx+c 经过点 O(0,0),点 A(2,0) 2
区域内的概率.
E
G C
H
A
FD
B
(第 21 题)
数学训练试题(二) 第 3 页 ( 共 4 页)
22.(本题满分 10 分)某厂家决定由甲乙两个车间生产在 30 天里共同生产一批产品投放市 场. 在前 10 天里,两车间共生产产品 5 000 件. 10 天后,厂家调整生产方案:减少甲 车间的日生产量,提高甲乙两车间的日生产总量,甲车间日生产量减少的百分数恰好为
∴S△HDB=1 S△HCB 2
S△HDE=S△HCB
∴概率为 1 . 5
22.解:(1)调整后甲乙两车间的日产总量:12 500÷20=625(1 分),
调整前甲乙两车间的日产总量:5 000÷10=500(2 分),
调整后甲乙两车间日生产总量增加的百分数:
(625-500)÷500=25%(3 分).
∴带入求得 b=1 c=0
(2)∵经过点 B(0,2)的直线 y=kx+d ∴d=2
∵直线 y=kx+d 与抛物线 y=-1 x2+x 只有一个交点 2
∴kx+d=-1 x2+x △=0 即(1-k)2-4×(-1 )×(-2)=0
2
2
宜昌中考数学试题及答案.doc

2014年宜昌中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
宜昌中考数学试题及答案
宜昌中考数学试题及答案第一节选择题(共15小题,每小题2分,共30分)1.某数的百位数与个位数之和为5,十位数是9,则这个三位数是()A. 977B. 567C. 695D. 5892.如图,甲、乙两个校园的形状相同,但甲校园比乙校园的每个长度都扩大了2倍,则甲校园建筑面积是乙校园的()A. 2倍B. 4倍C. 8倍D. 16倍3.已知a:b=3:5,且a+b=80,则a的值是()A. 24B. 30C. 36D. 484.已知函数y=5x+2,若x=3,那么y的值等于()A. 5B. 7C. 15D. 175.已知AB是一个直径,圆心角∠ACB的度数是130°,则弧AB的度数是()A. 65°B. 130°C. 260°D. 390°6.某部电视上星期一、星期二、星期三、星期四播放了以5%的比例递增的4个电影。
从星期二到星期四的百分比增长率是()A. 5%B. 15%C. 20%D. 25%7.下列说法正确的是()A. 正方形是长方形B. 长方形是正方形C. 正方形是四边形D. 长方形是四边形8.一个正17边形内角的度数和是( )A. 2430°B. 2520°C. 2620°D. 2700°9.已知正方形的面积是36平方米,边长是()A. 6米B. 12米C. 18米D. 24米10.如图,△ABC与△DEF相似,且边长的比值是1:2,则△DEF 的面积是△ABC的()A. 1/2倍B. 1倍C. 2倍D. 4倍11.三个数的和是60,其中最大的数比另两个数的差的两倍还大6,则这三个数的和是( )A. 30B. 36C. 42D. 4812.下列说法正确的是()A. 结合律适用于加法运算和乘法运算B. 结合律适用于加法运算但不适用于乘法运算C. 结合律适用于乘法运算但不适用于加法运算D. 结合律既不适用于加法运算也不适用于乘法运算13.正方形ABCD,点E是AB边的中点,将正方形四等分,则ADE三角形的面积与正方形ABCD的面积之比是()A. 1/4B. 1/6C. 1/9D. 1/1014.如图,∠A和∠B互余,则∠A的度数是()A. 50°B. 90°C. 130°D. 180°15.晚餐时,小明喝了一碗粥,吃了1/5支香肠,吃了为数的茄子,已知这些食品%都是原先的量的两倍,那么小明吃了几个茄子?A. 5B. 10C. 15D. 20第二节解答题(共5小题,共70分)1.已知△ABC中,角A的角平分线AD和角B的角平分线BE交于点O,若∠AOC=70°,∠BOE=55°,求∠ABC的度数。
宜昌市中考数学试题及答案(课改区)
题目简单更要仔细哟!湖北省宜昌市初中毕业生学业考试数 学 试 卷(课改实验区使用)(考试形式:闭卷 全卷共五大题25小题 卷面分数:120分 考试时限:120分钟)考生注意:1.本试卷分为两卷,解答第I 卷(1~2页)时请将解答结果填写在第II 卷(3~8页)上指定的位置,否则答案无效,交卷时只交第II 卷. 2.答卷时允许使用科学计算器.以下数据和公式供参考:二次函数y =ax 2+bx +c 图象的顶点坐标是44,2(2ab ac a b -- ;扇形面积S =3602r n π.第Ⅰ卷(选择题、填空题 共45分)一、选择题:(下列各小题都给出了四个选项,其中只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在第II 卷上指定的位置. 本大题共10小题,每小题3分,计30分) 1. 图中物体的形状类似于( ).(A )棱柱 (B )圆柱 (C )圆锥 (D )球2.化简20的结果是( ).(A)25 (B)52 (C) (D)543. 如图所示,BC =6,E 、F 分别是线段AB 和线段AC 的中点,那么线段EF 的长是( ). (A )6 (B )5 (C )4.5 (D )34.有6张背面相同的扑克牌,正面上的数字分别是4,5,6,7,8,9.若将这六张牌背面朝上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是9的概率为( ).(A)23 (B) 12 (C) 13 (D) 165.在5×5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是( ).(A)先向下移动1格,再向左移动1格 (B)先向下移动1格,再向左移动2格 (C)先向下移动2格,再向左移动1格 (D)先向下移动2格,再向左移动2格6. 三峡大坝坝顶从7月到9月共92天将对游客开放,每天限接待1000人,在整个开放期间最多(第5题) F E CBA(第3题)能接待游客的总人数用科学记数法表示为( )人.(A )92×103 (B )9.2×104 (C )9.2×103 (D )9.2×1057.如图,希望中学制作了学生选择棋类、武术、摄影、刺绣四门校本课程情况的扇形统计图. 从图中可以看出选择刺绣的学生为( ). (A)11% (B)12% (C) 13% (D) 14%8.某城市进行旧城区人行道的路面翻新,准备对地面密铺彩色地砖, 有人提出了4种地 砖的形状供设计选用:①正三角形,②正四边形,③正五边形,④正六边形.其中不 能进行密铺的地砖的形状是( ).(A) ① (B) ② (C) ③ (D) ④9.实数m 、n 在数轴上的位置如图所示,则下列不等关系正确的是( ). (A )n <m (B ) n 2<m 2(C )n 0<m 0(D )| n |<| m | (第9题) 10.如图所示的函数图象的关系式可能是( ). (A )y = x (B )y =x1(C )y = x 2 (D) y =1x二、填空题:(请将答案填写在第II 卷上指定的位置.本大题共5小题,每小题3分,计15分)11.如果收入15元记作+15元,那么支出20元记作 元. 12.如图,直线AB 、CD 相交于点O ,若∠1=28°,则∠2= .13.已知,在Rt △ABC 中∠C =90°,∠BAC =30°,AB =10,那么BC = .14.甲、乙、丙三台包装机同时分装质量为400克的茶叶.从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表所示:15.如图,时钟的钟面上标有1,2,3,……,12共12个数,一条 直线把钟面分成了两部分.请你再用一条直线分割钟面,使钟面被 分成三个不同的部分且各部分所包含的几个数的和都相等,则其 中的两个部分所包含的几个数分别是 和. 。
初中毕业升学考试(湖北宜昌卷)数学(解析版)(初三)中考真卷.doc
初中毕业升学考试(湖北宜昌卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%【答案】A.【解析】试题分析:已知盈利5%”记作+5%,根据正负数的意义可得﹣3%表示表示亏损3%.故答案选A.考点:正负数的意义.【题文】下列各数:1.414,,﹣,0,其中是无理数的为()A.1.414 B. C.﹣ D.0【答案】B.【解析】试题分析:根据无理数的定义可得是无理数.故答案选B.考点:无理数的定义.【题文】如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是()【答案】A.【解析】试题分析:根据轴对称图形与中心对称图形的概念可得:选项A是轴对称图形,也是中心对称图形;选项B 不是轴对称图形,也不是中心对称图形;选项C不是轴对称图形,也不是中心对称图形;选项D是轴对称图形,不是中心对称图形.故答案选A.考点:中心对称图形;轴对称图形.【题文】把0.22×105改成科学记数法的形式,正确的是()A.2.2×103 b B.2.2×104 b C.2.2×105 b D.2.2×106【答案】B.【解析】评卷人得分试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为原数的整数位数减1,所以0.22×105=22000=2.2×104.故答案选B.考点:科学记数法.【题文】设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A.a>b B.a=b C.a<b D.b=a+180°【答案】B.【解析】试题分析:根据多边形的内角和定理可得a=(4﹣2)•180°=360°.多边形外角和可得b=360°,所以a=b .故答案选B.考点:多边形内角与外角.【题文】在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A.甲组 B.乙组 C.丙组 D.丁组【答案】D.【解析】试题分析:大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故答案选D.考点:事件概率的估计值.【题文】将一根圆柱形的空心钢管任意放置,它的主视图不可能是()【答案】A.【解析】试题分析:一根圆柱形的空心钢管任意放置,它的三视图始终是,主视图是它们中一个,所以它的主视图不可能是.故答案选A,考点:几何体的三视图.【题文】分式方程=1的解为()A.x=﹣1 B.x= C.x=1 D.x=2【答案】A.【解析】试题分析:去分母得:2x﹣1=x﹣2,解得:x=﹣1,经检验x=﹣1是分式方程的解,所以分式方程的解为x=﹣1.故答案选A.考点:分式方程的解法.【题文】已知M、N、P、Q四点的位置如图所示,下列结论中,正确的是()A.∠NOQ=42° B.∠NOP=132°C.∠PON比∠MOQ大 D.∠MOQ与∠MOP互补【答案】C.【解析】试题分析:如图所示:∠NOQ=138°,选项A错误;∠NOP=48°,选项B错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,选项C正确;由以上可得,∠MOQ与∠MOP不互补,选项D错误.故答案选C.考点:角的度量.【题文】如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【答案】D.【解析】试题分析:已知用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,由此可得线段AB的长小于点A绕点C到B的长度,所以能正确解释这一现象的数学知识是两点之间,线段最短,故答案选D.考点:线段的性质.【题文】在6月26日“国际禁毒日”来临之际,华明中学围绕“珍爱生命,远离毒品”主题,组织师生到当地戒毒所开展相关问题的问卷调查活动,其中“初次吸毒时的年龄”在17至21岁的统计结果如图所示,则这些年龄的众数是()A.18 B.19 C.20 D.21【答案】C.【解析】试题分析:一组数据中出现次数最多的数据叫做众数,由条形图可得年龄为20岁的人数最多,所以众数为20.故答案选C.考点:众数;条形统计图.【题文】任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形【答案】B.【解析】试题分析:根据线段垂直平分线的性质可得EG=EH=FH=GF,由此可得选项A正确,选项B错误,选项C、正确,选项D正确.故答案选B.考点:线段垂直平分线的性质.【题文】在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F【答案】A.【解析】试题分析:由勾股定理求得OA=,OH=2,根据点和圆的位置关系可得OE=2<OA,所以点E在⊙O内,OF=2<OA,所以点F在⊙O内,OG=1<OA,所以点G在⊙O内,OH=2>OA,所以点H在⊙O外,所以需要移除的是位于点E、F、G的三棵树,故答案选A.考点:点与圆的位置关系.【题文】小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美 B.宜晶游 C.爱我宜昌 D.美我宜昌【答案】C.【解析】试题分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因为x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C.考点:因式分解.【题文】函数y=的图象可能是()【答案】C.【解析】试题分析:函数y=的图象是反比例y=的图象向左移动一个单位得到的,故答案选C.考点:反比例函数的图象.【题文】计算:(﹣2)2×(1﹣).【答案】1.【解析】试题分析:根据有理数的运算顺序依次计算即可.试题解析:原式=4×(1﹣)=4×=1.考点:有理数的运算.【题文】先化简,再求值:4x•x+(2x﹣1)(1﹣2x).其中x=.【答案】原式=4x﹣1,当x=时,原式=﹣.【解析】试题分析:直接利用整式乘法运算法则计算,再去括号,进而合并同类项,把已知代入求出答案.试题解析:原式=4x2+(2x﹣4x2﹣1+2x)=4x2+4x﹣4x2﹣1=4x﹣1,当x=时,原式=4×﹣1=﹣.考点:整式的化简求值.【题文】杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD.垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.【答案】20m.【解析】试题分析:已知AB∥CD,根据平行线的性质可得∠ABO=∠CDO,再由垂直的定义可得∠CDO=90°,可得OB ⊥AB,根据相邻两平行线间的距离相等可得OD=OB,即可根据ASA定理判定△ABO≌△CDO,由全等三角形的性质即可得CD=AB=20m.试题解析:∵AB∥CD,∴∠ABO=∠CDO,∵OD⊥CD,∴∠CDO=90°,∴∠ABO=90°,即OB⊥AB,∵相邻两平行线间的距离相等,∴OD=OB,在△ABO与△CDO中,,∴△ABO≌△CDO(ASA),∴CD=AB=20(m)考点:全等三角形的判定及性质.【题文】如图,直线y=x+与两坐标轴分别交于A、B两点.(1)求∠ABO的度数;(2)过A的直线l交x轴半轴于C,AB=AC,求直线l的函数解析式.【答案】(1)∠ABO=60°;(2)y=﹣x+.【解析】试题分析:(1)根据一次函数解析式y=x+求出点A、B的坐标,在Rt△ABO中,求出tan∠ABO的值,从而求出∠ABO的度数;(2)根据题意可得,AB=AC,AO⊥BC,可得AO为BC的中垂线,根据点B的坐标,求得点C的坐标,利用待定系数法求出直线l的函数解析式即可.试题解析:(1)对于直线y=x+,令x=0,则y=,令y=0,则x=﹣1,故点A的坐标为(0,),点B的坐标为(﹣1,0),则AO=,BO=1,在Rt△ABO中,∵tan∠ABO==,∴∠ABO=60°;(2)在△ABC中,∵AB=AC,AO⊥BC,∴AO为BC的中垂线,即BO=CO,则C点的坐标为(1,0),设直线l的解析式为:y=kx+b(k,b为常数),则,解得:,即函数解析式为:y=﹣x+.考点:一次函数与坐标轴的交点;待定系数法确定一次函数解析式.【题文】某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.【答案】(1)不可能事件;(2).【解析】试题分析:(1)根据随机事件的概念即可得“小李同学在该天早餐得到两个油饼”是不可能事件;(2)根据题意画出树状图,再由概率公式求解即可.试题解析:(1)小李同学在该天早餐得到两个油饼”是不可能事件;(2)树状图法即小张同学得到猪肉包和油饼的概率为.考点:列表法与树状图法.【题文】如图,CD是⊙O的弦,AB是直径,且CD∥AB,连接AC、AD、OD,其中AC=CD,过点B的切线交CD 的延长线于E.(1)求证:DA平分∠CDO;(2)若AB=12,求图中阴影部分的周长之和(参考数据:π=3.1,=1.4,=1.7).【答案】(1)详见解析;(2)26.5.【解析】试题分析:(1)根据平行线的性质和等腰三角形的性质可得∠CDA=∠DAO,∠DAO=∠ADO,即可证得结论.(2)易证∠CDA=∠BAD=∠CAD,可得==,再证明∠DOB=60°,即可得△BOD是等边三角形,由此即可解决问题.试题解析:证明:(1)∵CD∥AB,∴∠CDA=∠BAD,又∵OA=OD,∴∠ADO=∠BAD,∴∠ADO=∠CDA,∴DA平分∠CDO.(2)如图,连接BD,∵AB是直径,∴∠ADB=90°,∵AC=CD,∴∠CAD=∠CDA,又∵CD∥AB,∴∠CDA=∠BAD,∴∠CDA=∠BAD=∠CAD,∴==,又∵∠AOB=180°,∴∠DOB=60°,∵OD=OB,∴△DOB是等边三角形,∴BD=OB=AB=6,∵=,∴AC=BD=6,∵BE切⊙O于B,∴BE⊥AB,∴∠DBE=∠ABE﹣∠ABD=30°,∵CD∥AB,∴BE⊥CE,∴DE=BD=3,BE=BD×cos∠DBE=6×=3,∴的长==2π,∴图中阴影部分周长之和为2π+6+2π+3+3=4π+9+3=4×3.1+9+3×1.7=26.5.考点:切线的性质;弧长的计算.【题文】某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2104年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.【答案】(1)8;(2)10%.【解析】(2)试题分析:(1)根据题意列式计算即可得出结果;(2)设B品牌产销线的年销售量递增相同的份数为k万份,由题意得(9.5-0.5)+(1.8+k)=11.4,解得k=0.6;,设A品牌产销线平均每份获利的年递减百分数为x,根据题意得(1.8+2×0.6)×(1+2x)2=10.89),解方程即可得结论.试题解析:(1)9.5﹣(2018﹣2015)×0.5=8(万份);答:品牌产销线2018年的销售量为8万份;(2)设B品牌产销线的年销售量递增相同的份数为k万份,由题意得,(9.5-0.5)+(1.8+k)=11.4解得k=0.6;设A品牌产销线平均每份获利的年递减百分数为x,根据题意得,(1.8+2×0.6)×(1+2x)2=10.89),解得x1=0.05,x2=-1.05(不合题意,舍去),∴2x=10%;答:B品牌产销线2016年平均每份获利增长的百分数为10%.考点:一元二次方程的应用.【题文】在△ABC中,AB=6,AC=8,BC=10,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D 为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.(1)求∠D的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH.①如图1,连接GH、AD,当GH⊥AD时,请判断四边形AGDH的形状,并证明;②当四边形AGDH的面积最大时,过A作AP⊥EF于P,且AP=AD,求k的值.【答案】(1)90°;(2)①四边形AGDH为正方形,理由详见解析;②k=.【解析】试题分析:(1)根据已知条件,由勾股定理的逆定理判定△ABC是直角三角形,即可证得结论;(2)①先判断AB∥DE,DF∥AC,得到平行四边形,再判断出是正方形;②先判断面积最大时点D的位置,由△BGD∽△BAC,找出AH=8﹣GA,得到S矩形AGDH=﹣AG2+8AG,确定极值,AG=3时,面积最大,最后求k得值.试题解析:(1)∵AB2+AC2=100=BC2,∴∠BAC=90°,∵△DEF∽△ABC,∴∠D=∠BAC=90°,(2)①四边形AGDH为正方形,理由:如图1,延长ED交BC于M,延长FD交BC于N,∵△DEF∽△ABC,∴∠B=∠C,∵EF∥BC,∴∠E=∠EMC,∴∠B=∠EMC,∴AB∥DE,同理:DF∥AC,∴四边形AGDH为平行四边形,∵∠D=90°,∴四边形AGDH为矩形,∵GH⊥AD,∴四边形AGDH为正方形;②当点D在△ABC内部时,四边形AGDH的面积不可能最大,理由:如图2,点D在内部时(N在△ABC内部或BC边上),延长GD至N,过N作NM⊥AC于M,∴矩形GNMA面积大于矩形AGDH,∴点D在△ABC内部时,四边形AGDH的面积不可能最大,只有点D在BC边上时,面积才有可能最大,如图3,点D在BC上,∵DG∥AC,∴△BGD∽△BAC,∴,∴,∴,∴AH=8﹣GA,S矩形AGDH=AG×AH=AG×(8﹣AG)=﹣AG2+8AG,当AG=﹣=3时,S矩形AGDH最大,此时,DG=AH=4,即:当AG=3,AH=4时,S矩形AGDH最大,在Rt△BGD中,BD=5,∴DC=BC﹣BD=5,即:点D为BC的中点,∵AD=BC=5,∴PA=AD=5,延长PA,∵EF∥BC,QP⊥EF,∴QP⊥BC,∴PQ是EF,BC之间的距离,∴D是EF的距离为PQ的长,在△ABC中,AB×AC=BC×AQ∴AQ=4.8∵△DEF∽△ABC,∴k=.考点:相似三角形的综合题.【题文】已知抛物线y=x2+(2m+1)x+m(m﹣3)(m为常数,﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是该抛物线上不同的三点,现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线a,过抛物线顶点P作PH⊥a于H.(1)用含m的代数式表示抛物线的顶点坐标;(2)若无论m取何值,抛物线与直线y=x﹣km(k为常数)有且仅有一个公共点,求k的值;(3)当1<PH≤6时,试比较y1,y2,y3之间的大小.【答案】(1)顶点坐标(﹣,﹣);(2)k=3;(3)﹣1≤m<﹣或<m≤时,有y2>y1=y3,﹣<m<﹣时,有y2<y1=y3.【解析】试题分析:(1)根据顶点坐标公式表示出顶点坐标即可;(2)把两个解析式联立后得一个一元二次方程,利用△=0即可求k值;(3)首先证明y1=y3,再根据点B的位置,分类讨论,①令<﹣m﹣1,求出m的范围即可判断,②令=﹣m﹣1,则A与B重合,此情形不合题意,舍弃.③令>﹣m﹣1,求出m的范围即可判断,④令﹣≤<﹣m,求出m的范围即可判断,⑤令=﹣m,B,C重合,不合题意舍弃.⑥令>﹣m,求出m的范围即可判断.试题解析:(1)∵﹣=﹣, =﹣,∴顶点坐标(﹣,﹣).(2)由消去y得x2+2mx+(m2+km﹣3m)=0,∵抛物线与x轴有且仅有一个公共点,∴△=0,即(k﹣3)m=0,∵无论m取何值,方程总是成立,∴k﹣3=0,∴k=3,(3)PH=|﹣﹣(﹣)|=||,∵1<PH≤6,∴当>0时,有1<≤6,又﹣1≤m≤4,∴<m≤,当<0时,1<﹣≤6,又∵﹣1≤m≤4,∴﹣1,∴﹣1≤m<﹣或<m≤,∵A(﹣m﹣1,y1)在抛物线上,∴y1=(﹣m﹣1)2+(2m+1)(﹣m﹣1)+m(m+3)=﹣4m,∵C(﹣m,y3)在抛物线上,∴y3=(﹣m)2+(2m+1)(﹣m)+m(m﹣3)=﹣4m,∴y1=y3,①令<﹣m﹣1,则有m<﹣,结合﹣1≤m≤﹣,∴﹣1≤m<﹣,此时,在对称轴的左侧y随x的增大而减小,如图1,∴y2>y1=y3,即当﹣1≤m<﹣时,有y2>y1=y3.②令=﹣m﹣1,则A与B重合,此情形不合题意,舍弃.③令>﹣m﹣1,且≤﹣时,有﹣<m≤﹣,结合﹣1≤m<﹣,∴﹣<m≤﹣,此时,在对称轴的左侧,y随x的增大而减小,如图2,∴y1=y3>y2,即当﹣<m≤﹣时,有y1=y3>y2,④令﹣≤<﹣m,有﹣≤m<0,结合﹣1≤m<﹣,∴﹣≤m<﹣,此时,在对称轴的右侧y随x的增大而增大,如图3,∴y2<y3=y1.⑤令=﹣m,B,C重合,不合题意舍弃.⑥令>﹣m,有m>0,结合<m≤,∴<m≤,此时,在对称轴的右侧,y随x的增大而增大,如图4,∴y2>y3=y1,即当<m≤时,有y2>y3=y1,综上所述,﹣1≤m<﹣或<m≤时,有y2>y1=y3,﹣<m<﹣时,有y2<y1=y3.考点:二次函数综合题.。
历年数学中考试题(含答案) (59)
湖北省宜昌市初中毕业生学业考试数 学 试 题本试卷共24小题,满分120分,考试时间120分钟.注意事项:1.本试卷分试题卷和答题卡两部分,请将答案答在答题卡上每题对应的答题区域内,写在试题卷上无效.2.考试结束,请将本试题卷和答题卡一并上交. 3.参考公式:弧长180n rl π=; 二次函数y =ax 2+bx +c 图象的顶点坐标是2424()b ac b aa--, ,对称轴为2b x a=-.一、选择题(下列各小题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号. 每小题3分,计45分) 1.如果“盈利5%”记作+5%,那么—3%表示( ).A .亏损3%B .亏损8%C .盈利2%D .少赚2%2.下列各数:1.414,13-,0,其中是无理数的是( ).A .1.414BC .13- D .03.如下左图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是( ).(第3题) A . B . C . D . 4.把50.2210⨯改写成科学计数法的形式,正确的是( ).A .2.2×103B . 2.2×104C .2.2×105D .2.2×1065.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ).A .a b >B .a b =C .a b <D .180b a =+6.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法来估算正面朝上的概率,其实验次数分别为10次,50次,100次,200次,其中实验相对科学的是( ).A .甲组B .乙组C .丙组D .丁组7.将一根圆柱形的空心钢管任意放置,它的主视图不可能是( ).A .B .C .D .8.分式方程2112x x -=-的解为 ( ). A .1x =- B .12x = C .1x = D .2x =9.已知M ,N ,P ,Q 四点的位置如图所示,下列结论中,正确的是( ).A .42NOQ ∠=B .132NOP ∠=C .PON ∠比MOQ ∠大D .MOQ ∠与MOP ∠互补10.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( ).A .垂线段最短B .经过一点有无数条直线C .经过两点,有且仅有一条直线D .两点之间,线段最短11.在6月26日“国际禁毒日”来临之际,华明中学围绕“珍爱生命,远离毒品”主题,组织师生到当地戒毒所开展相关问题的问卷调查活动.其中“初次吸毒时的年龄”在17至21岁的统计结果如图所示,则这些年龄的众数是( ).A . 18B .19C .20D .2112.任意一条线段EF ,其垂直平分线的尺规作图痕迹如图所示,若连接EH ,HF ,FG ,GE ,则下列结论中,不一定...正确的是( ). A .△EGH 为等腰三角形 B .△EGF 为等边三角形C .四边形EGFH 为菱形D .△EHF 为等腰三角形(第13题)13.在公园的O 处附近有E ,F ,G ,H 四棵树,位置如图所示(图中小正方形的边长均相等),现计划修建一座以O 为圆心,OA 为半径的圆形水池,要求池中不留树木,则E ,F ,G ,H 四棵树中需要被移除的为( ).A .E ,F ,GB .F ,G ,HC .G ,H ,ED .H ,E ,F 14.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a b -,x y -,x y +,a b +,22x y -,22a b -分别对应下列六个字:昌、爱、我、宜、游、美.现将()()222222xy a x y b ---因式分解,结果..呈现的密码信息可能是( ) . A .我爱美 B .宜昌游 C .爱我宜昌 D .美我宜昌 15.函数21y x =+的图像可能是( ) .二、解答题(将解答过程写在答题卡上指定的位置.本大题共有9小题,计75分) 16.(6分)计算:()23214⎛⎫-⨯- ⎪⎝⎭.17.(6分)先化简,再求值:()()42112x x x x ⋅+--,其中140x =.18.(7分)杨阳同学沿一段笔直的人行道行走,在由A 步行到达B 处的过程中,通过隔离带的空隙O ,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下, 如图,AB ∥OH ∥CD ,相邻两平行线间的距离相等.AC ,BD 相交于O ,OD ⊥CD 垂足为D .已知AB =20米.请根据上述信息求标语CD 的长度.(第18题)19.(7分)如图,直线y =+A ,B 两点.(1)求∠ABO 的度数;(2)过点A 的直线l 交x 轴正半轴于C ,AB =AC ,求直线l 的函数解析式.(第19题) 20.(8分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个.食堂师傅在窗口随机发放(发放的食品价格一样).食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品. (1)按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)(2)请用列表或画树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率. 21.(8分)如图,CD 是⊙O 的弦,AB 是直径,且CD ∥AB .连接AC ,AD ,OD ,其中AC =CD .过点B 的切线交CD 的延长线于E . (1)求证:DA 平分∠CDO ;(2)若AB =12,求图中阴影部分的周长之和(参考数据: 3.1π≈ 1.4≈ 1.7≈).(第21题)22.(10分)某蛋糕产销公司A 品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增了一条B 品牌产销线,以满足市场对蛋糕的多元需求.B 品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年每年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年AB 两品牌产销线销售量总和将达到11.4万份,B 品牌产销线2017年销售获利恰好等于当初的投入资金数. (1)求A 品牌产销线2018年的销售量;(2)求B 品牌产销线2016年平均每份获利增长的百分数. 23.(11分)在 △ABC 中,AB =6,AC =8,BC =10.D 是△ABC 内部或BC 边上的一个动点(与B ,C 不重合).以D 为顶点作△DEF ,使△DEF ∽△ABC (相似比1k >), EF ∥BC .(1)求∠D 的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH ,①如图1,连接GH ,AD ,当GH ⊥AD 时,请判断四边形AGDH 的形状,并证明; ②当四边形AGDH 的面积最大时,过A 作AP ⊥EF 于P ,且AP =AD ,求k 的值.(第23题图1) (第23题图2供参考用) (第23题图3供参考用)24.(12分)已知抛物线()()2213y x m x m m =+++-(m 为常数,14m -≤≤),A (1m --,1y ),B (2m,2y ),C (m -,3y )是该抛物线上不同的三点.现将抛物线的对称轴绕坐标原点O 逆时针旋转90°得到直线a ,过抛物线顶点P 作PH ⊥a 于H . (1)用含m 的代数式表示抛物线的顶点坐标;(2)若无论m 取何值,抛物线与直线y x km =-(k 为常数)有且仅有一个公共点,求k 的值;(3)当16PH <≤时,试比较1y ,2y ,3y 之间的大小.(第24题)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省宜昌市2001年中考数学试题(word 版,附答案)以下公式供参考:tga ·ctga=1;s 2=n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]; 一、 选择题(每小题2分,共24分)下列各小题都给出了四个选项,其中只有一项是符合题目要求的,请把符合要求的选项前面的字母填写题后括号内。
1. a 与21互为倒数,那么a 等于( ) (A)2. (B) 1. (C)1. (D).2a2. 实数a 、b 则下列结论成立的是()(A) a-b >0. (B)a+b>0. (C)b-a >0 (D)-a <-b. 3.若∣a ∣=-a,则a 的取值范围是( )(A) a >0. (B) a <0. (C) a ≥0. (D) a ≤0. 4. 下列格式不是..同类项的是( ) (A) a 2b 与a 2b. (B) x 与2x. (C)21a 2b 与-3ab 2. (D) 61ab 与4ba. 5. 下列二次根式中,是最简二次根式的是( ) (A) 12. (B)xy . (C)xa (D) 2x 6. 三角形的一个外角等于与它相邻的内角,则这个三角形( )(A)是直角三角形 (B)是钝角三角形 (C)是锐角三角形 (D)不能确定属于哪一类三角形 7.正方形具有而菱形不一定...具有的性质是( ) (A)对角线互相平分. (B)对角线相等 (C) 对角线互相垂直 (D)对角线平分一组对角8. 观察下列式子:①(-5)0=1;②(22)3=26;③2)4( =-4;④52·62=302其中成立的有( )(A) 1个. (B)2个. (C) 3个. (D) 4个.9. 请观察下列美丽的图案,你认为既是轴对称图形,又是中心对称图形的个数是( )(A)1. (B)2. (C)3. (D)4.10.观察下列式子:①sin59°>sin28°;②0<cosa <1(a 为锐角);③tg30°+tg60°=tg90°;④tg44°·ctg44°=1,其中成立的有( ) (A)1个 (B)2个 (C)3个 (D)4个. .(9题图)OEDCBA(11题图)11. 如图,DE 是⊙O 的直径,弦AB ⊥ED 于C ,连接 AE 、BE 、AO 、BO 。
则图中全等三角形的对数有( ) (A) 3对. (B) 2对. (C) 1对. (D) 0对.12.当x >0时,两个函数的函数值y 都随自变量x 的增大而减小的是( ) (A)y=3x 与y=x 1(B)y=-3x 与y=-x 1 (C)y=-2x+6与y=x 1 (D)y=3x-15与y=-x1 二、填空题(每小题3分,共12分)13.《中华人民共和国国民经济和社会发展第十五年计划纲要》明确提出,到2005年按2000年价格计算的国内生产总值要达到12。
5万亿元左右。
其中数据12。
5万亿有 个有效数字。
14.坐标平面内的点P (3,-2)关于y 轴对称的点P ′的坐标是 。
15.两个相似三角形对应高的比为2,则它们的面积比是 。
16.如果两圆外切,则这两个圆的公切线共有 条。
17.用“>”、“<”或“=”号填空:地球饶太阳转动(即地球的公转)每小时约通过1.1×105千米,声音在空气中传播,每小时通过1.2×103千米.则地球公转的速度 声音的速度18.用换元法解方程2x 2+3x-59x 3x 22+++3=0时,若设a = 9x 3x 22++,则原方程可变形为 .19.从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律,请你猜想从1开始,将前10个基数(即当最后一个基数是19时)相加,其和是三、(20、21、22、23、24题每题5分,25题3分,共28分)20、计算:(1+1a -)÷2a 2a -21、已知:x=2+1,y=2-1,求代数式xyy x +的值。
22.已知正方形ABCD 的边心距OE=2cm ,求这个正方形外接圆⊙O的面积。
23.如图,⊙O 的半径是4 cm ,点P 是⊙O 外一点,OP=6 cm 。
求:(1)以P 为圆心作⊙P 与⊙O 外切,小圆⊙P 的半径是多少? (2)以P 为圆心作⊙P 与⊙O 内切,大圆⊙P 的半径是多少?(22题图)OEDCBABOPA (23题图)24.为了先拔一名同学参加全市中学生射击比赛,某校对甲、乙两名同学的射击水平进行了测试。
两人在相同条件下各射靶10次,统计结果如下:甲成绩(环数) 7 8 6 8 6 5 9 10 7 4 甲x =7 S 2甲=3 乙成绩(环数)9578768677乙=7S 2乙=?(1)求方差S 2乙 (2)比较甲、乙两同学的射击水平,谁的成绩稳定一些?你认为学校派谁参加比赛更合理?25.某大型农场拟在公路L 旁修建一个农产品储藏、加工厂,将该农场两个规模相同的水果生产基地A 、B 的水果集中进行储藏和技术加工,以提高经济效益。
请你在图中标明加工厂所在的位置C ,使A 、B 两地到加工厂C 的运输路程之和最短。
(要求:用尺规作图,保留作图痕迹,不写作法和证明)四、(第26、27题各8分,第28题7分,共23分) 26.宜昌人引以为豪的夷陵广场坐落在城市中心的黄金地上,共占地5。
5万平方米,是市政府拆迁夷陵商城等建筑并投入1500万元建成的。
若在夷陵广场这片土地上修建商贸写字楼,其建筑面积可以是土地面积的3倍,售出后每一平方米建筑面积市政府至少可以获得纯收入2400元。
问:如果将实际投入和可能获得的纯收入合并计算都看作投入,那么市政府为市民办实事修建夷陵广场至少投入多少元?27.已知△ABC 的三边a 、b 、c 的值都是正数,且a=b -1、c=b+1,又已知关于x 的方程x 2-5x +41b+3=0的一个根恰好为b 的值,求cosA 的值。
B A L (25题图)28、小红同学编拟了这样一个数学命题:“如果在四边形ABCD 中,AB=CD 、AC=BD ,那么四边形ABCD 一定是平行四边形”。
若你认为这个命题的结论成立,请给予证明;若这个命题的结论不一定成立,请你画图举出反例予以说明。
五、(每小题8分,共24分)29.如图1,已知Rt △ABC 的制直角边AC 的长为2,以AC 为直径的⊙O 与斜边AB 交于点D ,过D 点作⊙O 的切线 (1)求证:BE=DE ;(2)延长DE 与AC 的延长线交于点F ,若DF=3,求△ABC 的面积;(3)从图1中,显然可知BC <AC 。
试分别讨论在其它条件不变,当BC=AC (图2)和BC >AC (图3)时,直线DE 与直线AC 还会相交吗?若不能相交,请简要说明理由;若能相交,设交点为F '且D F '=3,请再求出△ABC 的面积。
30.读一读,想一想:1857年德国统计学家恩思特·恩格尔阐明了一个定律:随着家庭和个人收入增加,收入中用于食品方面的支出比例将逐渐减少,反应这一定律的系数称为恩格尔系数n ,计算公式为:n=⨯人均个人消费支出总额人均食品支出总额100﹪。
国际上常常用恩格尔系数来衡量一个国家(29题图3)(29题图2)(29题图1)C E B C E E C B A和地区人民生活水平的状况,根据联合国粮农组织提出的标准,恩格尔系数n在59﹪以上为贫困,50﹪≤n<59﹪为温饱,40﹪≤n<50﹪为小康,30﹪≤n<40﹪为富裕,n低于30﹪为最富裕。
(摘自:宜昌日报电子版张伯家庭的所有支出都有详尽的记载。
2000年与1999年相比较,总体物价稳定但食品价格下降了7.5﹪,因而张伯家2000年所购买的食品和在1997年完全相同的情况下人均少支出150元,而人均个人消费支出总额增加了170元;1997年,张伯家人均食品支出总额比其他人均个人消费支出总额的一半还少381元。
(1)设1997年张伯家人均食品支出总额为x(元),人均个人消费支出总额为y(元)。
请用含x的代数式表示y;(2)已知1997年和2000年张伯家的恩格尔系数都与宜昌市城区抽样调查得到的恩格尔系数相同,请你计算说明,1997年到2000年宜昌市城区人民生活水平已开始步入由小康型过渡到富裕型的转型期。
31.已知:如图,点I在x轴上,以I为圆心、r为半径的半圆I与x轴相交于点A、B,与y轴相交于点D,顺次连接I、D、B三点可以组成等边三角形。
过A、B两点的抛物线y=ax2+bx+c的顶点P也在半圆I上。
(1)证明:无论半径r取何值时,点P都在某一个正比例函数的图像上。
(2)已知两点M(0,-1)、N(1、0),且射线MN与抛物线y=ax2+bx+c有两个不同的交点,请确定r的取值范围。
(3)请简要描述符合本题所有条件的抛物线的特征,(1分,鼓励“研究性学习”题,除开口方向外,只要基本答出一个显著特征即评x参考答案与评分说明二、解答题(本大题有9小题,计75分)16.解:原式=11)1(+⨯+x x x (3分,省略不扣分) =x (6分) 当x =1时,原式=1.(7分)(直接代入求值得到1,评4分)17.解:由①,得x =y +1,(2分),代入②,得2(y +1)+y =2. (3分)解得y =0. (4分), 将y =0代入①,得x =1. (6分) [或者:①+②,得3x =3,(2分)∴x =1. (3分)将x =1代入①,得1-y =1, (4分) ∴y =0.(6分)]∴原方程组的解是⎩⎨⎧==01y x . (7分) 18.证明:(1)∵AB 与CD 是平行四边形ABCD 的对边,∴AB ∥CD ,(1分)∴∠F=∠FAB .(3分)(2)在△ABE 和△FCE 中,∵ ∠FAB=∠F (4分) ∠AEB=∠FEC (5分) BE=CE (6分) ∴ △ABE ≌△FCE . (7分) 19.解:(1)设y=kx+b. (1分)由题意,得⎩⎨⎧=+=+6201042008b k b k (3分).解得⎩⎨⎧-==20041b k (5分)∴y =x -2004.(2)当x =2011时,y =2011-2004 (6分)=7. (7分)∴该市2011年因“限塑令”而减少的塑料消耗量约为7万吨20.解:(1)∵图案中正三角形的边长为2,∴高为3 .(1分) ∴正三角形的面积为21×2×3 = 3 . (2分) (2)∵图中共有11个正方形, ∴图中正方形的面积和为11×(2×2)=44. (3分)∵图中共有2个正六边形,∴图中正六边形的面积和为2×(6×21×2× 3 )=123 .(4分)∵图中共有10个正三角形,∴图中正三角形的面积和为10 3 . ∵镶嵌图形的总面积为44+10 3 +123 =44+22 3 (5分)≈81.4, ∴点O 落在镶嵌图案中正方形区域的概率为3224444+ (7分)≈0.54.(8分)第20题答:点O 落在镶嵌图案中正方形区域的概率为0.54.(“≈”写为“=”不扣分)21.解:(1)∵AE ⊥EF , EF ∥BC ,∴AD ⊥BC . (1分)在△ABD 和△ACD 中,∵BD =CD ,∠ADB =∠ADC ,AD =AD ,∴△ABD ≌△ACD . (或者:又∵BD =CD ,∴AE 是BC 的中垂线.) (2分) ∴AB =AC . (3分)(2)连BO ,∵AD 是BC 的中垂线,∴BO =CO . (或者:证全等也可得到BO =CO .)又AO =CO ,∴AO =BO =CO . (4分) ∴点O 是△ABC 外接圆的圆心. (5分) (3)解法1:∵∠ABE =∠ADB=90°,∴∠ABD+∠BAD=∠AEB+∠BAE=90°,∴∠ABD=∠AEB . 又∵∠BAD=∠EAB , ∴△ABD ∽△AEB .∴AB AD AE AB = (或者:由三角函数得到ABADAE AB =) (6分) 在Rt △ABD 中,∵AB=5,BD=21BC=3, ∴AD=4.∴AE=425. (8分)解法2:∵AO =BO , ∴∠ABO =∠BAO . ∵∠ABE =90°,∴∠ABO +∠OBE =∠BAO +∠AEB =90°. ∴∠OBE =∠OEB , ∴OB =OE . (6分)在 Rt △ABD 中,∵AB=5,BD=21BC=3,∴AD=4. 设 OB =x , 则 OD =4-x ,由32+(4-x)2=x 2,解得x=825. (7分)∴AE =2OB =425.(8分)解法3:设AO 的延长线与⊙O 交于点E 1,则AE 1是⊙O 的直径, ∴∠ABE 1=90°. 在Rt △ABE 和Rt △ABE 1中,∵∠BAE =∠BAE 1,∠ABE =∠ABE 1=90°,AB =AB,∴△ABE ≌△ABE 1,∴AE=AE 1. (6分) (同方法2) ∵BO=825. (7分) ∴AE=2OB=425. (8分)22.解:(1)设尹进2008到2010年的月工资的平均增长率为x,则,2000(1+x )2=2420. (1分)解 得 ,x 1=-2.1 , x 2=0.1, (2分 ) x 1=-2.1与题意不合,舍去. ∴尹进2011年的月工资为2420×(1+0.1)=2662元. (3分)(2)设甲工具书单价为m 元,第一次选购y 本.设乙工具书单价为n 元,第一次选购z 本.则由题意, 可列方程:m +n =242, ① (4分)ny +mz =2662, ② (6分)图1ZX 图2E图3DA my +nz =2662-242. ③ (7分)(②,③任意列对一个给2分;②,③全对也只给3分)由②+③,整理得,(m +n )(y +z )=2×2662-242, (8分) 由①,∴242(y +z )=2×2662-242,∴ y +z =22-1=21. (9分) 答:尹进捐出的这两种工具书总共有23本. (10分) (只要得出23本,即评1分)23.解:(1)共2分.(标出了圆心,没有作图痕迹的评1分)看见垂足为Y (X )的一 条 垂 线 (或 者∠ABC 的平分线)即评1分,(2)①当⊙P 与Rt △ABC 的边 AB 和BC 的平分线BM 上的点. 如图1,在∠ABC 的平分线BM 上任意确定点P 1 (不为∠ABC ∵ OX =BOsin ∠ABM, P 1Z =BP 1sin ∠ABM . 当 BP 1>BO 时 ,P 1Z >OX,即P 与B 的距离越大,⊙P 的面积越大. 这时,BM 与AC 的交点P 是符合题意的、BP 长度最大的点. (3分.此处没有证明和结论不影响后续评分)如图2,∵∠BPA >90°,过点P 作PE ⊥AB ,垂足为E ,则E 在边AB 上.∴以P 为圆心、PC 为半径作圆,则⊙P 与边CB 相切于C ,与边AB 相切于E , 即这时的⊙P 是符合题意的圆.(4分.此处没有证明和结论不影响后续评分) 这时⊙P 的面积就是S 的最大值. ∵∠A =∠A ,∠BCA =∠AEP =90°,∴ Rt △ABC ∽Rt △APE , (5分)∴BCPEAB PA =. ∵AC =1,BC =2,∴AB =5.设PC =x ,则PA =AC -PC =1-x, PC =PE , ∴251x x =-, ∴x =522+ . (6分) ②如图3,同理可得:当⊙P 与Rt △ABC 的边AB 和AC 相切时,设PC =y ,则152yy =-, ∴y=512+. (7分)③如图4,同理可得:当⊙P 与Rt △ABC 的边BC 和AC 相切时, 设PF =z ,则122z z =-, ∴z=32. (8分) 由①,②,③可知:∵ 5 >2,∴ 5+2>5+1>3,∵当分子、分母都为正数时,若分子相同,则分母越小,这个分数越大, (或者:∵x=522+=25-4, y=512+ =215- 5,∴y-x=24549->0, ∴y>x. ∵z-y=645721532-=-->0) ∴52251232+>+>2, (9分,没有过程直接得出酌情扣1分) ∴ z >y >x. ∴⊙P 的面积S 的最大值为π94. (10分)24.解:(1)∵(0,21-)在y =ax 2+bx +c 上,∴ 21-=a×02+b×0+c , ∴ c =21-.(1分) (2)又可得 n =21-.∵ 点(m -b ,m 2-mb +n )在y =ax 2+bx +c 上, ∴ m 2-mb 21-=a (m -b )2+b (m -b )21-, ∴(a -1)(m -b )2=0, (2分)若(m -b )=0,则(m -b , m 2-mb +n )与(0,21-)重合,与题意不合. ∴ a =1.(3分,只要求出a =1,即评3分) ∴抛物线y =ax 2+bx +c ,就是y =x 2+bx 21-. △=b 2-4ac =b 2-4×(21-)>0,(没写出不扣分) ∴抛物线y =ax 2+bx +c 与x 轴的两个交点的横坐标就是关于x 的二次方程0=ax 2+bx +c 的两个实数根,∴由根与系数的关系,得x 1x 2=21-. (4分) (3)抛物线y =x 2+bx 21-的对称轴为x =2b-,最小值为422+-b . (没写出不扣分)设抛物线y =x 2+bx 21-在x 轴上方与x 轴距离最大的点的纵坐标为H ,在x 轴下方与x 轴距离最大的点的纵坐标为h .①当2b-<-1,即b >2时,在x 轴上方与x 轴距离最大的点是(1,y o ), ∴|H |=y o =21+b >25, (5分)在x 轴下方与x 轴距离最大的点是(-1,y o ),∴|h |=|y o |=|21-b |=b -21>23, (6分) ∴|H |>|h |.∴这时|y o |的最小值大于25. (7分)② 当-1≤2b-≤0,即0≤b ≤2时,第24题在x 轴上方与x 轴距离最大的点是(1,y o ), ∴|H |=y o =21+b ≥21,当b =0时等号成立. 在x 轴下方与x 轴距离最大点的是 (2b-,422+-b ),∴|h |=|422+-b |=422+b ≥21,当b =0时等号成立.∴这时|y o |的最小值等于21. (8分) ③ 当0<2b-≤1,即-2≤b <0时, 在x 轴上方与x 轴距离最大的点是(-1,y o ), ∴|H |=y o =|1+(-1)b 21-|=|21-b |=21-b >21 在x 轴下方与x 轴距离最大的点是 (2b-,422+-b ),∴|h |=|y o |=|422+-b |=422+b >21.∴ 这 时 |y o |的 最 小 值 大 于 21. (9分) ④ 当1<2b-,即b <-2时, 在x 轴上方与x 轴距离最大的点是(-1,y o ),∴|H |=21-b >25, 在x 轴下方与x 轴距离最大的点是(1,y o ),∴|h |=|21+b |=-(b +21)>23, ∴|H |>|h |,∴这时|y o |的最小值大于25. (10分) 综上所述,当b =0,x 0=0时,这时|y o |取最小值,为|y o |=21. (11分)。