工程流体力学知识点总结

合集下载

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结流体力学是一门研究流体(包括液体和气体)运动规律以及流体与固体之间相互作用的学科。

它在工程、物理、化学、生物等多个领域都有着广泛的应用。

以下是对流体力学一些重要知识点的总结。

一、流体的物理性质1、密度流体的密度是指单位体积流体的质量。

对于液体,其密度通常较为稳定;而气体的密度则会随着压力和温度的变化而显著改变。

2、黏性黏性是流体内部阻碍其相对流动的一种特性。

黏性的大小用黏度来衡量。

牛顿流体遵循牛顿黏性定律,其黏度为常数;非牛顿流体的黏度则随流动条件而变化。

3、压缩性压缩性表示流体在压力作用下体积缩小的性质。

液体的压缩性通常很小,在大多数情况下可以忽略不计;气体的压缩性则较为显著。

二、流体静力学1、压力压力是指流体作用于单位面积上的力。

在静止流体中,压力的大小只与深度和流体的密度有关,遵循静压力基本方程。

2、帕斯卡定律加在密闭液体任一部分的压强,必然按其原来的大小,由液体向各个方向传递。

3、浮力物体在流体中受到的浮力等于排开流体的重量。

三、流体运动学1、流线与迹线流线是在某一瞬时,流场中一系列假想的曲线,曲线上每一点的切线方向都与该点的流速方向相同。

迹线则是某一流体质点在一段时间内运动的轨迹。

2、流量与流速流量是单位时间内通过某一截面的流体体积,流速是流体在单位时间内通过的距离。

四、流体动力学1、连续性方程连续性方程表明,在定常流动中,通过流管各截面的质量流量相等。

2、伯努利方程伯努利方程描述了理想流体在沿流线运动时,压力、速度和高度之间的关系。

其表达式为:\\frac{p}{\rho} +\frac{1}{2}v^2 + gh =\text{常数}\其中,\(p\)为压力,\(\rho\)为流体密度,\(v\)为流速,\(g\)为重力加速度,\(h\)为高度。

3、动量方程动量方程用于研究流体与固体之间的相互作用力。

五、黏性流体的流动1、层流与湍流层流是一种流体质点作有规则、分层的流动;湍流则是流体质点的运动杂乱无章。

工程流体力学知识点

工程流体力学知识点

(3)边界上可有力的作用和能量的交换,但不能有质量的交换。
4
《工程流体力学》------精品学习资料
f = 1 p ρ
该方程的物理意义:当流体处于平衡状态时,作用在单位质量流体上的质量
力与压力的合力相平衡。 其中: 称为哈密顿算子, i j k ,它本身为一个矢量,同时对
x y z
其右边的量具有求导的作用。
4.静力学基本方程式的适用条件及其意义。
牛顿内摩擦定律中的比例系数 μ 称为流体的动力粘度或粘度,它的大小可以
反映流体粘性的大小,其数值等于单位速度梯度引起的粘性切应力的大小。单位
1
《工程流体力学》------精品学习资料
为 Pa·s,常用单位 mPa·s、泊(P)、厘泊(cP),其换算关系: 1 厘泊(1cP)=1 毫帕斯卡·秒(1mPa.s) 100 厘泊(100cP)=1 泊(1P) 1000 毫帕斯卡·秒(1mPa·s)=1 帕斯卡.秒(1Pa·s)
5.膨胀性
指在压力不变的条件下,流体的体积会随着温度的变化而变化的性质。其大
小用体积膨胀系数 βt 表示,即
βt
=
1 V
dV dt
6.粘性
流体所具有的阻碍流体流动,即阻碍流体质点间相对运动的性质称为粘滞性,
简称粘性。
7.牛顿流体和非牛顿流体
符合牛顿内摩擦定律的流体称为牛顿流体,否则称为非牛顿流体。
8.动力粘度
《工程流体力学》------精品学习资料
《工程流体力学》知识点
第一章 流体的物理性质
一、学习引导
1.连续介质假设
流体力学的任务是研究流体的宏观运动规律。在流体力学领域里,一般不考
虑流体的微观结构,而是采用一种简化的模型来代替流体的真实微观结构。按照

流体力学公式总结

流体力学公式总结

工程流体力学公式总结第二章 流体的主要物理性质流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。

1.密度 ρ = m /V2.重度 γ = G /V3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ = γ/ g4.密度的倒数称为比体积,以υ表示υ = 1/ ρ = V/m5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水6.热膨胀性7.压缩性. 体积压缩率κ8.体积模量9.流体层接触面上的内摩擦力10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律)11..动力粘度μ:12.运动粘度ν :ν = μ/ρ13.恩氏粘度°E :°E = t 1 / t 2第三章 流体静力学重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。

1.常见的质量力:重力ΔW = Δmg 、直线运动惯性力ΔFI = Δm·a离心惯性力ΔFR = Δm·r ω2 .T VV ∆∆=1αpVV ∆∆-=1κV P V K ∆∆-=κ1n A F d d υμ=dnd v μτ±=n v d /d τμ=2.质量力为F 。

:F = m ·am = m (f xi+f yj+f zk)am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上的分量为fx = 0 , fy = 0 , fz = -mg /m = -g式中负号表示重力加速度g 与坐标轴z 方向相反3流体静压强不是矢量,而是标量,仅是坐标的连续函数。

即:p = p (x ,y ,z ),由此得静压强的全微分为:4.欧拉平衡微分方程式单位质量流体的力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力的势函数7.重力场中平衡流体的质量力势函数z z p y y p x x p p d d d d ∂∂∂∂∂∂++=d d d d d d 0x p f x y z x y z x ∂∂-=ρd d d d d d 0y p f x y z x y z y ∂∂-=ρd d d d d d 0z p f x y z x y z z∂∂-=ρ01=∂∂-x p f x ρ10y p f y ∂∂-=ρ01=∂∂-z p f z ρz z p y y p x x p z f y f x f z y x d d d )d d d (∂∂+∂∂+∂∂=++ρ)d d d (d z f y f x f p z y x ++=ρd (d d d )x y z p f x f y f z dU ρ=++=ρd d d d x y z U U U U x y z =f dx f dy f dz x y z gdz ∂∂∂∂∂∂=++++=-积分得:U = -gz + c*注:旋势判断:有旋无势流函数是否满足拉普拉斯方程:22220x y ψψ∂∂+=∂∂8.等压面微分方程式 .fx d x + fy d y + fz d z = 09.流体静力学基本方程对于不可压缩流体,ρ = 常数。

(完整版)流体力学知识点总结汇总

(完整版)流体力学知识点总结汇总

流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。

2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。

3 流体力学的研究方法:理论、数值、实验。

4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。

作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。

(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。

质量越大,惯性越大,运动状态越难改变。

常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。

B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。

即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。

由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。

动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。

运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。

2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。

无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。

工程流体力学复习资料

工程流体力学复习资料

工程流体力学复习资料工程流体力学复习资料工程流体力学是一门研究流体在工程中运动和力学性质的学科。

它广泛应用于各个工程领域,如航空航天、汽车工程、建筑工程等。

对于学习和掌握工程流体力学的同学们来说,复习资料是必不可少的工具。

本文将为大家提供一些有关工程流体力学的复习资料,希望对大家的学习有所帮助。

一、流体力学基础知识1. 流体的性质:流体是一种物质状态,具有流动性和变形性。

流体包括液体和气体,其分子之间的相互作用力较小,因此流体的运动过程中,分子之间会发生相互滑动和碰撞。

2. 流体的运动描述:流体的运动可以通过速度场和压力场来描述。

速度场表示流体各点的速度分布情况,压力场表示流体各点的压力分布情况。

3. 流体的连续性方程:连续性方程是描述流体运动的基本方程之一,它表示了质量守恒的原理。

连续性方程可以用来描述流体在管道、河流等封闭系统中的流动情况。

4. 流体的动量守恒方程:动量守恒方程是描述流体运动的另一个基本方程,它表示了动量守恒的原理。

动量守恒方程可以用来描述流体在外力作用下的运动情况。

5. 流体的能量守恒方程:能量守恒方程是描述流体运动的第三个基本方程,它表示了能量守恒的原理。

能量守恒方程可以用来描述流体在热力学过程中的能量转化情况。

二、流体静力学1. 流体的静力学基本概念:流体静力学研究的是静止流体的力学性质。

在流体静力学中,我们需要了解压力、压强、液体的压强传递、浮力等基本概念。

2. 流体的压力:流体的压力是指单位面积上受到的力的大小。

根据帕斯卡定律,流体中的压力在各个方向上是均匀的,且与深度成正比。

3. 流体的浮力:浮力是指物体在液体中受到的向上的力。

根据阿基米德定律,浸没在液体中的物体所受到的浮力等于物体排开的液体的重量。

三、流体动力学1. 流体的运动描述:流体的运动可以分为层流和湍流两种情况。

层流是指流体的流动方式有序,流线平行且不交叉;湍流是指流体的流动方式混乱,流线交叉且不规则。

工程流体力学考试知识点

工程流体力学考试知识点

流体:受到微小剪切力的作用能够发生连续不断变形。

(易于流动,没有固定形状)紊流:是一种随机的三维非定常有旋流动。

紊流的基本特征:1,不规则流动状态;2,参数随时间空间随机变化;3,空间分布大小形状各不相同漩涡;4,具有瞬息万变的流动特征;5,流动参数符合概率规律;6,相邻参数有关联。

镜像法:是确定干扰后流场的方法之一,是一种特别的奇点法。

连续模型:不考虑分子之间的间隔,而把流体看成由无数个流体微团所组成的宏观流体的连续流动。

(必要性:不这样就只能用离散数学求解 合理性:对于分子的运动并不在意) 适用范围:物体特征尺寸/流体分子特征尺寸≧100时适用。

扩散性:流体的分子因随机运动产生矢量位移的运动。

压缩性:温度一定时,流体的体积随着着压力的升高而减少。

不可压均质:c Dt D ==ρρ,0/ 黏性:流体微团发生相对滑移时产生切向阻力的性质。

表面力:作用在分离体表面上的力。

质量力:通过某种力或场作用在全部流体质点上的力。

应力:单位面积上的负表面力。

雷诺应力:在不可压缩流体的雷诺方程中,j i -μμρ称为雷诺应力,当i=j 时为法相。

应力/变形张量:[P]/[S]它是描述运动黏性流体内任一点应力状态的物理量。

耗散函数:Γ表示单位时间内单位体积流体由机械能耗散成热能。

ii ij x P ∂∂'=μ 拉格朗日法:着眼于个别流体质点来研究流体运动。

欧拉法:着眼于流场空间点参数的变化来研究。

当地加速度:Q 变化引起速度变化。

迁移加:Q 不变,因管道形状导致速度改变。

欧拉法好处:1.欧拉法得到的是场,可以用场论分析。

2.用欧拉法得到的运动方程是一阶。

3.工程上关心空间点参数。

本构方程:物质对所受应力的力学相应方程。

(应力与内部变形速度之间的关系)三个假设:假设1:切向应力与变形速度呈线性关系。

假设2:在流体内一点,变形速度主轴均与应力主轴重合。

假设3:每一点的平均法相应力是由不直接依赖于变形速度压强以及同体变形速度成比例的附加应力组合而成。

工程流体力学知识点

工程流体力学知识点
2)惯性力
在非惯性坐标系中,虚加在物体上的力,其大小等于该物体的质量与非惯性 坐标系加速度的乘积,方向与非惯性坐标系加速度方向相反,即
Fi ma
12.表面力 表面力作用于所研究的流体的表面上,并与作用面的面积成正比。表面力是 由与流体相接触的流体或其他物体作用在分界面上的力,属于接触力,如大气压 强、摩擦力等。 二、难点分析 1.引入连续介质假设的意义 有了连续介质假设,就可以把一个本来是大量的离散分子或原子的运动问题 近似为连续充满整个空间的流体质点的运动问题。而且每个空间点和每个时刻都 有确定的物理量,它们都是空间坐标和时间的连续函数,从而可以利用数学分析
z1
p1 ρg
=
z2
p2 ρg
(1)其适用条件是:重力作用下静止的均质流体。
(2)几何意义:z 称为位置水头,p/ρg 称为压力水头,而 z+p/ρg 称为测压
管水头。因此,静力学基本方程的几何意义是:静止流体中测压管水头为常数。
(3)物理意义:z 称为比位能,p/ρg 代表单位重力流体所具有的压力势能, 简称比压能。比位能与比压能之和叫做静止流体的比势能或总比能。因此,流体
9.运动粘度 流体力学中,将动力粘度与密度的比值称为运动粘度,用 υ 来表示,即
υ= μ ρ
其单位为 m2/s,常用单位 mm2/s、斯(St)、厘斯(cSt),其换算关系: 1m2/s=1×106mm2/s=1×104 St=1×106 cSt 1 St=100 cSt
10.质量力 作用在每一个流体质点上,并与作用的流体质量成正比。对于均质流体,质 量力也必然与流体的体积成正比。所以质量力又称为体积力。 重力、引力、惯性力、电场力和磁场力都属于质量力。 11.惯性力 (1)惯性系和非惯性系 如果在一个参考系中牛顿定律能够成立,这个参考系称作惯性参考系,牛顿 定律不能成立的参考系则是非惯性参考系。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结一、流体的物理性质流体区别于固体的主要特征是其具有流动性,即流体在静止时不能承受切向应力。

流体的物理性质包括密度、重度、比容、压缩性和膨胀性等。

密度是指单位体积流体所具有的质量,用符号ρ表示,单位为kg/m³。

重度则是单位体积流体所受的重力,用γ表示,单位为 N/m³,且γ =ρg(g 为重力加速度)。

比容是密度的倒数,它表示单位质量流体所占有的体积。

流体的压缩性是指在温度不变的情况下,流体的体积随压强的变化而变化的性质。

通常用体积压缩系数β来表示,其定义为单位压强变化所引起的体积相对变化率。

对于液体来说,其压缩性很小,在大多数情况下可以忽略不计;而气体的压缩性则较为明显。

膨胀性是指在压强不变的情况下,流体的体积随温度的变化而变化的性质。

用体积膨胀系数α来表示,它是单位温度变化所引起的体积相对变化率。

二、流体静力学流体静力学主要研究静止流体的力学规律。

静止流体中任一点的压强具有以下特性:1、静止流体中任一点的压强大小与作用面的方向无关,只与该点在流体中的位置有关。

2、静止流体中压强的大小沿垂直方向连续变化,即从液面到液体内部,压强逐渐增大。

流体静力学基本方程为 p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,h 为该点在液面下的深度。

作用在平面上的静水总压力可以通过压力图法或解析法来计算。

对于矩形平面,采用压力图法较为简便;对于不规则平面,则通常使用解析法。

三、流体动力学流体动力学研究流体的运动规律。

连续性方程是流体动力学的基本方程之一,它基于质量守恒定律。

对于不可压缩流体,在定常流动中,通过流管各截面的质量流量相等。

伯努利方程则是基于能量守恒定律得出的,它表明在理想流体的定常流动中,单位体积流体的动能、势能和压力能之和保持不变。

其表达式为:p/ρ + 1/2 v²+ gh =常数其中 p 为压强,ρ 为流体密度,v 为流速,g 为重力加速度,h 为高度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程流体力学知识点总结考试题型一填空题 102分 20分二选择题102分 20分三计算题 4题共40分四论述题 2题每题10分共20分第二章流体的主要物理性质第二章流体的主要物理性质第二章流体的主要物理性质第二章流体的主要物理性质三流体的粘性 1流体的粘性液体在外力作用下流动或有流动趋势时其内部因相对运动而产生内摩擦力的性质静止液体不呈现粘性第二章流体的主要物理性质第二章流体的主要物理性质恩氏粘度与运动粘度的换算关系第二章流体的主要物理性质流体静力学流体静力学流体静力学流体静力学流体静力学 1不可压缩流体的静压强基本公式流体静力学该式为重力场中不可压缩流体的静压强基本方程式流体静力学流体静压强基本方程式表明流体静力学 2流体静压强基本方程式的物理意义流体静力学流体静力学流体静力学流体静力学流体静力学第四章流体运动学基础流体运动学基础流体运动学基础流体运动学基础流体运动学基础流体运动学基础流体运动学基础流体运动学基础流体运动学基础流体运动学基础流体动力学基础流体动力学基础流体动力学基础流体动力学基础流体动力学基础流体动力学基础流体动力学基础流体动力学基础流体动力学基础流体动力学基础例试求射流对挡板的作用力相似理论与量纲分析相似理论与量纲分析相似理论与量纲分析相似理论与量纲分析相似理论与量纲分析相似理论与量纲分析相似理论与量纲分析相似理论与量纲分析相似理论与量纲分析相似理论与量纲分析相似理论与量纲分析相似理论与量纲分析第七章流体在管路中的流动主要讨论液体流经圆管及各种接头时的流动情况进而分析流动时所产生的能量损失即压力损失液体在管中的流动状态直接影响液流的各种特性流体在管路中的流动流体在管路中的流动流体在管路中的流动雷诺数是惯性力对粘性力的无量纲比值 Re↑→惯性力起主导作用→紊流 Re↓→粘性力起主导作用→层流流体在管路中的流动流体在管路中的流动在半径为r处取一层厚度为dr的微小圆环面积通过此环形面积的流量为流体在管路中的流动 1紊流流动时的流速分布三个区域流体在管路中的流动流体在管路中的流动局部压力损失是液体流经阀口弯管通流截面变化等所引起的压力损失液流通过这些地方时由于液流方向和速度均发生变化形成旋涡如下图使液体的质点间相互撞击从而产生较大的能量损耗流体在管路中的流动局部压力损失计算公式流体在管路中的流动流体在管路中的流动流体在管路中的流动第八章孔口流动孔口流动孔口流动流量与小孔前后的压差的平方根以及小孔面积成正比与粘度无关沿程压力损失小通过小孔的流量对工作介质温度的变化不敏感常用作调节流量的器件孔口流动孔口流动其中的流量系数Cd在有关液压设计手册中查得当Re 2000时保持在08左右短孔加工比比薄壁小孔容易因此特别适合于作固定节流器使用孔口流动液压冲击和气穴现象定义在液压系统中由于某种原因引起液体中产生急剧交替的压力升降的阻力波动过程危害出现冲击时液体中的瞬时峰值压力往往比正常工作压力高好几倍它不仅会损坏密封装置管道和液压元件而且还会引起振动与噪声有时使某些压力控制的液压元件产生误动作造成事故原因流道的突然堵塞或截断液压冲击若将阀门突然关闭则紧靠阀门的这部分液体立刻停止运动液体的动能瞬时转变为压力能接着后面的液体依次停止运动依次将动能转变为压力能并以一定速度由阀门处回传到管头处使全管压力升高在管道内形成压力升高波管内液体受力不平衡使液体倒流管内液体压力逐段降低形成压力衰减波液压冲击适当加大管径限制管道流速一般在液压系统中把速度控制在45ms以内使prmax不超过5MPa就可以认为是安全的正确设计阀口或设置制动装置使运动部件制动时速度变化比较均匀延长阀门关闭和运动部件制动换向的时间可采用换向时间可调的换向阀尽可能缩短管长以减小压力冲击波传播时间变直接冲击为间接冲击缓慢关闭阀门削减冲击波的强度在阀门前设置蓄能器以减小冲击波传播的距离应将管中流速限制在适当范围内或采用橡胶软管在系统中装置安全阀限制压力升高气穴现象定义在流动液体中由于压力降低而有气泡形成的现象气穴中的气体空气油蒸汽轻微气穴压力降低到某一值时以混入油中的微小气泡为核心其体积胀大并互相聚合而形成相当体积的气泡严重气穴当压力降低到空气分离压4×104pa 以下除混入油中的气泡胀大聚合外溶入油中的空气将突然迅速的自油中分离而产生大量的气泡气穴现象强烈气穴当压力降低到饱和蒸汽压约为2×104pa 以下除上述两种气泡外油液还将沸腾汽化产生大量气泡气穴现象第十章气体的一元定常流动气体的一元定常流动局部压力损失局部阻力系数由于阻力区域流动复杂其值一般由实验来确定具体可查手册液体密度液体平均流速六串联管路与并联管路重点 H 3 2 1 1串联管路 2并联管路Q Q A B 例 L1 500m L2 800m L3 1000m d1 300mm d2 250mm d3 200mm 设总流量Q 028m3s 求每一根管段的流量解铸铁管的粗糙度 12mm 表7-2 查莫迪图有因 qv qv1 qv2 qv3 qv1 1 qv2 qv1 qv3 qv1 17242 qv1 故小孔 ld ≤05薄壁小孔 05<ld≤4短孔 ld>4细长孔一薄壁小孔取截面11和22为计算截面选轴线为参考基准则 Z1 Z2并设动能修正系数α 1列伯努利方程为流经小孔的流量为当Re>105时 Cd=060~062 可视为常数二短孔两个阶段收缩扩散取截面11和22为计算截面选轴线为参考基准则Z1 Z2并设动能修正系数α 1列伯努利方程为式中 v1可忽略代入整理流经短孔的流量计算式三细长孔式中液体流经细长孔的流量和孔前后压差△p 成正比流量和液体粘度μ成反比因此流量受液体温度变化的影响较大液体流经细长小孔时一般都是层流状态所以可直接应用前面已导出的圆管层流流量公式一液压冲击一液压冲击的物理过程若整个过程中无能量损失则冲击波将永远持续下去水锤二减小液压冲击的措施二气穴现象例管道中水的质量流量为Qm 300kgs 若d1 300mm d2 200mm 求流量和过流断面 1-1 2-2 的平均流速 d2 d1 2 1 2 1 解补充例题4-1掌握第三节伯努利方程重点假设①不可压缩理想流体作定常流动ρ cFf 0 t 0 ②沿同一微元流束积分③质量力只有重力将欧拉运动方程分别乘以dxdydz有由流线方程得三式相加得由假设③故沿流线积分得整形伯努利常数理想流体一微元流束伯努利方程在同一微元流束上伯努利方程可写成伯努利方程的物理意义在密封管道中作恒定流动的理想液体具有三种形式的能量即压力能动能和势能三种能量之间可以相互转化但其总和为一常数测压管皮托管驻点测总压测静压总压和静压之差称为动压法国皮托1773年实际流体的伯努利方程粘性摩擦力速度分布不均实际动能与平均动能产生差异动能修正系数α 1--2 损失hf 伯努利方程在工程中的应用 1皮托管测量流速沿流线B–A 列伯努利方程第八节动量定理及其应用重点研究动量变化与作用在液体上的外力的关系两种方法积分法动量方程动量定理作用在物体上的合外力的大小等于物体在力的作用方向上的动量变化率即①假设理想液体在管道内作恒定流动②取控制体积12段③在dt时间内控制体积中液体质量的动量变化为由动量定理得几点说明合外力为作用在控制体积上的所有外力之和公式中力速度均为矢量实用中用投影式控制体积的选取原则控制体积必须包含所求总作用力影响的全部液体平均流速动量修正系数β 1133故例如图p1 98kpaV1 4msd1 200mmd2 100mmα 450 不计水头损失求水流作用于水平弯管上的力解设管壁对水流的作用力为RxRy 取控制体积12由连续性方程有列1-2伯努利方程 X方向动量方程 Y方向动量方程代入有关数据得 Rx -2328 kN Ry 1303 kN 利用牛顿第三定律可得到水流对管壁的作用力并可求得合力及合力与X方向的夹角划出abcdef为控制体积则截面abcdef上均为大气压力pa 由动量方程得paA-F ∑ F ρq 0-v1 -ρqv1 相对压力pa 0故 F ρqv1=ρq2A 因此射流作用在挡板上的力大小与F相等方向向右 1几何相似空间相似定义模型和实物的全部对应线形长度的比值为一定常数 6-1 长度比例常数图1 几何相似 2运动相似时间相似定义满足几何相似的流场中对应时刻对应点流速加速度的方向一致大小成一定比例相等即它们的速度场加速度场相似满足上述条件流动才能几何相似面积比例常数 6-2 体积比例常数 6-3 图2 速度场相似时间比例常数 6--4 速度比例常数6--5 加速度比例常数 6-6 体积流量比例常数 6--7 运动粘度比例常数6--8 长度比例常数和速度比例常数确定所有运动学量的比例常数 3 动力相似力相似定义两个运动相似的流场中对应空间点上对应瞬时作用在两相似几何微团上的力作用方向一致大小互成比例即它们的动力场相似图3 动力场相似力的比例常数 6--9 由牛顿定律可知 6-10 其中为流体的密度比例尺力矩功能比例常数 6--11 压强应力比例常数 6--12 功率比例常数 6--13 动力粘度比例常数 6--14 有了模型与原型的密度比例常数长度比例常数和速度比例常数就可由它们确定所有动力学量的比例常数二相似判据定义在几何相似的条件下两种物理现象保证相似的条件或判据由式 6-10 得 6-15 或 6-16 令 6-17 称为牛顿数它是作用力与惯性力的比值当模型与原型的动力相似则其牛顿数必定相等即反之亦然这就是牛顿相似判据流场中有各种性质的力但不论是哪种力只要两个流场动力相似它们都要服从牛顿相似判据⑴重力相似判据弗劳德判据⑵粘性力相似判据雷诺判据⑶压力相似判据欧拉判据⑷弹性力相似判据柯西马赫判据⑸表面张力相似判据韦伯判据⑹非定常性相似判据斯特劳哈尔判据⑴重力相似判据将重力比代入式 6-15 得 6-18 或 6-19 令 6-20 弗劳德数它是惯性力与重力的比值当模型与原型的重力相似则其弗劳德数必定相等即反之亦然这就是重力相似判据弗劳德判据重力场中则 a ⑵粘性力相似判据将粘性力之比代入式 6-15 得或 6-22 6-21 令 6-23 雷诺数它是惯性力与粘性力的比值当模型与原型的粘性力相似则其雷诺数必定相等即反之亦然这就是粘性力相似判据雷诺判据模型与原型用同一种流体时则 b ⑶压力相似准则将压力比代入式 6-15 得 6-24 或6-25 令 6-26 称为欧拉数它是总压力与惯性力的比值当模型与原型的压力相似则其欧拉数必定相等即反之亦然这就是压力相似判据欧拉判据当压强用压差代替 6-27 欧拉数能量损失hw液体流动时克服粘性摩擦阻力消耗的能量内因粘性外引管道结构局部损失hζ由于管道截面形状突然改变液流方向的改变或其他形式的液流阻力引起的压力损失沿程损失hλ液体在等径直管道中流过一段长度时因摩擦而产生的压力损失达西威斯巴赫公式或沿程阻力系数其值取决于流态一流态与雷诺数一层流和紊流层流液体流动时质点没有横向脉动不引起液体质点混杂而是层次分明能够维持安定的流束状态这种流动称为层流紊流液体流动时质点具有脉动速度引起流层间质点互错杂交换这种流动称为紊流或湍流上临界流速层流转变为紊流下临界流速紊流转变为层流三个区域层流变流紊流判别流态的标准雷诺数会计算通常2雷诺数的计算水力直径湿周过流断面A上液体与固体壁面接触的周界长度水力直径的大小对管道的流通力影响很大大→意味液体与管壁接触少阻力小流通能力大即使通流截面积小时也不容易堵塞 1Re的物理意义二圆管层流 1运动液体的速度分布力平衡方程式为式中整理得积分得当r=R时u=0得代入得抛物线规律分布令 2 管路中的流量对上式积分即可得流量q 3沿程压力损失实际由于各种因素的影响对光滑金属管取λ=75Re 对橡胶管取λ=80Re 思考速度的0>最大值与平均速度的关系⑴层流边层δ粘性力起主导作用其厚度δ将随雷诺数的增大而减小⑵紊流核心区粘性力惯性力共同作用划归为紊流核心区⑶过渡区紊流中的流速分布比较均匀其动能修正系数α≈105 动量修正系数β≈104故紊流时这两个系数均可近似取1 2沿程压力损失计算 3 λ的确定管壁粗糙凸出部分的平均高度叫做管壁的绝对粗糙度ΔΔd称为相对粗糙度水力光滑管层流边层区δ粗糙度被层流边层淹没重点水力粗糙管δ粗糙度暴露重点四局部压力损失首页上页下页末页结束工程流体力学知识点总结一流体的概念 1流体由极其微小在空间仅占有点的位置的质点所组成的微团构成的连续的易于流动的介质 2特征易流性只承受压力不能承受切应力没有固定的形状其形状取决于容器的形状 3流体液体分子间距小具有微小压缩性气体分子间距大具有很大压缩性二流体的密度与压缩性 1密度单位体积内流体所具有的质量均质流体式中——流体的密度kgm ——4℃时水的密度kgm 2相对密度 3 重度单位体积内流体所具有的重量 4体积弹性模量 V一定在同样Δp下 K 越大ΔV 越小说明K 越大液体的抗压能力越强说明由于压强增大体积缩小Δp与ΔV 变化趋势相反为保证K为正值故加有符号 2牛顿内摩擦定律流体流动时阻滞剪切变形的内摩擦力与流体运动的速度梯度成正比与接触面积成正比与流体的性质有关与流体内的压力无关单位面积上的切应力式中μ----比例常数----动力粘度 3粘性的表示方法及其单位 1动力粘度μ 2运动粘度国际单位制中单位m2s 常用非法定单位 1 m2s 104 St cm2s 106 cSt mm2s 由牛顿内摩擦定律动力粘度表示单位速度梯度下流体内摩擦应力的大小国际单位制中常用单位或是 4液体的粘度将随压力和温度的变化发生相应的变化 1流体产生粘性的主要原因①液体分子内聚力②气体分子作热运动流层之间分子的热交换频繁 2压力的影响在高压下液体的粘度随压力升高而增大常压下压力对流体的粘性影响较小可忽略 3恩氏粘度注意 2时使用该公式当没有约束条件时为713 恩氏粘度是无量纲数①液体温度升高粘度降低②气体温度升高粘度增大 3温度的影响 5实际流体和理想流体实际流体粘性流体具有粘性的流体称实际流体理想流体假想没有粘性的流体 1 液体的静压强具有两个重要特性 1 液体静压强的方向总是指向作用面的内法线方向 2 静止液体内任一点的静压力在各个方向上都相等证四面体上的法向表面力投影式由有整理得四面体上的质量力同理即 2 静止流体的平衡微分方程式研究流体在质量力和表面力的作用下的力的平衡关系 1平衡微分方程式设微小六面体中心点a 其静压强为p xyz x方向的平衡方程式化简得同除以同理得欧拉平衡方程 3 重力场中静止流体的压强分布重力场中的平衡流体中的流体静压力只是高度的连续函数重力场中的欧拉平衡方程形式为对于不可压缩流体对上式在流体连续区域内进行积分可得积分常数C可以由平衡液体自由表面边界条件确定这就是不可压缩流体的静压强分布规律重点静止流场中压强分布规律既适用于理想流体也适用于粘性流体所以即①重力作用下的静止液体中任一点的静压强由自由表面上的压强和单位面积液柱重量所组成②静止液体自由表面上的表面压力均匀传递到液体内各点这就是著名的帕斯卡定律如水压机油压千斤顶等机械就是应用这个定律制成的淹深③静止液体内不同位置处的流体静压力数值不同但其数值之间存在如下关系由上式在平衡流体内部位置势能和压力势能可以相互转化但是总能量保持恒定流体静压强基本方程式的意义就是平衡流体中的总能量是一定的这也是能量守衡与转化定律在平衡流体中的体现位置势能压力势能 4静压强的表示方法及其单位 1表示方法大气压强--标准状态下海平面上大气所产生的压强绝对压强--以绝对真空作为基准所表示的压强相对压强--以当地大气压强作为基准所表示的压强多数测压仪表所测得的压强是相对压强故相对压力也称表压强真空度--负的相对压强 2四种压力的关系绝对压强相对压强大气压强真空度大气压强-绝对压强 p O p 0 p pa P pa pa绝对真空表压强真空度绝对压强绝对压强大气压强图3-6 绝对压强与相对压强间的关系 3压力的单位法定压力 ISO 单位称为帕斯卡帕符号为Pa工程上常用兆帕这个单位来表示压力 1MPa 106Pa1bar 1at 工程大气压 1mH2O 米水柱 1mmHg 毫米汞柱 5 等角速旋转容器中液体的相对平衡重点静压强分布代入压强差公式积分得单位质量产生的离心力为当时代入上式得等压面方程积分得等压面为旋转抛物面的等压面为自由液面第一节描述流体运动的两种方法一Lagrange法拉格朗日法基本思想跟踪每个流体质点的运动全过程记录它们在运动过程中的各物理量及其变化规律独立变量abct区分流体质点的标志也称拉格朗日变数质点物理量流体质点的位置坐标速度和加速度 u xt ax 2xt2 v yt ay 2yt2 w zt az 2zt2 二 Euler法欧拉法重点基本思想考察空间每一点上的物理量及其变化着眼于运动流体所充满的空间独立变量空间点坐标速度场 u u xyzt v v xyzt w w xyzt 流体运动质点的空间坐标随时间变化x x t y y t z z t 速度 u dxdt v dydt w dzdt 加速度 aa xyzt 重点局部时变对流迁移若用矢量表示则有为哈密尔顿矢性微分算子同理其他运动参数可表示为第二节几个基本概念定常流动非定常流动steady and unsteady flow 若H不变则有t 0运动参数不随时间变化即流动恒定或流动定常若H是变化的则t不为零即流动非恒定或流动非定常 2 一维流动二维流动和三维流动一维流动流动参数是一个坐标的函数二维流动流动参数是两个坐标的函数三维流动流动参数是三个坐标的函数对于工程实际问题在满足精度要求的情况下将三维流动简化为二维甚至一维流动可以使得求解过程尽可能简化3迹线和流线重点迹线流体质点的运动轨迹线指的某一质点属拉格朗日法的研究内容给定速度场流体质点经过时间 dt移动一段距离该质点的迹线微分方程为流线速度场的矢量线重点任一时刻t曲线上每一点处的切线方向都与该点的速度方向重合流线方程流线的几个性质在定常流动中流线不随时间改变其位置和形状流线和迹线重合在非定常流动中由于各空间点上速度随时间变化流线的形状和位置是在不停地变化的流线不能彼此相交和折转只能平滑过渡流线密集的地方流体流动的速度大流线稀疏的地方流动速度小迹线和流线的差别迹线是同一流体质点在不同时刻的位移曲线与Lagrange观点对应流线是同一时刻不同流体质点速度向量的包络线与Euler观点对应例已知流场速度为其中q为常数求流线方程 dxx dyy 积分 lnx lnyc 即 y cx 为平面点源流动解例已知平面流场速度分布为 u 2ytt3 v 2xt 求时刻 t 2 过点 01 的流线解 2x dx 2ydy t2dyt作为参量常数处理积分有 x2 – y2 t2y C 将 t 2 x 0 y 1代入得 C -5 所以有 x2 – y2 –4y 5 0 3 平均流速体积流量与有效截面积之比值用 v 表示第三节连续性方程重点 2 2 1 1 A1 A2 u1 u2 一维流动的连续性方程 u1A1 u2A2 Q 对于不可压管流截面小流速大截面大流速小而对于可压缩管流情况要复杂得多。

相关文档
最新文档