《13.4 课题学习 最短路径问题》课件
合集下载
最短路径问题PPT课件

A
·
C′ C
B
·
l
B′
问题1 归纳
B A
l
解决实 际问题
B
A
C
l
B′
抽象为数学问题 用旧知解决新知
B
A
C
l
联想旧知
A
C
l
B
尝试应用:
1.如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处修建
一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中
实线表示铺设的管道,则所需要管道最短的是( D )
A
·
l C
B′
问题3 你能用所学的知识证明AC +BC最短吗? 证明:如图,在直线l 上任取一点C′(与点C 不
重合),连接AC′,BC′,B′C′.
由轴对称的性质知,
BC =B′C,BC′=B′C′. ∴ AC +BC
= AC +B′C = AB′, AC′+BC′
= AC′+B′C′. 在△AB′C′中,
从图中的A 地出发,到一条笔直的河边l 饮马,然 后到B 地.到河边什么地方饮马可使他所走的路线全程 最短?
B A
l
将A,B 两地抽象为两个点,将河流l 抽象为一条直 线.
·B A·
l
你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?
(1)从A 地出发,到河流l边 饮马,然后到B 地;
AM+NB+MN.
问题3:还有其他的方法选两点M,N,使得 AM+MN+NB的和最小吗?试一试。
a
b
A
M
N
B
问题2 归纳
解决实 际问题
人教版八年级数学上册1最短路径问题课件

在△AB′C′中,AB′< AC′+B′C′,
B′
∴AC+BC < AC′+B′C′,
即AC+BC最小.
归纳
B A
l
解决实 际问题
B
抽象为数学问题
A
C
l
轴对称
A C
用旧知解决新知
B
l
A
C
l
B′
B′
解决“两点一线”型最短路径问题的方法:
异侧: 连接两点,与直线的交点即为所求的点;
同侧: 作其中某一点关于直线的对称点,对称点与另
a P1
M .P
N
b
P2
解决“两线一点”型最短路径问题:
要作两次轴对称,从而构造出最短路径. a
P1
作法: 1.作点P关于直线a的对称 点P1; 2.作点P关于直线b的对称
M .P
点P2; 3.连接P1P2,分别交直线 a ,b于点M ,N ;
N
b
4.依次连接PM ,MN ,NP , 即所求最短路径。
A1
P
l1
.
A
Q
. B1
B
l2
再学习(4)造桥选址问题
如图,A和B两地在一条河的两岸,现要在 河上造一座桥MN.乔造在何处才能使从A到 B的路径AMNB最短?(假定河的两岸是平 行的直线,桥要与河垂直)
A
B
思维分析
A M
N B
如图假定任选位置造桥MN,连接AM和 BN,从A到B的路径是AM+MN+BN, 那么怎样确定什么情况下最短呢?
问题解决
如图,平移A到A1,使A
A
A1等于河宽,连接A1B
《13.4 课题学习 最短路径问题》优质课件(2套)

理由:由作图法可知,AF//DD′,AF=DD′,
则四边形AFD′D为平行四边形,
A
于是AD=FD′,
C
DF
同理,BE=GE′, 由两点之间线段最短可知, GF最小.
C′ D ′ E E′
BG
拓展提升
6.(1)如图①,在AB直线一侧C、D两点,在AB上找一点P,使
C、D、P三点组成的三角形的周长最短,找出此点并说明理由.
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不重合),
连接AC′,BC′,B′C′.由轴对称的性质知,
BC =B′C,BC′=B′C′.
B
∴ AC +BC= AC +B′C = AB′,
∴ AC′+BC′= AC′+B′C′. A
在△AB′C′中,
AC 与CB 的和最小(如图).
B
A
C
l
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
追问1 对于问题2,如何
A
将点B“移”到l 的另一侧B′
·
处,满足直线l 上的任意一点
C,都保持CB 与CB′的长度
相等?
B
·
l
方法归纳 解决最短路径问题的方法
在解决最短路径问题时,我们通常利用轴对 称、平移等变换把未知问题转化为已解决的问题, 从而作出最短路径的选择.
当堂练习
1.如图,直线m同侧有A、B两点,A、A′关于直线m 对称,A、B关于直线n对称,直线m与A′B和n分别 交于P、Q,下面的说法正确的是( A ) A.P是m上到A、B距离之和最短的
13.4课题学习 最短路径问题 课件(共31张PPT) 初中数学人教版八年级上册

∙B A∙
l C
B′
【探究2】如图,A 和 B 两地在一条河的两岸,现要在河上 造一座桥 MN. 桥造在何处可使从 A 到 B 的路径 AMNB 最 短(假定河的两岸是平行的直线,桥要与河垂直)?
如图所示:将河的两岸看成两条平行线 a 和 b,N 为直线 b上的一个动点,MN 垂直于直线 b,交直线 a 于点 M.当 点 N 在什么位置的时候,AM+MN+NB 的值最小?
P 地把河水引向 M、N 两地.下列四种方案中,最节省材料的是( D )
A.
B.
C.
D.
解析:依据垂线段最短,以及两点之间,线段最短, 可得最节省材料的是:
故选:D.
练习 6 如图所示,某条护城河在 CC 处直角转弯,河宽均为 5m,
从 A 处到达 B 处,须经过两座桥(桥宽不计,桥与河垂直),设 护城河以及两座桥都是东西、南北方向的,如何选址造桥可使从 A 处到 B 处的路程最短?请确定两座桥的位置.
∵在△A′N′B中,A′B<A′N′+BN′,
∴A′N+NB<A′N′+BN′.
A
即A′N+NB+MN<A′N′+BN′+M′N′. A′ ∴AM+NB+MN<AM′+BN′+M′N′.
即AM+NB+MN的值最小.
M′
M
N′ N
B
a b
练习 1 如图所示,军官从军营 C 出发先到河边(河流用 AB 表示)饮马,再 去同侧的 D 地开会,应该怎样走才能使路程最短?你能解决这个著名的“将
A
点C,则点C 即为所求的位置, 可以使得 AC+BC 的值最小.
l C
B′
【探究2】如图,A 和 B 两地在一条河的两岸,现要在河上 造一座桥 MN. 桥造在何处可使从 A 到 B 的路径 AMNB 最 短(假定河的两岸是平行的直线,桥要与河垂直)?
如图所示:将河的两岸看成两条平行线 a 和 b,N 为直线 b上的一个动点,MN 垂直于直线 b,交直线 a 于点 M.当 点 N 在什么位置的时候,AM+MN+NB 的值最小?
P 地把河水引向 M、N 两地.下列四种方案中,最节省材料的是( D )
A.
B.
C.
D.
解析:依据垂线段最短,以及两点之间,线段最短, 可得最节省材料的是:
故选:D.
练习 6 如图所示,某条护城河在 CC 处直角转弯,河宽均为 5m,
从 A 处到达 B 处,须经过两座桥(桥宽不计,桥与河垂直),设 护城河以及两座桥都是东西、南北方向的,如何选址造桥可使从 A 处到 B 处的路程最短?请确定两座桥的位置.
∵在△A′N′B中,A′B<A′N′+BN′,
∴A′N+NB<A′N′+BN′.
A
即A′N+NB+MN<A′N′+BN′+M′N′. A′ ∴AM+NB+MN<AM′+BN′+M′N′.
即AM+NB+MN的值最小.
M′
M
N′ N
B
a b
练习 1 如图所示,军官从军营 C 出发先到河边(河流用 AB 表示)饮马,再 去同侧的 D 地开会,应该怎样走才能使路程最短?你能解决这个著名的“将
A
点C,则点C 即为所求的位置, 可以使得 AC+BC 的值最小.
《最短路径问题》PPT课件

13.4 课题学习 最短路径问题
导入新课
讲授新课
当堂练习
课堂小结
.
1
学习目标
1.体会图形的变化在解决最值问题中的作用,感悟转 化思想.(重点)
2.能利用轴对称解决简单的最短路径问题.(难点)
.
2
导入新课
复习引入 1.如图,连接A、B两点的所有连线中,哪条最短?为什么?
②最短,因为两点之间,线段最短
A.P是m上到A、B距离之和最短的
点,Q是m上到A、B距离相等的点
B.Q是m上到A、B距离之和最短的
点,P是m上到A、B距离相等的点
C.P、Q都是m上到A、B距离之和最
短的点
D.P、Q都是m上到A、B距离相等
的点
.
16
2.如图,∠AOB=30°,∠AOB内有一定点P,且
OP=10.在OA上有一点Q,OB上有一点R.若
△PQR周长最小,则最小周长是( A )
A.10
B.15
C.20
D.30
.
17
3.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分 别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500 米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离 是 1000 米.
C
D 河
A
B
.
18
则点C 即为所求. ACΒιβλιοθήκη B lB′.
9
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不重合),
连接AC′,BC′,B′C′.由轴对称的性质知,
BC =B′C,BC′=B′C′.
∴ AC +BC= AC +B′C = AB′,
导入新课
讲授新课
当堂练习
课堂小结
.
1
学习目标
1.体会图形的变化在解决最值问题中的作用,感悟转 化思想.(重点)
2.能利用轴对称解决简单的最短路径问题.(难点)
.
2
导入新课
复习引入 1.如图,连接A、B两点的所有连线中,哪条最短?为什么?
②最短,因为两点之间,线段最短
A.P是m上到A、B距离之和最短的
点,Q是m上到A、B距离相等的点
B.Q是m上到A、B距离之和最短的
点,P是m上到A、B距离相等的点
C.P、Q都是m上到A、B距离之和最
短的点
D.P、Q都是m上到A、B距离相等
的点
.
16
2.如图,∠AOB=30°,∠AOB内有一定点P,且
OP=10.在OA上有一点Q,OB上有一点R.若
△PQR周长最小,则最小周长是( A )
A.10
B.15
C.20
D.30
.
17
3.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分 别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500 米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离 是 1000 米.
C
D 河
A
B
.
18
则点C 即为所求. ACΒιβλιοθήκη B lB′.
9
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不重合),
连接AC′,BC′,B′C′.由轴对称的性质知,
BC =B′C,BC′=B′C′.
∴ AC +BC= AC +B′C = AB′,
人教版数学八年级上册课件13.4课题学习-最短路径问题

模型二:线型,两点在直线同侧 作对称一连接 将A,B 两地抽象为两个点,将河l 抽象为一条直 线.
C B′ (1)最短路径的常见模型?
如图所示,正方形ABCD的边长是4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则 这个最小值为( )
∴ AC +BC
题。
作对称,一连接
知识拓展 模型三:角型 两条直线找两个点
练习4.如图:A为马厩,B为帐篷,牧马人某一天要从 马厩牵出马,先到草地边某一处牧马,再到河边饮马, 然后回到帐篷,请你帮他确定这一天的最短路线。
A→Pห้องสมุดไป่ตู้→ Q → B
A′ P
Q
B′
两对称,一连接
思维拓展 = AC′+B′C′.
= AC′+B′C′. ∵∠1=∠2 ,∠3=∠4 (2)本节课研究问题的基本过程是什么?
练习5.如图,四边形ABCD中,∠BAD=120°∠B=∠D=90°, 如图:A为马厩,B为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这
一天的最短路线。
在BC,CD上分别找一点M、N,当△AMN周长最小时, 总结方法:将同侧两点转化为异侧两点,利用“两点之间线段最短”解决路径最短问题。
连接AC′,BC′,B′C′.
B
由轴对称的性质知,
A
BC =B′C,BC′=B′C′.
∟
∴ AC +BC = AC +B′C = AB′,
C’ C
l
AC′+BC′
= AC′+B′C′. 在△AB′C′中,AB′<AC′+B′C′,
C B′ (1)最短路径的常见模型?
如图所示,正方形ABCD的边长是4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则 这个最小值为( )
∴ AC +BC
题。
作对称,一连接
知识拓展 模型三:角型 两条直线找两个点
练习4.如图:A为马厩,B为帐篷,牧马人某一天要从 马厩牵出马,先到草地边某一处牧马,再到河边饮马, 然后回到帐篷,请你帮他确定这一天的最短路线。
A→Pห้องสมุดไป่ตู้→ Q → B
A′ P
Q
B′
两对称,一连接
思维拓展 = AC′+B′C′.
= AC′+B′C′. ∵∠1=∠2 ,∠3=∠4 (2)本节课研究问题的基本过程是什么?
练习5.如图,四边形ABCD中,∠BAD=120°∠B=∠D=90°, 如图:A为马厩,B为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这
一天的最短路线。
在BC,CD上分别找一点M、N,当△AMN周长最小时, 总结方法:将同侧两点转化为异侧两点,利用“两点之间线段最短”解决路径最短问题。
连接AC′,BC′,B′C′.
B
由轴对称的性质知,
A
BC =B′C,BC′=B′C′.
∟
∴ AC +BC = AC +B′C = AB′,
C’ C
l
AC′+BC′
= AC′+B′C′. 在△AB′C′中,AB′<AC′+B′C′,
2019秋人教版八年级数学上册课件:13.4课题学习最短路径问题(共36张PPT)
13.4 课题学习 最短路径问题
栏目索引
答案 D 如图,作点A关于BC的对称点A',关于CD的对称点A″,
连接A‘A″,与BC、CD的交点分别为M、N,此时△AMN的周长最小. ∵∠BAD=110°,∴∠A'+∠A″=180°-110°=70°, 由轴对称的性质得∠A'=∠A'AM,∠A″=∠A″AN, ∴∠AMN+∠ANM=2(∠A'+∠A″)=2×70°=140°. 故选D.
13.4 课题学习 最短路径问题
栏目索引
动到点A',则AA'=MN,AM+NB=A'的什么位置时,A'N+NB最小?
图13-4-4 如图13-4-5,在连接A',B两点的线中,线段A'B最短.因此,线段A'B与直线b 的交点N的位置即为所求,即在点N处造桥MN,所得路径A→M→N→B是 最短的.
图13-4-1 分析 将题意用数学语言叙述如下:如图13-4-1所示,已知直线a和a同侧 的两点A,B.求作:点C,使点C在直线a上,并且AC+CB最小.此题实际上是 求最短路径问题,需要比较路径的长短,与之有关的内容是:两点之间,线 段最短.
13.4 课题学习 最短路径问题
栏目索引
解析 如图13-4-2(1)所示,作点A关于直线a的对称点A',连接A'B交直线a 于点C,则点C即为水泵站的位置. 理由如下:如图13-4-2(2)所示,在直线a上任取一点C'(异于点C),连接BC', A'C',AC'. ∵A与A‘关于直线a对称,∴AC=A'C,AC'=A'C'. ∴AC+CB=A'C+CB=A'B<A'C'+BC'=AC'+BC'.
13.4 课题学习 最短路径问题 课件(共15张PPT)人教版初中数学八年级上册
迁移应用
3.如图,点P是∠AOB内任意一点,点M和点N分别是射线OB和射线OA 上的动点,当△PMN的周长为最小时,画出点M,N的位置.
B P'
M P
O
N
A
P''
解:如图所示,点 M,N 即为所求
B
M
P
O
A N
课后延伸
1.课本P93,第15题 2.收集最短路径的其他模型
人教版八年级数学第十三章《轴对称》
课题学习—最短路径问题
情境引入
古从军行 唐·李颀
经验唤醒
如图所示,请规划从A地到B地最近的路线?为什么 这条路线最近?
A
B
AB即为最短路线,因为两点之间,线段最短
探究一
问题情境1
图形
将军从烽火台到河边饮马 在这个情境中我们 再回到营地,饮马点在什么位 分别把烽火台,营 置,可使将军所走的路径最短? 地,河流抽象成哪
种几何图形?
A. 点 B.线
A
l B
最短路径作法
直线异侧 “两定点”
连定点 得最短
A
l P
B
两点之间 线段最短
探究二
问题情境2
将军从烽火台到河边 饮马再回到营地,饮马点 在什么位置,可使将军所 走的路径最短?
图形
我们可以把情境 2抽象成怎样的几何 图形?
最短路径作法
直线同侧“两定点”
作对称 化折为直得最短
∴AM1+M1N1+BN1=AA1+A1N1+BN1 在△A1N1B中
因为A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN. ∴AM +MN+BN为最短路径.
新人教版八年级数学上册《最短路径问题》精品课件(共15张PPT)
13.4 课题学习 最短路径问题
1.学会轴对称变换知识的应用,提高解决实际问题 的能力.
2.通过独立思考,合作探究,学会求最值问题. 3.感受数学在实际生活中的巨大作用,享受成功学 习的乐趣.
重点:应用轴对称解决实际问题. 难点:如何应用轴对称解决实际问题.
阅读课本P85-87页内容,了解本节主要内容.
探究二:造桥选址问题中的最短路径问题
3.如图,A和B两地在一条河的两岸,现要在河上造 一座桥MN,桥造在何处可使从A到B的路径AMNB最短? (假设两岸是平行的直线,桥要与河垂直)
A
C
例:如图所示,点A是货运总部,想在公路m上建一
个分部B,在公路n上建一个分部C,要使AB+BC+CA最小,
应如何建?
l CC A’
解(:1)作AB的中垂线交l于点C,如图. (2)如图.
A1 B
C
解:如图所示,B、C为两个加A油2 站的位置.
本课时学习了生活中的最短路径可以转化 为数学中最值问题.
垂线段线段ຫໍສະໝຸດ 如图,牧马人从A地出发,到一条笔直的河边l饮马, 然后到B地,牧马人到河边的什么地方饮马,可使所走 的路径最短?
探究一:在直线上找一点,使它到直线外两点距离和最小
1.点A、B分别是直线l异侧的两个点,如何在l上找 到一个点,使得这个点到点A、点B的距离的和最短.
2.由上面情景导入,当A、B两点在直线l的同侧时, 又如何求解.
1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 4、好的教师是让学生发现真理,而不只是传授知识。 5、数学教学要“淡化形式,注重实质.
1.学会轴对称变换知识的应用,提高解决实际问题 的能力.
2.通过独立思考,合作探究,学会求最值问题. 3.感受数学在实际生活中的巨大作用,享受成功学 习的乐趣.
重点:应用轴对称解决实际问题. 难点:如何应用轴对称解决实际问题.
阅读课本P85-87页内容,了解本节主要内容.
探究二:造桥选址问题中的最短路径问题
3.如图,A和B两地在一条河的两岸,现要在河上造 一座桥MN,桥造在何处可使从A到B的路径AMNB最短? (假设两岸是平行的直线,桥要与河垂直)
A
C
例:如图所示,点A是货运总部,想在公路m上建一
个分部B,在公路n上建一个分部C,要使AB+BC+CA最小,
应如何建?
l CC A’
解(:1)作AB的中垂线交l于点C,如图. (2)如图.
A1 B
C
解:如图所示,B、C为两个加A油2 站的位置.
本课时学习了生活中的最短路径可以转化 为数学中最值问题.
垂线段线段ຫໍສະໝຸດ 如图,牧马人从A地出发,到一条笔直的河边l饮马, 然后到B地,牧马人到河边的什么地方饮马,可使所走 的路径最短?
探究一:在直线上找一点,使它到直线外两点距离和最小
1.点A、B分别是直线l异侧的两个点,如何在l上找 到一个点,使得这个点到点A、点B的距离的和最短.
2.由上面情景导入,当A、B两点在直线l的同侧时, 又如何求解.
1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 4、好的教师是让学生发现真理,而不只是传授知识。 5、数学教学要“淡化形式,注重实质.
人教版八年级上册第十三章《13.4课题学习最短路径问题 》课件
能不能作出B点的对称 点B',连接AB',与l还交
于P点吗?
A
P A'
B l
B'
探 问题3 你能用所学的知识证明AP +BP最短吗? 索 证明:如图,在直线l 上任取一点P′(与点P 不重合)
新
知 连接AP′,BP′,A′P′.由垂直平分线的性质知:
AP =A′P,AP′=A′P′
∴AP +BP= A'P +BP = A′B
检 的任意一点,则AP+BP的最小值是( A)
测 A.4 B.5
C.6
D.7
E
A
P
B
C
F
当 3.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,
堂 检
AD=5,点F是AD边上的动点,则BF+EF的最小值为 5 .
测
A
方法总结:此类求线段和的最小值问题, 找准对称点是关键,而后将求线段长的
课 堂 小 结
实际问题
抽象为数学问题
通过轴对称把同 侧点转为异侧点
利用“两点之间, 线段最短”确定 所求位置
P
l
A
探 模型二:一定直线,同侧两定点
索 新 问题2 如果点A,B分别是直线l同侧的两个点,又应该如何解决?
知
A
B
B
A
抽象成
l
PP
l
A′
利用轴对称,作出点A关于直线l的对称点A′.
作 模型二:一定直线,同侧两定点
图 探 作法 究 (1)作点A 关于直线l 的对称点A′;
(2)连接A′B,与直线l相交于点P. 则点P 即为所求.
测
A
于P点吗?
A
P A'
B l
B'
探 问题3 你能用所学的知识证明AP +BP最短吗? 索 证明:如图,在直线l 上任取一点P′(与点P 不重合)
新
知 连接AP′,BP′,A′P′.由垂直平分线的性质知:
AP =A′P,AP′=A′P′
∴AP +BP= A'P +BP = A′B
检 的任意一点,则AP+BP的最小值是( A)
测 A.4 B.5
C.6
D.7
E
A
P
B
C
F
当 3.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,
堂 检
AD=5,点F是AD边上的动点,则BF+EF的最小值为 5 .
测
A
方法总结:此类求线段和的最小值问题, 找准对称点是关键,而后将求线段长的
课 堂 小 结
实际问题
抽象为数学问题
通过轴对称把同 侧点转为异侧点
利用“两点之间, 线段最短”确定 所求位置
P
l
A
探 模型二:一定直线,同侧两定点
索 新 问题2 如果点A,B分别是直线l同侧的两个点,又应该如何解决?
知
A
B
B
A
抽象成
l
PP
l
A′
利用轴对称,作出点A关于直线l的对称点A′.
作 模型二:一定直线,同侧两定点
图 探 作法 究 (1)作点A 关于直线l 的对称点A′;
(2)连接A′B,与直线l相交于点P. 则点P 即为所求.
测
A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD, ∠ADB=∠C,若P是BC边上一动点,则DP长的最小值为__4__.
5.如图,AD是等边△ABC的BC边上的高,AD=6,M是AD上的动点, E是AC边的中点,则EM+CM的最小值为_6___.
6.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别 是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为( D )
知识点:最短路线问题 1.如图,小明小丽家有四条路,其中路程最短的是( B ) A.① B.② C.③ D.④
2.如图,某村计划挖一条水渠将不远处的河水引到农田(记作点O), 以便对农田进行灌溉,现设计了四条路线,其中最短的是(B ) A.OA B.OB C.OC D.OD
3.如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建 一个水泵站,分别向P,Q两地供水,现有如下四种铺设方案,图中 实线表示铺设的管道,则所需管道最短的是( D )
这是一个立体图形,要求蚂蚁爬行的最短路径,就是要把 圆柱的侧面展开,利用“两点之间,线段最短”求出最短 路径.那么怎样求平面图形中的最短路径问题呢?
二、自主探究 探究一:最短路径问题的概念 1.多媒体出示图①和图②,提出问题: (1)图①中从点A走到点B哪条路最短?(2)图②中点C与 直线AB上所有的连线中哪条线最短?
尝试选址作出图形. 多媒体展示教材图13.4-7,13.4-8,13.4-9,引导 学生分析、观察,让学生根据刚才的分析,完成证明过 程. 根据问题1和问题2,你有什么启示? 三、知识拓展 已知长方体的长为2 cm、宽为1 cm、高为4 cm,一只 蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条 路最近,最短的路程是多少?
解:分别作P关于AB,CD的对称P1,P2,连接P1P2交AB于M, 交CD于N,则最佳路线为PM-MN-NP
9.(问题2变式)如图,村庄A,B位于一条小河的两侧,若河岸a,b彼 此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才 能使A村到B村的路程最近?
解:①过点A作AP⊥a,并在AP上向下截取AA′,使AA′=河的宽度; ②连接A′B交b于点D;③过点D作DE∥AA′交a于点C;④连接AC,则 CD即为桥的位置.图略
13.4 课题学习 最短路径问题
通过对最短路径问题的探索,进一步理解和掌握两点之 间线段最短和垂线段最短.
重点 应用所学知识解决最短路径问题. 难点 选择合理的方法解决问题.
一、创设情境 多媒体展示:如图,一个圆柱的底面周长为20 cm,高 AB为4 cm,BC是底面的直径,一只蚂蚁从点A出发,沿 着圆柱的侧面爬行到点C,试求出爬行的最短路径.
思考:如果点A和点B位于直线的同侧,如何在直线l上找 到一点,使得这个点到点A和点B的距离的和最短?
教师引导学生讨论,明确找点的方法. 让学生对刚才的方法通过逻辑推理的方法加以证明. 教师巡视指导学生的做题情况,有针对性地进行点拨.
探究三:造桥选址问题 多媒体出示问题2.(教材第86页) 提出问题: (1)根据问题1的探讨你对这道题有什么思路和想法? (2)这个问题有什么不同? (3)要保证路径AMNB最短,应该怎样选址? 学生对这个三个问题展开讨论,得出结论:要保证AMNB 最短,就是要保证AM+MN+NB最小.
方法技能: 解决最短路径问题的方法:借助轴对称或平移的知识,化折为直, 利用“两点之间,线段最短”或“垂线段最短”来求线段和的最小 值. 易错提示: 混淆什么情况下用“两点之间,线段最短”,什么情况下用“垂线 段最短”而出错.
2.教师总结:“两点之间,线段最短”“连接直线外一 点与直线上各点的所有线段中,垂线段最短”等问题,我 们称之为最短路径问题.
探究二:河边饮马问题 多媒体出示问题1:牧马人从A地出发,到一条笔直的河 边l饮马,然后到B地,牧马人从河边什么地方饮马,可使 所走的路径最短?
提出问题:如果点A和点B分别位于直线的两侧,如何在 直线l上找到一点,使得这个点到点A和点B的距离的和最短?
[让学生讨论有几种爬行的方法,计算出每种方案中 的路程,再进行比较]
四、归纳总结 1.本节课你学到了哪些知识? 2.怎样解决最短路径问题?
本节课以数学史中的一个经典问题——“将军饮马问题”为 载体开展对“最短路径问题”的课题学习,让学生经历将 实际问题抽象为数学问题的线段和最小问题,再利用轴对 称将线段和最小的问题转化为“两点之间,线段最短”问 题.
A.50° B.60° C.70° D.80°
7.如图,需要在高速公路旁边修建一个飞机场,使飞机场到A, B两个城市的距离之和最小,请作出机场的位置.
解:作点A关于公路的对称点A′,连接A′B交公路于点P,点P即为机场 的位置
8.如图,P为马厩,AB为草地边缘(下方为草地),CD为一河流,牧 人欲从马厩牵马先去草地吃草,然后到河边饮水,最后回到马 厩.请你帮他确定一条最佳行走路线.