LTE系统信息简介
LTE系统概述范文

LTE系统概述范文LTE(Long Term Evolution)是一种第四代(4G)无线通信技术,是继2G(GSM)和3G(UMTS)之后的下一代移动通信技术。
它旨在提供更高的数据传输速度、更低的时延和更好的覆盖范围,以满足日益增长的移动宽带需求。
LTE系统的核心是基于IP的无线通信网络,它采用了分组交换的技术,与传统的电路交换网络相比,能够更高效地利用网络资源。
在LTE系统中,无线电接入网络(Radio Access Network,RAN)负责无线信号的传输和接收,核心网络(Core Network)则负责数据传输、处理和路由等功能。
2.低时延:由于LTE系统采用了分组交换的技术和优化的协议,使得无线网络的时延相对较低。
这对于实时应用(如在线游戏、视频通话)和位置服务非常重要,能够提供更好的用户体验。
3. 高容量:LTE系统的无线接口采用了OFDMA(Orthogonal Frequency Division Multiple Access)技术,这是一种多用户接入技术,能够将频谱资源划分给多个用户同时使用,从而提高网络的容量和可伸缩性。
4.灵活的频谱分配:LTE系统可以灵活地分配频谱资源,支持不同频带(如700MHz、1800MHz、2.6GHz等)的使用,以满足不同运营商和地区的需求。
5.广泛的覆盖范围:LTE系统的网络规划和无线传输技术使得其覆盖范围更广,能够实现更好的室内和室外覆盖,为用户提供更稳定的信号质量。
6.兼容性:LTE系统具有对已有的2G和3G网络的兼容性。
它可以与GSM和UMTS网络进行互操作,这意味着运营商可以逐步升级其现有的网络到LTE系统,而无需进行全面的替换。
7.低能耗:LTE系统采用了一些节能技术,如功率控制和休眠模式等,使得设备在使用无线网络时能够更有效地利用电池能量,延长设备的使用时间。
总之,LTE系统作为一种高速、低时延、高容量和兼容性强的无线通信技术,已经在全球范围内得到广泛应用。
LTE常见知识点汇总

LTE常见知识点汇总LTE(Long Term Evolution)是一种无线通信技术,用于4G移动通信网络。
以下是一些关于LTE的常见知识点:1.LTE的基本原理:LTE使用OFDMA(正交频分复用)和MIMO(多输入多输出)技术,提供高速数据传输和更好的信号质量。
OFDMA将频谱划分为多个子载波,每个子载波可以为多个用户提供独立的传输通道。
MIMO利用多个天线发送和接收多个数据流,提高传输速度和信号可靠性。
2. LTE的网络架构:LTE网络由基站(eNodeB),核心网和终端设备(UE)组成。
基站负责无线信号的传输和接收,核心网处理用户数据和控制信息的传输,终端设备是用户使用的移动设备。
3.LTE的带宽:LTE系统使用不同的频段和带宽,包括1.4MHz、3MHz、5MHz、10MHz、15MHz、20MHz等。
较大的带宽可提供更高的数据传输速度和容量。
4. LTE的速度和性能:LTE网络可以提供高速的数据传输速度,通常在几十兆比特每秒(Mbps)到几百兆比特每秒(Gbps)之间。
LTE-A(LTE-Advanced)还可以提供更高的速度,达到几千兆比特每秒。
5.LTE的传输方式:LTE使用分时传输和分频传输的混合方式。
下行链路使用OFDMA进行频分复用,上行链路使用SC-FDMA(单载波频分多址)进行频分复用。
6.LTE的频段:LTE系统在不同的频段中运行,包括700MHz、800MHz、1800MHz、2600MHz等。
较低频段的信号可以更好地穿透建筑物,较高频段的信号具有更高的容量。
7.LTE的切换:LTE支持平滑的切换,包括小区间切换(频域、时域和小区间的切换)和宏小区—微小区切换等。
切换可以提供更好的网络覆盖和容量管理。
8.LTE的QoS(服务质量):LTE支持多种QoS级别,以满足不同应用的需求。
QoS包括延迟、带宽、可靠性和优先级等。
9.LTE的安全性:LTE使用多种安全机制来保护用户的数据和通信隐私。
LTE网络基础知识简介

LTE网络基础知识简介目录一、LTE网络概述 (2)1.1 LTE概念及发展历程 (3)1.2 LTE技术优势与演进 (4)二、LTE网络架构 (5)2.1 EPC网络组成 (7)2.2 UTRAN网络组成 (8)2.3 eNB与gNB的关系及切换 (9)三、LTE关键技术 (11)四、LTE网络规划与部署 (12)4.1 需求分析 (13)4.2 网络设计 (14)4.3 部署策略 (16)五、LTE网络测试与优化 (17)5.1 测试目的与方法 (18)5.2 关键性能指标(KPI)分析 (19)5.3 网络优化策略 (20)六、LTE与其他无线通信技术的比较 (22)6.1 与2G/3G的比较 (23)6.2 与Wi-Fi的比较 (24)七、LTE未来发展趋势 (26)7.1 5G技术发展与LTE演进 (27)7.2 IoT与LTE的关系 (28)八、总结与展望 (29)8.1 LTE技术成果总结 (30)8.2 对未来LTE发展的展望 (32)一、LTE网络概述LTE(LongTerm Evolution,长期演进)是一种基于新一代无线通信技术的4G移动通信标准。
它采用了全球通用的频段和编码技术,可以实现高速、低时延、大连接数的移动通信服务。
LTE网络在全球范围内得到了广泛的应用和推广,为用户提供了更加便捷、高效的移动互联网体验。
LTE是3G(第三代移动通信技术)的升级版,相较于3G,LTE在数据传输速度、时延、网络容量等方面都有显著提升。
LTE也是4G(第四代移动通信技术)的基础,两者共享相同的技术规范和频谱资源。
LTE可以看作是4G的一个过渡阶段,为后续5G网络的发展奠定了基础。
高速:LTE网络的最大下行速率可达100Mbps,上传速率可达50Mbps,大大满足了用户的上网需求。
低时延:LTE网络的空口时延较低,一般在10ms左右,用户体验较好。
大连接数:LTE网络具有较高的并发连接能力,可支持数百万人同时在线。
LTE系统介绍与无线原理

LTE系统介绍与无线原理一、LTE/SAE 介绍主要内容解释E-UTRAN和EPC的背景和结构:描述蜂窝网的发展;总结3GPP release从R99到R8的变革;描述EPS(E-UTRAN和EPC)的逻辑结构;1、介绍这个课程描述了第三代蜂窝网3GPP R8的LTE/SAE系统,主要点在MBB(mobile broadband)系统,语音服务将简单的在IMS章节讨论。
下面回顾一下历史上的通信网络发展:1G第一代蜂窝通信网络,系统包括NMT(北欧移动电话)、AMPS(高级移动电话系统)和TACS(全入网通信系统)。
北欧移动电话(NMT)是被瑞典,挪威和丹麦的电讯管理部门在上世纪80年代初确立的普通模拟移动电话北欧标准。
NMT系统也在欧洲其他的一些国家安装了,包括俄罗斯的部分地区,中东和亚洲。
NMT运转在450 MHz和900 MHz的带宽上。
AMPS系统由美国AT&T开发的最早的蜂窝电话系统标准。
TACS系统技术按照英国标准而设计的模拟式移动电话系统,其频率范围为900MHz。
与AMPS 系统类似,它在地域上将覆盖范围划分成小单元,每个单元复用频带的一部分以提高频带的利用率,即利用在干扰受限的环境下,依赖于适当的频率复用规划(特定地区的传播特性)和频分复用(FDMA)来提高容量,实现真正意义上的蜂窝移动通信。
1G网络采用FDMA调制技术,即不同的用户分配在时隙相同而频率不同的信道上。
按照这种技术,把在频分多路传输系统中集中控制的频段根据要求分配给用户。
同固定分配系统相比,频分多址使通道容量可根据要求动态。
在FDMA系统中,分配给用户一个信道,即一对频谱,一个频谱用作前向信道即基站向移动台方向的信道,另一个则用作反向信道即移动台向基站方向的信道。
这种通信系统的基站必须同时发射和接收多个不同频率的信号,任意两个移动用户之间进行通信都必须经过基站的中转,因而必须同时占用2个信道(2对频谱)才能实现双工通信。
LTE简介

UE的IP地址分配 QoS保证 计费 IP数据包过滤
所有IP数据包均通 过S-GW UE在小区间切换 时,作为移动性控 制锚点 下行数据缓存 LTE与其他3GPP 技术互联时作为移 动性锚点
无线接口协议
无线接口协议根据用途分为用户面(User plane) 协议栈和控制面(Control plane)协议栈。
传统FDM频谱
OFDM频谱
多载波技术
LTE下行链路采用正交频分多址(OFDMA)技术。 LTE上行链路采用单载波频分多址(SC-FDMA)技术,避免 OFDM调制中因高PARA(峰均比)带来的对功放的线性化要求。
OFDM与SC-FDMA的频谱结构
OFDM系统框图
OFDM调制
h( , t )
PDCP
PDCP
GTP-U
RLC
RLC UDP/IP
MAC
L1 UE
LTE-Uu
MAC
L1
L2
L1
S1-U
L2
L1
L2
L1
S5/S8
L2
L1 PDN GW
ቤተ መጻሕፍቲ ባይዱeNodeB
Serving GW
用户面协议栈
E-UTRAN控制面
NAS Relay RRC PDCP RLC
NAS NAS S1-AP RRC PDCP RLC S1-AP SCTP IP SCTP IP
控制面协议
用户面协议
LTE网络结构
LTE采用 “扁平”的无线访问网络结构,取消RNC节点, 简化网络设计。实现了全IP路由,各个网络节点之间与 Internet没有什么太大的区别,网络结构趋近于IP宽带网 络结构。
EPS概述
LTE致力于无线接入网的演进( E-UTRAN )。 系统架构演进(SAE)则致力于分组网络的演进(演进型 分组核心网EPC)。 LTE和SAE共同组成演进型分组系统(EPS)。
【4G】LTE系统信息(System Information)研究

LTE系统信息(SI)的调度小区搜索过程之后,UE已经与小区取得下行同步,得到小区的PCI(Physical Cell ID)以及检测到帧的timing(即10ms timing)。
接着,UE需要获取到小区的系统信息(System Information),以便接入该小区并在该小区内正确地工作。
系统信息是小区级别的信息,即对接入该小区的所有UE生效。
系统信息是以系统信息块(System Information Block,SIB)的方式组织的,每个SIB包含了与某个功能相关的一系列参数集合。
SIB的类型包括:图:系统信息类型并不是所有的SIB都必须存在。
例如对于运营商的基站而言,就不需要SIB9,如果某小区不提供MBMS,就不需要SIB13。
有3种类型的RRC消息用于传输系统信息:MIB消息、SIB1消息、一个或多个SI消息。
图:3类用于发送系统信息的RRC消息注意:物理层限制了某个SIB(个人觉得更好的描述是SI和SIB1)的最大size。
如果使用DCI format 1C,则最大size为1736 bit(217 byte);如果使用DCI format 1A,则最大size为2216 bit(277 byte)。
MIB在PBCH上传输。
BCH时域上位于子帧0的第2个slot的前4个OFDM symbol,频域上占据72个中心子载波(不含DC)。
对应RE不能用于发送DL-SCH数据。
图:BCH传输信道的资源映射图:MIB在时域上的调度SIB1的周期为80ms,且在该周期内SFN % 2 = 0的系统帧的子帧5上重复发送同一SIB1。
但与MIB所在的时频位置固定不同,SIB1和SI消息都在PDSCH上传输,且SIB1和SI消息所占的RB(频域上的位置)及其传输格式是动态调度的,并由SI-RNTI加扰的PDCCH来指示。
图:SIB1在时域上的调度每个SI消息包含了一个或多个除SIB1外的拥有相同调度需求的SIB(这些SIB有相同的传输周期)。
LTE系统概览-基础

”Identifier”
TDD 2000 TDD 1900 PCS Center Gap IMT Extension Center Gap China TDD 2.3 TDD
Frequencies (MHz)
1900-1920 2010-2025 1850-1910 1930-1990 (1915)1910-1930 2570-2620 1880-1920 2300-2400
Data Link Layer
PHY
PHY
3GPP LTE
下行 和 上行
下行: 下行 多载波 OFDM
– 频域的信道调度和链路自适应
上行: 单载波-FDMA 上行 单载波
– 更高上行吞吐 – 扩展的覆盖和小区边缘性能 – 更少的终端电源开销
Downlink
User 1 User 2 User 3
Uplink
所有终端都需要支持20 所有终端都需要支持 MHz带宽 带宽
– 只有一个单一的终端级别
LTE扁平化架构 LTE扁平化架构
A p p lic a t io n A p p lic a t io n
•
I n ne e n n e t I t tr r et
减少了RNC节点 节点 减少了
C o re n e t
S2a/b/c
SGSN
S3
MME
S10
S11
Gb
Iu CP
S12 S1 CP S1 UP
BSC BTS
RNC
eNode B
Node B
2G
3G
LTE
Non-3GPP access
lte系统的原理及应用

LTE系统的原理及应用1. 简介LTE (Long Term Evolution) 是第四代移动通信网络技术,是一种用于无线宽带数据传输的标准。
它为用户提供高速的数据传输和低延迟的连接,适用于各种应用场景。
2. 基本原理LTE系统基于OFDMA (Orthogonal Frequency Division Multiple Access) 技术实现,采用了多载波调制和分层的方式传输数据。
2.1 OFDMA技术OFDMA技术将可用的频谱资源划分为多个子载波,并将数据进行并行传输。
每个子载波的带宽相对较窄,可以减小多径效应对信号的影响,提高信号的可靠性和抗干扰性能。
2.2 多载波调制LTE系统使用了多种载波和调制方式,以适应不同的应用需求。
例如,QPSK 调制适用于长距离传输和高速移动环境;16QAM和64QAM则适用于短距离传输和低速移动环境。
通过灵活地选择载波和调制方式,LTE系统可以实现高速率和广覆盖的数据传输。
2.3 分层传输LTE系统使用了分层传输机制,将数据分为多个层次进行传输。
这样做的好处是,即使在高速移动条件下,也可以根据信道状况动态地调整传输方式,以确保数据的可靠传输。
3. 应用场景LTE系统广泛应用于移动通信领域,满足了人们对高速数据传输的需求。
以下是一些常见的LTE系统应用场景。
3.1 移动宽带LTE系统提供了高速的移动宽带连接,用户可以通过LTE网络访问互联网、收发电子邮件、观看高清视频等。
无论是在城市还是农村地区,用户都可以享受到与有线宽带相媲美的网速和用户体验。
3.2 物联网物联网是指通过互联网将各种设备和物体连接起来,实现智能化管理和控制。
LTE系统支持高密度的连接和低功耗的设备,为物联网应用提供了强大的通信基础设施。
例如,智能家居、智能城市、智能交通等应用都可以借助LTE技术实现。
3.3 公共安全LTE系统还被广泛应用于公共安全领域,如警务通、智能监控等。
其高速率、低延迟和广覆盖的特点,保障了公共安全应用的实时性和可靠性,为应急救援和犯罪打击提供了重要支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
举例
计算方法
注意:一个帧包含10个子帧,一个无线帧10ms,一个帧分两个 半帧(即每个半帧为5ms),该例中Si_Window定义为半个 帧长。SFN是8bit。该图中8,16,32代表传输周期,以 SI_Window为单位。n=1,2,3.mod代表求余,得出结果为0— 9. 例如:SI 2,x=(2-1)*5=5,SFN mod 16=floor(5/10),所以 SFN=0,16,32,64……..,a=5 mod 10=5,所以SI2的第一次发送在 子帧序号为5—10(窗的长度为5ms,所以占据5个子帧), SI2下一次传输在16*10ms ,但是SI2中只有SIB5,因此, 6,7,8,9是空余的,没有使用 所以在160ms之后再次传输,在传输过程中系统帧号必须满 足公式,下次传输在SFN为16的系统帧。
对于SIBx可以不连续,但是系统信息窗必须是连续的。
什么条件下需要捕获系统信息
在以下情况下需要捕获系统信息:
选择或重选到一个小区; 切换完成后; 从其他系统进入E-UTRAN; 从覆盖外返回覆盖区;
接收到系统消息变更指示; 接收到ETWS 或CMAS通 知; 超过最大有效时间;
System information Validity and Change Notification
UEs in RRC_IDLE and UEs in RRC_CONNECTED about a system information change from Paging message with systeminfoModification
LTE系统消息
MIB
承载于BCCH → BCH → PBCH上 包括有限个用以读取其他小区 信息的最重要、最常用的传输 参数(系统带宽,系统帧号, PHICH配置信息) 时域:紧邻同步信道,以 10ms为周期重传4次 频域:位于系统带宽中央的72 个子载波
PBCH时域映射结构
PBCH频域映射结构
Change notification
UEs acquire new system information next Modification period
Updated information
BCCH modification period (n)
BCCH modification period (n+1)
无线承载与信道结构图
MIB 红色线条 SI 绿色线条
系统信息调度
LTE系统消息中的调度分为两种:
静态调度方法
系统信息的传输是固定在某些确定的子帧
动态调度方法:
系统信息的传输是动态,并非固定在特定的子帧上的
系统信息调度-静态调度
MIB/SIB1的发送采用静态调度方法。 MIB的第一次发送发生在:subframe #0 && SFN mod 4=0 重发发生在:subf rame #0 any frame 周期为40ms SIB1的第一次发送发生在:subframe #5 && SFN mod8=0 重发发生在:subframe #5 && SFN mod2=0 周期为80ms
SIB
LTE系统消息 SIBs
除MIB以外的系统消息,包括SIB1-SIB13 除SIB1以外,SIB2-SIB13均由SI (System Information)承载 SIB1的调度是固定的,以80ms为周期,并且在80ms内可以重复 发送。SIB1的第一次传输在帧号为SFN mod 8 = 0的帧的子帧5上 传输,而且在一个周期内的帧号为SFN mod 2 = 0的帧的子帧5上 可以重传。SIB1和所有SI消息均传输在BCCH → DL-SCH → PDSCH上 SIB1的传输通过携带SI-RNTI(SI-RNTI每个小区都是相同的)的 PDCCH调度完成 SIB1中的SchedulingInfoList携带所有SI的调度信息,接收SIB1以 后,即可接收其他SI消息
系统信息的动Байду номын сангаас调度
主信息块MIB在#0上传输,传输周期为40ms,并且在一个传输周期内重传3次, 在一次传输周期内共传输4次;蓝色部分为可能为SIB1重传。
SI-Window is configurable SI message transmission time duration unit(1-40ms), SI-Window continuous without gap. Each SI message transmitted within its own SI-Window in order listed in SIB1,Offset for the SI-Window for the nth SI message is equal in (n-1)*SI window.
10ms SIB1 SFN=64 SFN=65 SFN=66 10ms 10ms
图3 SIB1的调度
系统信息的动态调度
系统信息的调度基本需求: 1.SI和SIB的映射关系是动态的 1)一个SIB只能映射到一个SI 2)一个SI可以包括多个SIB 3)一个SI中所有的SIB周期一致 4)SI信息通过动态调度的方式,每个SI有自己的传输周期和 固定的窗长,每个SI周期性的在固定的窗长内发送。而且不同 的SI信息的窗口是不能重叠的, SI窗的大小是固定的。 5) SI的传输周期和窗长的大小由SIB1来调度。
图3-10系统信息的变化
系统信息配置
系统消息变换通知
LTE状态转换及信令流程
LTE defines a number of different SIBs characterized by the type of information that is included within them: SIB1 includes information mainly related to whether a terminal is allowed to camp on(驻 留) the cell. This includes information about the operator/operators of the cell, if there are restrictions with regards to what users may access the cell, etc. SIB1 also includes information about the allocation of subframes to uplink/downlink and configuration of the special subframe in the case of TDD. Finally, SIB1includes information about the timedomain scheduling of the remaining SIBs (SIB2 and beyond). SIB2 includes information that terminals need in order to be able to access the cell. This includes information about the uplink cell bandwidth, random-access parameters, and parameters related to uplink power control. SIB3 mainly includes information related to cell reselection. SIB4–SIB8 include neighboring-cell-related information, including information related to neighboring cells on the same carrier, neighboring cells on different carriers, and neighboring non-LTE cells, such as WCDMA/HSPA, GSM, and CDMA2000 cells. SIB9 contains the name of the home-eNodeB(家庭基站). SIB10–SIB12 contain public warning messages, for example earthquake information. SIB13 contains information necessary for MBMS reception (see also Chapter 15).
系统消息获取
基 本 概 念
UE E-UTRAN MasterInformationBlock SystemInformationBlockType1
无线网系统消息
SystemInformation
系统消息信令流程
UE通过E-UTRAN广播消息获取AS和NAS系统消息 此过程适用于RRC-IDLE和RRC_CONNECTED状态
系统信息
为何要获取系统信息
系统信息包含一些UE初始化需要的信息,所以需要 获取系统信息。具体包含的信息在后边介绍。
系统信息的组成
系统消息的组成 –MasterInformationBlock(MIB) –多个SystemInformationBlocks (SIBs)
SIB13
MBMS信息
MIB
开机选网和小区重选时 切换完成或从另一个RAT切换到E-UTRAN时 重新返回覆盖区域时 当系统消息改变时 当出现接收ETWS指示时 upon receiving a request from CDMA2000 upper layers upon exceeding the maximum validity duration (3h)