第四讲 模糊模式识别
模糊模式识别

模糊模式识别1 模糊模式识别的原则(1) 最大隶属原则当模式是模糊的,被识别对象是明确的,问题可以描述如下:设有n 个模式,它们分别表示成某论域X (X 可以是多个集合的笛卡儿乘积集)的n 个模糊子集12,,,n A A A,而0x X ∈是一个具体被识别的对象,若有},2,1{n i ∈,使得12()m ax{(),(),,()}inA o A o A o A o x x x x μμμμ=则认为0x 相对属于模式i A。
对事物进行直接识别时,所依据的是最大隶属原则。
这种方法适合处理具有如下特点的问题:a 用作比较的模式是模糊的;b 被识别的对象本身是确定的。
(2) 贴近度原则当模式及被识别对象都是模糊的,问题可以描述如下:设论域X 的模糊子集12,,,n A A A代表n 个模糊模式,被识别的对象可以表示成X 的子集B,若有},2,1{n i ∈,使得12(,)max{(,),(,),,(,)}i n B A B A B A B A σσσσ=则认为B相对合于模式A。
在模糊模式识别的具体应用中,关键是模式或被识别对象的模糊集合的构造,即如何建立刻画模式或对象的模糊集合。
根据实际应用来看,通常有三种主要方法,简单模式的识别方法,语言模式的识别方法和统计模式的识别方法。
2 模糊模式识别方法(一)简单模式的模糊模式识别具体的模糊模式识别工作可分为如下三个步骤:1)选取模式的特征因子集合},,,{21n X X X =X,被识别的对象表示为nni i XXX X ⨯⨯⨯∆∏= 211上的向量(),,,21n x x x ,,1,2,,,i i x X i n ∈= 或者表示为∏=ni i X 1上的模糊子集;2)建立模糊模式的隶属函数()A X μ,1()ni i A F X =∈∏;3)利用最大隶属度原则或贴近度原则对被识别的对象进行归属判决。
特征因子(1,2,,)i X i n = 的选取直接影响识别的效果,它取决于识别者的知识和技巧,很难做一般性讨论,而模式识别中最困难的是建立模式的隶属函数,人们还没有从理论上彻底解决隶属函数的确定问题。
模糊模式识别的方法PPT课件

采用阈值原则,取阈值 =0.8,测定当年气候因
子 x = (x1,x2,x3),计算 C~(x) ,若C~(x) 0.8,则预报当 年冬季“多雪”,否则预报“少雪”。
用这一方法对丰镇 1959-1970 年间的 12 年作了预报, 除 1965 年以外均报对,历史拟合率达 11/12。
50.0 ±8.6
89.0 ±6.2
3866±800
166.9
55.3
88.3
A3
±3.6
±9.4
±7.0
4128±526
A4
172.6 ±4.6
57.7 ±8.2
89.2 ±6.4
4349±402
178.4
61.9
90.9
A5
±4.2
±8.6
±8.0
4536±756
第12页/共26页
现有一名待识别的大学生x = {x1, x2, x3, x4 } = {167.8, 55.1, 86, 4120},他应属于哪种类型?
1 ,
270
x3 360
,
A3
x3
sin x3 0 , 90
, 180 x3 x3 180
,
270
,
cos x3 , 0 x3 90 .
第24页/共26页
取论域 X={ x| x = (x1,x2,x3)}, “冬雪大” 可以表示为论 域 X 上的模糊集C~ ,其隶属函数为
当 x0 = 40 时,即物价上涨率为40 %,我们有: A1(40) 0, A2 (40 ) 0, A3(40) = 0.0003 A4(40) = 0.1299, A5 (40) = 0.6412。
《模糊模式识》课件

大数据与模糊模式识别的结合,可以 实现大规模数据的快速处理和准确分 类,为各个领域的智能化决策提供支 持。
多模态信息融合的模糊模式识别
随着多模态信息融合技术的发展,将 不同类型的信息进行融合,可以提高 模糊模式识别的精度和鲁棒性。
后处理
对分类结果进行必要的后处理,如去 模糊化、决策融合等,以得到最终的 分类结果。
05
04
模糊分类决策
根据模糊逻辑规则进行分类决策,得 出分类结果。
PART 03
模糊模式识别的应用场景
图像识别
总结词
利用模糊模式识别技术,对图像进行分类、识别和特征提取,实现图像内容的智能分析和处理。
详细描述
在图像识别领域,模糊模式识别技术被广泛应用于人脸识别、车牌识别、物体识别等方面。通过提取 图像中的特征信息,建立模糊模型,实现对图像的自动分类和识别,提高图像处理的准确性和效率。
模糊推理
模糊推理是模糊逻辑的应用,它基于模糊规则进行推理,适用于处理不确定性和模糊性 。
模糊模式识别的基本步骤
数据预处理
对原始数据进行必要的预处理,包括 数据清洗、归一化等操作,以便更好 地进行后续处理。
01
02
特征提取
从预处理后的数据中提取出与目标分 类相关的特征。
03
模糊化
将提取出的特征值转换为模糊集合的 隶属度,以便进行模糊逻辑运算。
VS
详细描述
自然语言处理是模糊模式识别的另一个重 要应用领域。通过分析文本中的语义、句 法、上下文等信息,建立模糊模型,实现 对文本的自动分类、摘要、情感分析等任 务,提高自然语言处理的智能化水平。
模糊模式识别PPT课件

2)序偶表示法: ~A {(1, a), (0.9, b), (0.5, c), (0.2, d)}
3)向量表示法: ~A (1, 0.9, 0.5, 0.2)
4)其他方法,如: ~A 1 a, 0.9 b, 0.5 c, 0.2 d
注:当某一元素的隶属函数为0时,这一项可以不计入。
第17页/共113页
例 3.2:以年龄作为论域,取 X=[0,200],Zadeh 给出了“年老” 与“年轻”两个模糊集 O~ 和Y~ 的隶属函数如下:
0 ,
0 x 50
①
ox
~
1
(x
50 5
)
2
1
,
50 x 200
1,
0 x 25
Y ~
x
1
(
x
25)2 5
1
,
25 x 200
② X是一个连续的实数区间,模糊集合表示为
用精确数学方法判断“秃头”: 方法:首先给出一个精确的定义,然后推理,最后结论。
定义:头发根数≤n时,判决为秃头;否则判决为不秃。 即头发根数n为判断秃与不秃的界限标准。
问题:当头发根数恰好为n+1,应判决为秃还是不秃?
第2页/共113页
推理:两种选择 (1) 承认精确方法:判定为不秃。
均表现出精确方法在这个 问题上与常理对立的情况
当 x 为多变量,即 x {x1, x2 , , xn}时,隶属函数通常定义为
A x A(1) x1 A(2) x2 A(n) xn
~
~
~
~
其中, A(1) , A(2) ,…, A(n) :对应于各变量的模糊子集;
~~
~
A(i) xi :相应的单变量隶属函数。
模糊识别

最大隶属原则
不同的服务请求者,由于 自身需求的不同,对服务的四个 因素所给予的权重数也不同。设 请求者给出的权重为: W=(0.3, 0.2, 0.2, 0.3) 计算T=W*R, T=(0.33,0.36,0.25, 0.39) 。按最大 隶属度原则,结论是实体提供的 文件共享服务“不好”。
0.6 0.2 R= 0.4 0.1
实现模糊模式识别的方法主要有基于最大隶属原则的识别个体识别基于择近原则的识别群体识别模糊聚类分析模糊相似选择模糊综合评价模糊识别的方法待识车辆计算隶属度预处理特征提取特征分离模式1模式2模式3模式4模糊判决求车型模糊识别流程图最大隶属原则设x为所要识别的对象全体ai属于fxi12
模糊模式识别
Fuzzy Pattern Recognition
模糊聚类
例5:设U={a,b,c,d,e},对于模糊等价矩阵
1 0 R1 = 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
当λ=1时,分类为{a},{b},{c},{d},{e} 当λ=0.6时,分类为{a,c},{b}, {d,e} 当λ=0.4时,分类为{a,b,c,d,e}
背景
模式识别: 模式识别是一门以应用数学为理论基础,利用计 算机应用技术,解决分类与识别问题的学科。 目前模式识别的主流的技术有: 统计模式识别 句法模式识别 模糊数学方法 神经网络法 人工智能方法 数据挖掘等
背景
模糊模式识别: 运用模糊数学的理论和方法解决模式识别问题, 适用于分类识别对象本身或要求的识别结果具有模糊 性的场合。在特征空间的各模式类之间,不存在着明 确的边界。——对象类的隶属函数是否良好。 模糊模式识别的主要研究内容包括: 1.隶属函数的选择与确定; 2.模糊模式匹配; 3.模糊推断; 4.模糊方法和统计方法的有机结合。
第四讲模糊数学方法

(3) 交: C A B C x
A x B x
(4) 补:AC C x 1 A x A
xU
(5) 内积: A B A x B x (6) 外积: A B A x B x
xU
其中 , 分别表示取大,小运算。
2017/7/16 20
3. 隶属度函数的确定 由模糊集的概念可知,模糊数学 的基本思想是隶属度,所以应用模糊 数学方法建立数学模型的关键是建立 符合实际的隶属函数。然而,如何确 定一个模糊集的隶属函数至今还是尚 未完全解决的问题。
2017/7/16
21
2017/7/16 12
下面通过两个例子说明如何构造 隶属度,定义模糊集。 例1 从下列30条线段中选出长线 段。
„„ 1 2 3 4
2017/7/16
„„ 28 29 30
13
解 “长”是模糊概念,可用模 糊集描述。 设 xi 表示第 i(i=1,2,…,30) 条线段 , 则论域 U={x1, x2,…, x30}。 若 A为“长线段”的集合,则线 段xi作为集A的成员资格,就是xi对A 的隶属度。 下面建立A的一种隶属函数。
O
2017/7/16
a
b
x
23
0, x a , xa ② 偏大型 A x , a x b, ba 1 , x b . y
1
O
2017/7/16
a
b
x
24
0, x a , xa , a x b, ba ③ 中间型 A x 1, b x c , d x y ,c xd d c 1 0, x d .
模糊模式识别方法介绍PPT(51张)

• 如果训练样本中已知的类别标号就以模糊类的隶 属度函数的形式给出,那么我们就需要对原有的 模式识别方法进行改变,以适应这种模糊类别划 分(如后面将要介绍的模糊k近邻法)。
• 本节介绍的结果的模糊化,专门指训练样本和分 类器仍是确定性的,只是根据后续的需要把最终 的输出分类结果进行模糊化。结果的模糊化并没 有固定的方法,通常需要结合有关知识、根据所 用的分类器进行设计,比如可以根据样本离类别 中心的距离、离分类面的距离或与已知样本之间 的某种相似胜度量、神经网络输出的相对大小等 作为模糊化的依据
• 在这样的定义下,可以计算出对应于第j类第q个 特征的模糊度和熵。
• 如果模糊度和熵越小,则表明该类中这一特征的 取值比较集中,因此有利于分类;
• 反之如果模糊度和熵越大,则表明该类中这一特 征取值比较分散,不利于分类。
• 因此,我们可以用这个模糊度和熵作为衡量这个 特征对于该类分类的贡献的指标,模糊度和熵越 小则特征性能分类越好。
• 其中
模糊集合
• 定义在空间 X={x}上的隶属度函数就定义了 一个模糊集合A
• 表示为 •或 •
“开水”这一概念的模糊集与确定集
常见的隶属度函数形式
台阶型 三角形 梯形 高斯函数型
模糊集的运算
•并 •交
• 补:
模糊集合的荃本运算示意图
4.3 模糊特征和模糊分类
• 模糊模式识别就是在解决模式识别问题时 引进模糊逻辑的方法或思想
4.3.2 结果的模糊化
• 模式识别中的分类就是把样本空间(或样 本集)分成若干个子集,当然,我们可以 用模糊子集的概念代替确定子集,从而得 到模糊的分类结果,或者说使分类结果模 糊化。
• 在模糊化的分类结果中,一个样本将不再属于每 个确定的类别,而是以不同的程度属于各个类别, 这种结果与原来明确的分类结果相比有两个显著 的优点:一是在分类结果中可以反映出分类过程 中的不确定性,有利于用户根据结果进行决策乡 二是如果分类是多级的,即本系统的分类结果将 与其他系统分类结果一起作为下一级分类决策的 依据,则模糊化的分类结果通常更有利于下一级 分类,因为模糊化的分类结果比明确的分类结果 中包含更多的信息
模糊模式识别课件学习PPT

11:44
24页
例:U={张三,李四,王五}, V={数学,英语,政治} 则关系R(选课)可表示为:
张三 李四 王五 数学 1 英语 1 政治 0
11:44
0 1 1
1 0 1
25页
(3)模糊关系 如关系R是U×V的一个模糊子集,则称R为 U×V的一个模糊关系,其隶属度函数为μR(x,y) 隶属度函数μR(x,y)表示x,y具有关系R的程度 模糊关系是笛卡儿乘积集的一个子集,是有约束 的 例: u为身高, v为体重 u= (1.4,1.5,1.6,1.7,1.8 ) (单位m) v = (40, 50, 60, 70, 80) (单位kg)
11:44
8页
Fuzzy set (figure from Earl Cox)
11:44
9页
(2)隶属度函数: 如果一个集合的特征函数μA(x)不是{0,1}二值 取值,而是在闭区间[0,1]中取值,则μA(x)是 表示一个对象x隶属于集合A的程度的函数, 称为隶属度函数。
当 xA 1, A x 0 A x 1, 当x在 一 定 程 度 上 属 于 A 0, 当 xA
11:44
26页
模糊关系“合乎标准”表示为:(具有关系R的程
度)
v 40
u R(u, v)
1.4 1.5 1.6 1.7 1 0.8 0.2 0
50 0.8 1 0.8 0.2
60 0.2 0.8 1 0.8
70 0 0.2 0.8 1
80 0 0 0.2 0.8
1.8
0
0
0.2
0.8
1
11:44
特征函数表达了元素x对集合A的隶属程度 可以用集合来表达各种概念的精确数学定义和各 种事物的性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N L ( A, A1 ) = e
= 0.78
N L ( A, A2 ) = 0.44, N L ( A, A3 ) = 0, N L ( A, A4 ) = 0.52, N L ( A, A5 ) = 0.68
根据择近原则,A应为早熟型。
理论基础:概率论,数理统计 主要方法:线性、非线性分类、Bayes决策、聚类分析 主要优点: 1)比较成熟 2)能考虑干扰噪声等影响 3)识别模式基元能力强 主要缺点: 1)对结构复杂的模式抽取特征困难 2)不能反映模式的结构特征,难以描述模式的性质 3)难以从整体角度考虑识别问题
二、句法模式识别
模式描述方法: 符号串,树,图 模式判定: 是一种语言,用一个文法表示一个类,m类就 有m个文法,然后判定未知模式遵循哪一个文法。
理论基础:形式语言,自动机技术 主要方法:自动机技术、CYK剖析算法、Early算法、转移 图法 主要优点: 1)识别方便,可以从简单的基元开始,由简至繁。 2)能反映模式的结构特征,能描述模式的性质。 3)对图象畸变的抗干扰能力较强。 主要缺点: 当存在干扰及噪声时,抽取特征基元困难,且易失误。
n
n
n
例1: 某农作物在A地生长很好,现准备把它移植到B 地或C地,问B、C两地哪个最适宜? 已知: 论域X={x1,x2,x3},其中,x1气温;x2湿度;x3 土壤。根据评定得到三个模糊集 A=(0.8,0.4,0.6);B=(0.9,0.6,0.3);C=(0.6,0.4,0.5)
计算: N1(A,B)=0.80; N1(A,C)=0.90 或者 N2(A,B)=0.78; N2(A,C)=0.87 从而C地最适宜。
三、模糊模式识别
模式描述方法: 模糊集合 A={(µa,a), (µb,b),... (µn,n)} 模式判定: 是一种集合运算。用隶属度将模糊集合划分 为若干子集, m类就有m个子集,然后根据择近原 则分类。
理论基础:模糊数学 主要方法:模糊统计法、二元对比排序法、推理法、模糊 集运算规则、模糊矩阵 主要优点: 由于隶属度函数作为样本与模板间相似程度的度量,故 往往能反映整体的与主体的特征,从而允许样本有相当 程度的干扰与畸变。 主要缺点: 准确合理的隶属度函数往往难以建立,故限制了它的应 用。
1). 内积 外积
Ao B = ∨
u ∈U
{ A (u ) ∧ B (u )} = k∨ { A (u k ) ∧ B (u k )} =1
n
A⊗ B = ∧
u ∈U
{ A (u ) ∨ B (u )} = k∧ { A (u k ) ∨ B (u k )} =1
A ⊗ B = ( AC • B C )C
2013/2/26
25
2013/2/26
26
2013/2/26
27
二、F模式识别原则
模糊模式识别的直接方法
2013/2/26
28
2013/2/26
29
例3 (小麦亲本识别)
小麦的百粒重分布为 F ( x) = e
各类小麦对应的参数如下:
x −a − σ
2
, 小麦的类型及
c c x∈X
= ∨ ( A( x) ∧ 1 − A( x)) ≤ 0.5
A ⊗ A = A 及A ⊗ Ac ≥ 0.5类似可证.
解释: 对内积A ⊕ B来说, B越靠近A, 值越大;
x∈X
B = A时, 达最大值 A, B = Ac时, 值低于0.5. 对外积A ⊗ B来说, B越靠近A, 值越小; c B = A时, 达最小值 A, B = A 时, 值高于0.5.
五、逻辑推理法(人工智能法)
模式描述方法: 字符串表示的事实 模式判定: 是一种布尔运算。从事实出发运用一系列规 则,推理得到不同结果,m个类就有m个结果。
理论基础:演绎逻辑,布尔代数 主要方法:产生式推理、语义网推理、框架推理 主要优点: 已建立了关于知识表示及组织,目标搜索及匹配的完整体系 。对需要众多规则的推理达到识别目标确认的问题,有很好 的效果。 主要缺点: 当样本有缺损,背景不清晰,规则不明确甚至有歧义时,效 果不好。
n
1. 2. 3.
2013/2/26
16
常见的贴近度公式
1.Minkowski 距离表示: Np(A,B)=1−[Mp(A,B)]1/p,其中 p 选取适当的常 数. 1n | Au ( i ) −B(ui )| ; 特别地,当 p=1 时(Haming 贴近度) N1(A, B) =1− n ∑ i=1 或者
3
2013/2/26
模式识别的基本方法
一、统计模式识别 二、句法模式识别 三、模糊模式识别 四、人工神经网络法 五、人工智能方法
一、统计模式识别
模式描述方法: 特征向量 模式判定:
r x = ( x1 , x2 ,L, xn )′
模式类用条件概率分布P(X/ωi)表示,m类就有 m个分布,然后判定未知模式属于哪一个分布。
第四讲 贴近度与模式识别
2013/2/26
1
n
所谓模式识别,通俗地说,就是巳知某类事物的若干标准 的对象,或模式,现在给出这类事物中的一个具体对象, 如何判定它属于哪一个模式.比如,如何判定一个手写汉 字是一个什么字?这里可把每一个汉字印刷体看成一个模 式.再比如,已知有若于种病的典型症伏,每一个典型症 状都是由某些检查指标所表征,现在有一个患者,如何根 据他的各种检查指标来判定他患的是哪一种病,等等. 模式识别是科学、工程、经济、社会以至生活中经常遇到 并要处理的基本问题.这一问题的数学模式就是在已知各 种标准类型(数学形式化了的类型)的前提下,判断识别 对象属于哪个类型?对象也要数学形式化,有时对象形式 化不能做到完整,或者形式化带有模糊性质,此时识别就 要运用模糊数学方法.
2
n
2013/2/26
n
在通常的模式识别中,模式是明确的,似实际中很 多问题模式本身是不明确的,比如,细胞染色体识 别中的等腰三角形、直角三角形等,都不是标准的 等腰三角形和直角三角形,再比如,通过人造地球 卫星所得到的地面图也带有模糊性,所以,把它们 作为模式就要用模糊集合来声示,这样,就有了模 糊模式的模式识别,简称为模糊识别.如何利用计 算机来进行模式识别,这是人工智能的一个重要方 面,显然,用摸糊集理论来进行模式识别,将会大 大促进这方面研究的发展。
n
2). 格贴近度
N ( A, B ) = ( A o B ) ∧ ( A ⊗ B ) C
或
2013/2/26
N ( A , B ) = [( A o B ) + ( A ⊗ B ) C ]
19
内外积性质: 性质1 性质2
A ⊕ B = B ⊕ A, A ⊗ B = B ⊗ A.
( A ⊕ B ) c = Ac ⊗ B c ( A ⊗ B ) c = Ac ⊕ B c = ∧ [(1 − A( x)) ∨ (1 − B( x))] = ∧ ( Ac ( x) ∨ B c ( x)) = Ac ⊗ B c x∈X
四、人工神经网络法
模式描述方法: 以不同活跃度表示的输入节点集(神经元) 模式判定: 是一个非线性动态系统。通过对样本的学习 建立起记忆,然后将未知模式判决为其最接近的 记忆。
理论基础:神经生理学,心理学 主要方法:BP模型、HOP模型、高阶网 主要优点: 可处理一些环境信息十分复杂,背景知识不清楚,推理规则 不明确的问题。允许样本有较大的缺损、畸变。 主要缺点: 模型在不断丰富与完善中,目前能识别的模式类还不够多。
b
2013/2/26
17
2. 测度贴近度
Σ { A ( x k ) ∧ B ( x k )}
n
N 1 ( A, B ) =
k =1 n k =1
Σ { A( xk ) ∨ B ( xk
n
∫ = )} ∫
+∞
−∞ +∞ −∞
( A ( x ) ∧ B ( x )) dx ( A ( x ) ∨ B ( x )) dx
N 2 ( A, B ) =
2 Σ { A ( x k ) ∧ B ( x k )}
k =1
Σ { A ( x k ) + B ( x k )}
k =1 n
=
2∫
+∞
∫
−∞ +∞
( A ( x ) ∧ B ( x )) dx
−∞
( A ( x ) + B ( x )) dx
2013/2/26
18
3. 格贴近度
x∈X x∈X
证明: ( A ⊕ B ) c = 1 − ∨ ( A( x) ∧ B ( x))
性质3
A ⊕ B ≤ A ∧ B, A ⊗ B ≥ A ∨ B
x∈X
证明: A ⊕ B = ∨ ( A( x ) ∧ B ( x ))
≤ ∨ A( x) = A
同理
A ⊕ B ≤ B, 故A ⊕ B ≤ A ∧ B.
2013/2/26
23
n
例2: 设有四本书A1,A2,A3,A4,考虑它们的以下特性:x1科学 性;x2逻辑性;x3思想性;x4可读性;x5表述明确性。设论 域X={x1,x2,x3,x4,x5}, A1=(1,0.8,0.8,0.7,0.6);A2=(0.7,0.9,0.7,0.7,0.5); A3=(0.6,0.8,0,0.5,0.6);A4=(0.7,0.9,1,0.6,0.6)。 现要在四本书中找出一本,使之比较符合要求: B=(0.9,0.8,0.7,0.7,0.5). 计算: N1(A1,B) =0.94;N1(A2,B) =0.94 ; N1(A3,B) =0.74 ; N1(A4,B) =.84 或者 N2(A1,B)=0.92;N2(A2,B)=0.90 ; N2(A3,B)=0.65 ; N2(A4,B)=0.82 从而,A1最符合要求