大数据之数据挖掘技术
大数据挖掘——数据挖掘的方法

大数据挖掘——数据挖掘的方法数据挖掘是指从大量的数据中发现潜在的有价值的信息和知识的过程。
它是一种通过分析数据来提取模式、关联、趋势和规律的技术。
在大数据时代,数据挖掘变得尤其重要,因为大量的数据需要被处理和分析,以揭示其中蕴含的有价值的信息。
数据挖掘的方法有多种,下面将详细介绍其中几种常用的方法:1. 关联规则挖掘:关联规则挖掘是一种用于发现数据集中项之间的关联关系的方法。
它通过分析数据集中的项集,找出它们之间的关联规则。
例如,在一个超市的销售数据中,我们可以挖掘出“购买尿布的人也会购买啤酒”的关联规则。
这个规则可以匡助超市进行商品摆放策略的优化。
2. 分类与预测:分类与预测是一种用于根据已知数据的特征,对未知数据进行分类或者预测的方法。
它通过构建分类器或者预测模型,来对数据进行分类或者预测。
例如,在一个电商平台的用户数据中,我们可以根据用户的购买历史、浏览记录等特征,构建一个用户分类模型,用于预测用户的购买意向。
3. 聚类分析:聚类分析是一种用于将数据集中的对象划分为不同的组或者簇的方法。
它通过计算数据对象之间的相似性,将相似的对象归为同一组。
例如,在一个社交媒体平台的用户数据中,我们可以利用聚类分析将用户划分为不同的兴趣群体,以便为其提供个性化的推荐服务。
4. 异常检测:异常检测是一种用于发现与正常模式不符的数据对象的方法。
它通过分析数据对象的特征,找出那些与正常模式差异较大的对象。
例如,在一个网络安全监控系统中,我们可以利用异常检测方法来发现网络中的异常行为,以及潜在的安全威胁。
5. 文本挖掘:文本挖掘是一种用于从大量的文本数据中提取实用信息的方法。
它可以通过分析文本中的关键词、主题等特征,来挖掘文本中隐藏的知识和情感。
例如,在社交媒体上的用户评论数据中,我们可以利用文本挖掘方法来分析用户对某个产品的评价,以及产品在市场中的声誉。
以上仅是数据挖掘的几种常用方法,实际上还有不少其他的方法,如时间序列分析、回归分析等。
大数据挖掘——数据挖掘的方法

大数据挖掘——数据挖掘的方法数据挖掘是一种通过分析大量数据来发现隐藏模式、关联和趋势的过程。
它利用各种算法和技术,从结构化和非结构化数据中提取有价值的信息,以匡助企业做出更明智的决策和预测未来的趋势。
在大数据挖掘中,有许多不同的方法可以使用,下面将介绍其中一些常见的方法:1. 关联规则挖掘:关联规则挖掘是一种发现数据集中项之间关系的方法。
它通过分析数据集中的频繁项集和关联规则来揭示数据中的潜在关联。
例如,一个超市可以使用关联规则挖掘来发现购买某种商品的顾客也倾向于购买其他商品。
2. 分类:分类是一种将数据分为不同类别的方法。
它通过学习已知类别的样本来构建一个分类模型,然后使用该模型对新的未知样本进行分类。
例如,银行可以使用分类方法来判断一个客户是否具有信用风险。
3. 聚类:聚类是一种将数据分成不同组的方法,每一个组内的数据具有相似的特征。
聚类算法通过计算数据点之间的相似性来确定数据的分组。
例如,市场营销人员可以使用聚类方法将顾客分成不同的群组,以便更好地定制营销策略。
4. 预测建模:预测建模是一种使用历史数据来预测未来趋势的方法。
它通过构建一个数学模型来预测未来的结果。
例如,保险公司可以使用预测建模来预测一个人是否会发生车祸。
5. 异常检测:异常检测是一种识别与正常模式不符的数据点的方法。
它通过比较数据点与正常模式的差异来确定是否存在异常。
例如,银行可以使用异常检测来检测信用卡欺诈行为。
6. 文本挖掘:文本挖掘是一种从大量文本数据中提取实用信息的方法。
它可以识别文本中的关键词、主题和情感等内容。
例如,社交媒体公司可以使用文本挖掘来分析用户的评论和反馈。
以上只是大数据挖掘中的一些常见方法,实际应用中还有许多其他方法和技术。
选择适当的方法取决于数据的性质和挖掘的目标。
在实际应用中,还需要考虑数据的质量、算法的效率和模型的准确性等因素。
总结起来,大数据挖掘是一种通过分析大量数据来发现隐藏模式和趋势的方法。
数据挖掘技术在大数据分析中的应用

数据挖掘技术在大数据分析中的应用随着信息技术的飞速发展,数据量也越来越庞大,这就促使了数据挖掘技术的快速崛起。
数据挖掘技术是指从数据库中获取信息并进行分析、挖掘出有用的信息的过程。
在大数据分析中,数据挖掘技术发挥着越来越重要的作用。
本文将详细阐述数据挖掘技术在大数据分析中的应用。
一、数据挖掘技术与大数据分析数据挖掘技术是从大量数据中挖掘出有意义的信息,这些信息可以是隐含的、未知的或者新颖的。
而大数据分析是从海量数据中提取有效信息的过程,它可以使企业或组织更好地决策和实现业务目标。
数据挖掘技术和大数据分析有很大的关联,数据挖掘技术是大数据分析中的一项重要技术手段。
二、数据挖掘技术在大数据分析中的应用1.决策树决策树算法是数据挖掘中常用的一种分类算法,可以帮助企业或组织快速分析数据并做出决策。
例如,在金融领域,银行可以根据客户的数据(如年龄、职业、收入等)构建决策树,预测客户是否会逾期还款,从而及时采取措施,减少损失。
2.聚类聚类是将相似对象分组的过程,该过程可以帮助企业或组织快速分析客户群体和商品类型,挖掘出其中的规律和特点。
例如,在电商领域,企业可以通过聚类算法将消费者分为不同的群体,然后根据不同群体的喜好和偏好,向不同群体推荐不同的商品,从而提高销售额。
3.关联分析关联分析是指在数据集中挖掘高度相关的数据,以发现数据集中的规律和关系。
例如,在零售行业,企业可以对销售数据进行关联分析,挖掘出商品之间的关联性,以便更好地制定促销策略。
4.文本挖掘文本挖掘可以将大量的非结构化文本数据转化为结构化数据,并提取出其中的有用信息。
例如,在舆情分析中,可以通过文本挖掘技术快速分析大量的新闻和社交媒体数据,并了解公众对某一事件或话题的态度和看法。
三、数据挖掘技术在大数据分析中的优势1.快速准确大数据分析通常需要处理海量数据,使用传统的手动方法处理数据耗时费力且容易出错。
数据挖掘技术可以通过算法迅速地对海量数据进行处理,准确地提取出有用的信息。
大数据挖掘——数据挖掘的方法

大数据挖掘——数据挖掘的方法数据挖掘是一种通过分析大量数据,发现其中隐藏的模式、关联和趋势的过程。
它是从大数据中提取有价值信息的一种技术手段,广泛应用于商业、科学研究、社会分析等领域。
本文将介绍数据挖掘的方法,并详细解释每种方法的原理和应用。
1. 关联规则挖掘关联规则挖掘是一种用于发现数据集中项之间的关联关系的方法。
它通过分析数据集中的频繁项集,找出这些项集之间的关联规则。
常用的关联规则挖掘算法有Apriori算法和FP-Growth算法。
Apriori算法通过逐层增加项集的长度,从而找到频繁项集和关联规则。
FP-Growth算法通过构建FP树,减少了搜索频繁项集的次数,提高了挖掘效率。
关联规则挖掘在市场篮子分析、推荐系统和生物信息学等领域有着广泛的应用。
2. 分类分类是一种通过构建模型来预测数据的类别的方法。
它通过学习已有的标记数据集,构建分类器,并将未标记数据集中的样本分类到相应的类别中。
常用的分类算法有决策树、朴素贝叶斯、支持向量机和神经网络等。
决策树通过树结构表示分类规则,简单易懂,适合于处理具有离散属性的数据。
朴素贝叶斯算法基于贝叶斯定理,假设属性之间相互独立,适合于文本分类等领域。
支持向量机通过构建超平面将数据分为不同的类别,适合于处理线性可分和非线性可分的数据。
神经网络摹拟人脑神经元的工作原理,可以处理复杂的非线性问题。
分类在垃圾邮件过滤、疾病诊断和信用评估等方面有着广泛的应用。
3. 聚类聚类是一种将数据集中的样本划分为若干个类别的方法。
与分类不同,聚类是无监督学习的一种形式,不需要预先标记数据集。
常用的聚类算法有K均值聚类、层次聚类和密度聚类等。
K均值聚类通过迭代优化样本与聚类中心之间的距离,将样本划分到距离最近的聚类中心所代表的类别中。
层次聚类通过计算样本间的相似度,将相似度高的样本划分到同一个类别中。
密度聚类通过计算样本的密度,将样本划分到高密度区域所代表的类别中。
聚类在市场细分、社交网络分析和图象分析等方面有着广泛的应用。
大数据挖掘——数据挖掘的方法

大数据挖掘——数据挖掘的方法数据挖掘是指通过对大量数据进行分析和挖掘,发现其中隐藏的模式、关联和规律,从而提取有价值的信息和知识的过程。
在大数据时代,数据挖掘成为了一种重要的技术手段,可以帮助企业和组织发现商业机会、优化决策、改进运营等。
数据挖掘的方法有很多,下面将介绍几种常见的方法。
1. 关联规则挖掘:关联规则挖掘是通过分析数据集中的项集之间的关联关系,发现其中的规律和模式。
常用的关联规则挖掘算法有Apriori算法和FP-Growth算法。
例如,通过分析超市的购物数据,我们可以发现“购买尿布的顾客也会购买啤酒”的关联规则,进而可以采取相应的营销策略。
2. 分类与预测:分类与预测是通过对已知数据集进行学习,构建模型,然后对未知数据进行分类或预测。
常用的分类与预测算法有决策树、朴素贝叶斯、支持向量机等。
例如,通过分析客户的个人信息和购买记录,我们可以构建一个客户分类模型,根据新客户的信息预测其可能的购买行为。
3. 聚类分析:聚类分析是将数据集中的对象划分为若干个类别,使得同一类别内的对象相似度高,不同类别之间的相似度低。
常用的聚类算法有K-means算法和层次聚类算法。
例如,通过对用户的行为数据进行聚类分析,我们可以发现不同类型的用户群体,为精准营销提供依据。
4. 异常检测:异常检测是通过分析数据集中的异常值,发现其中的异常模式和趋势。
常用的异常检测算法有基于统计的方法和基于机器学习的方法。
例如,在金融领域,通过对交易数据进行异常检测,可以及时发现欺诈行为。
5. 文本挖掘:文本挖掘是通过对大量的文本数据进行分析和挖掘,提取其中的主题、情感、关键词等信息。
常用的文本挖掘算法有词频统计、主题模型、情感分析等。
例如,通过对社交媒体上的用户评论进行情感分析,可以了解用户对产品或服务的满意度。
6. 时间序列分析:时间序列分析是对按时间顺序排列的数据进行建模和预测。
常用的时间序列分析方法有ARIMA模型、指数平滑法等。
大数据与数据挖掘

大数据与数据挖掘大数据和数据挖掘是当今信息时代中非常重要的技术和概念。
随着互联网的快速发展和信息技术的进步,大量的数据被不断产生和积累,如何从这些海量的数据中获取有用的信息和知识成为了一个重要的课题。
大数据和数据挖掘技术的应用可以帮助企业和组织发现潜在的商业机会,改进决策过程,提高工作效率,增加竞争力。
一、大数据的定义和特点大数据是指规模巨大、类型多样且生成速度快的数据集合。
它具有以下几个特点:1. 规模巨大:大数据的规模通常以TB、PB、EB甚至更大的单位来衡量,远远超过了传统数据库处理的能力。
2. 类型多样:大数据包含结构化数据、半结构化数据和非结构化数据,如文本、图像、音频、视频等。
3. 生成速度快:大数据的产生速度非常快,需要实时或近实时地处理和分析。
二、数据挖掘的定义和应用数据挖掘是从大数据中发现隐藏在其中的模式、关联和规律的过程。
通过数据挖掘技术,可以从大数据中提取出有用的信息和知识,用于决策支持、市场营销、风险管理等方面。
以下是数据挖掘的一些常见应用:1. 市场营销:通过分析大数据中的消费者行为和偏好,可以帮助企业制定更精准的市场营销策略,提高销售额和客户满意度。
2. 风险管理:通过分析大数据中的风险因素和预警信号,可以帮助金融机构和保险公司预测和防范风险,保护客户利益。
3. 健康医疗:通过分析大数据中的医疗记录和生物信息,可以帮助医生做出更准确的诊断和治疗方案,提高医疗效果。
4. 智能交通:通过分析大数据中的交通流量和交通事故数据,可以帮助交通管理部门优化交通流动,减少拥堵和事故发生。
三、大数据与数据挖掘的技术和工具大数据和数据挖掘涉及到许多技术和工具,下面介绍一些常见的技术和工具:1. 数据采集和清洗:大数据的第一步是采集和清洗数据,以确保数据的质量和完整性。
常用的数据采集工具包括网络爬虫和传感器技术,数据清洗工具包括数据清洗软件和算法。
2. 数据存储和管理:大数据需要存储在适当的数据库或数据仓库中,以便后续的处理和分析。
大数据挖掘——数据挖掘的方法

大数据挖掘——数据挖掘的方法概述:数据挖掘是从大量的数据中发现隐藏在其中的有用信息和模式的过程。
大数据挖掘是在大规模数据集上进行数据挖掘的一种技术。
本文将介绍几种常用的数据挖掘方法,包括关联规则挖掘、分类算法、聚类算法和预测算法。
一、关联规则挖掘关联规则挖掘是一种发现数据集中项之间关联关系的方法。
通过分析数据集中的项集,可以找到经常同时出现的项之间的关联规则。
关联规则挖掘常用于市场篮子分析、购物篮分析等场景。
例如,在超市购物数据中,我们可以通过关联规则挖掘发现“牛奶”和“面包”经常一起购买。
二、分类算法分类算法是一种根据已有的数据集对新数据进行分类的方法。
通过对已有数据集进行学习,分类算法可以建立一个分类模型,然后使用该模型对新数据进行分类。
常用的分类算法包括决策树、朴素贝叶斯、支持向量机等。
例如,在电子邮件分类中,我们可以使用分类算法将邮件分为垃圾邮件和非垃圾邮件。
三、聚类算法聚类算法是一种将数据集中的对象分成不同组的方法。
聚类算法通过计算数据对象之间的相似度或距离,将相似的对象分为同一组。
常用的聚类算法包括K均值算法、层次聚类算法等。
例如,在市场细分中,我们可以使用聚类算法将顾客分成不同的群体,以便进行精准营销。
四、预测算法预测算法是一种根据已有的数据集对未来数据进行预测的方法。
预测算法通过分析已有数据的趋势和规律,建立一个预测模型,然后使用该模型对未来数据进行预测。
常用的预测算法包括线性回归、时间序列分析等。
例如,在销售预测中,我们可以使用预测算法对未来的销售额进行预测。
五、数据挖掘流程数据挖掘的方法通常包括以下几个步骤:1. 数据准备:收集和清洗原始数据,包括去除重复数据、处理缺失值等。
2. 特征选择:选择对目标变量有影响的特征,排除无关特征,以提高模型的准确性和效率。
3. 数据变换:对数据进行变换,以满足模型的要求,如对连续变量进行离散化、标准化等。
4. 模型选择:选择合适的数据挖掘方法和算法,根据具体问题进行选择。
大数据分析的挖掘技术

大数据分析的挖掘技术随着信息技术的快速发展,数据量的急剧增加,从而带来了大数据时代。
大数据这一概念最早出现于 2008 年,一直到今天,它已经成为了各行各业的热门话题。
在传统的数据处理方式已经不能满足需求的情况下,大数据分析的挖掘技术正变得越来越重要。
本文将探讨大数据分析的挖掘技术。
一、大数据分析简介大数据分析是指对数据进行收集、管理、处理、分析和应用的一系列方法和技术,目的是将数据转化为有价值的信息。
大数据分析包含数据挖掘、数据分析、可视化和数据科学等领域。
其目的是通过分析数据,挖掘出数据背后的价值,帮助企业做出决策,提高效率和盈利能力。
二、大数据挖掘技术大数据挖掘技术是大数据分析中最为重要的部分。
它是通过对大数据进行分析和挖掘,从而发现潜在的关系和模式。
大数据挖掘技术包含以下几个方面的内容。
1. 数据预处理在挖掘大数据前,我们需要对数据进行预处理。
数据预处理主要是对数据进行清洗、分类、规范化等处理,以保证数据的准确性和完整性。
对大数据的预处理工作可以帮助我们更好地理解数据,从而更好地进行数据挖掘分析。
2. 数据探索在挖掘大数据前,我们需要对数据进行探索,发现数据中的潜在的关系和模式。
数据探索主要是通过可视化方式呈现数据,发现数据中的规律和趋势,从而更好地进行数据挖掘分析。
3. 数据建模数据建模是大数据挖掘的重要步骤。
它是通过建立数据模型,描述数据中的关系和规律。
数据建模可以帮助我们更好地理解数据,从而更好地进行数据挖掘分析。
4. 数据挖掘算法数据挖掘算法是实现数据挖掘的核心技术。
常用的数据挖掘算法包括决策树算法、朴素贝叶斯算法、支持向量机算法、神经网络算法等。
不同的数据挖掘算法适用于不同的数据类型和数据结构,通过对数据进行合理的算法选择,可以更好地进行数据挖掘分析。
三、大数据分析的应用场景大数据分析的应用场景非常广泛,几乎涉及到了各个领域。
以下是大数据分析的应用场景的几个典型例子。
1. 金融行业金融行业是大数据分析的一个重要应用领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据之数据挖掘技术数据分析微信公众号datadw——关注你想了解的,分享你需要的。
大数据的核心:数据挖掘。
从头至尾我们都脱离不了数据挖掘。
其实从大学到现在一直都接触数据挖掘,但是我们不关心是什么是数据挖掘,我们关心的是我们如何通过数据挖掘过程中找到我们需要的东西,而我们更关心的是这个过程是什么?如何开始?总结的过程也是一个学习的过程,通过有章节的整理对目前正在的学习的内容做规整。
在这个过程中我们会从具体的项目实施中去谈数据挖掘,中间会贯穿很多的概念,算法,业务转换,过程,建模等等。
我们列一下要谈论的话题:1、什么是数据挖掘及为什么要进行数据挖掘?2、数据挖掘在营销和CRM中的应用?3、数据挖掘的过程4、你应理解的统计学5、数据描述与预测:剖析与预测建模6、经典的数据挖掘技术7、各类算法8、数据仓库、OLAP、分析沙箱和数据挖掘9、具体的案例分析什么是数据挖掘?是知识发现、商业智能、预测分析还是预测建模。
其实都可以归为一类:数据挖掘是一项探测大量数据以发现有意义的模式(pattern)和规则(rule)的业务流程。
这里谈到了发现模式与规则,其实就是一项业务流程,为业务服务。
而我们要做就是让业务做起来显得更简单,或直接帮助客户如何提升业务。
在大量的数据中找到有意义的模式和规则。
在大量数据面前,数据的获得不再是一个障碍,而是一个优势。
在现在很多的技术在大数据集上比在小数据集上的表现得更好——你可以用数据产生智慧,也可以用计算机来完成其最擅长的工作:提出问题并解决问题。
模式和规则的定义:就是发现对业务有益的模式或规则。
发现模式就意味着把保留活动的目标定位为最有可能流失的客户。
这就意味着优化客户获取资源,既考虑客户数量上的短期效益,同时也考虑客户价值的中期和长期收益。
而在上面的过程,最重要的一点就是:如何通过数据挖掘技术来维护与客户之间的关系,这就是客户关系管理,CRM。
专注于数据挖掘在营销和客户关系管理方面的应用——例如,为交叉销售和向上销售改进推荐,预测未来的用户级别,建模客户生存价值,根据用户行为对客户进行划分,为访问网站的客户选择最佳登录页面,确定适合列入营销活动的候选者,以及预测哪些客户处于停止使用软件包、服务或药物治疗的风险中。
两种关键技术:生存分析、统计算法。
在加上文本挖掘和主成分分析。
经营有方的小店自然地形成与客户之间的学习关系。
随着时间的推移,他们对客户的了解也会越来越多,从而可以利用这些知识为他们提供更好的服务。
结果是:忠实的顾客和盈利的商店。
但是拥有数十万或数百万客户的大公司,则不能奢望与每个客户形成密切的私人关系。
面临这样困境,他们必须要面对的是,学会充分利用所拥有的大量信息——几乎是每次与客户交互产生的数据。
这就是如何将客户数据转换成客户知识的分析技术。
数据挖掘是一项与业务流程交互的业务流程。
数据挖掘以数据作为开始,通过分析来启动或激励行为,这些行为反过来又将创建更多需要数据挖掘的数据。
因此,对于那些充分利用数据来改善业务的公司来说,不应仅仅把数据挖掘看作是细枝末节。
相反,在业务策略上必须包含:1、数据收集。
2、为长期利益分析数据。
3、针对分析结果做出分析。
CRM(客户关系管理系统)。
在各行各业中,高瞻远瞩的公司的目标都是理解每个客户,并通过利用这种理解,使得客户与他们做生意更加容易。
同样要学习分析每个客户的价值,清楚哪些客户值得投资和努力来保留,哪些准许流失。
把一个产品为中心的企业转变成以客户为中心的企业的代价超过了数据挖掘。
假设数据挖掘的结果是像一个用户推荐一个小首饰而不是一个小发明,但是如果经理的奖金取决于小发明的季度销售量而不是小首饰的销售量(即便后者更为有利可图或者收获长期盈利更多的客户),那么数据挖掘的结果就会被忽视,这就导致挖掘结果不能产生决策。
我们要学会:从记录的内容中学习。
为什么是现在要学会:数据正在产生,不断的产生,不断的更新数据正在存储在数据仓库中——数据仓库以一个共同的格式汇集许多不同来源的数据,具有一致格式的关键字和字段定义。
业务系统旨在快速向终端提供结果,就对数据的格式和字段有额外的要求。
数据仓库的建立是为提供决策而设计,简化数据挖掘工作者的工作。
计算能力能够承受对客户关系管理的兴趣非常强烈商业的数据发掘软件已经形成数据挖掘人员的技能:需要有数字技能Excel表格使用能力,现在Excel表格处理能力相当强大。
自从Office 365出来之后,此势不可小觑。
一种态度:不畏惧为了得到结果可能需要处理大数据量和复杂的过程。
处理大型数据集、数据仓库以及分析沙箱是数据挖掘成功的关健。
数据挖掘不仅仅是产生技术结果,结果必须用来帮助人们(或者帮助越来越多自动化的流程)做出更明智的决定。
产生技术结果只是第一步,通过结果了解真正的需求,把结果转化为信息,信息转化为行动,行动转化为价值,才是真正的目的。
数据挖掘的良性循环的重心在于业务的结果,而不只是利用先进的技术。
识别业务机会挖掘数据将其转换成可操作的信息根据信息采取行动度量结果数据挖掘成功的关键是把其结合到业务流程中,并能够促进数据挖掘人员和使用结果的业务用户之间的通信。
首先,必须明确,找到合适的业务需求,很多的人员,没有在意这一点,导致解决的是对业务没有帮助的问题。
在面临不断日新的社会,进步,远不在改变,而在与变中的不变。
即使改变时绝对的,但是仍有未改进之处以及没有可能改变的方向:如果经验不会保留,永远保持幼年,那些不吸取教训的人,注定要重蹈覆辙。
当与业务人员讨论数据挖掘的机会时,确保重心在业务而不是技术和算法。
让我们的技术专家专注技术,同时让我们业务专家专注业务。
电信客户流失:一个关键因素是过度呼叫,新的客户在第一个月使用的分钟数超过了他们的费用的计划,当第一月的的账单往往在第二月中旬送达客户,客户才了解费用使用计划。
到那个时候,客户已经在第二个月产生了一个很大的账单,导致客户很不快乐。
遗憾的是客户服务人员也要等相同的时间等账单周期到之后才能检测到过度使用的状况,致使没有时间来主动反应。
其实在这个过程中导致问题产生的原因就是,反馈时间的问题,如果在这个月末,分析报告能够给出明确的预测或建议,上面的问题就会有很大的改善。
这中间可以能也会包括运营商之间的手段问题,这个暂时不考虑。
上述问题折中的解决办法:新生的数据挖掘组拥有资源,而且已经鉴别和调查了适当的数据源。
采用一些相当简单的程序,该小组能够在这些客户中第一次过度呼叫时把他们标识出来。
使用这个信息,客户中心能够联系处于风险中的客户,并在第一个账单失效之前把他们移到适当的账单计划中。
问题很简单:在实验室工作的很好的模型,为什么走出实验室就不能工作?一个问题在于它通过记忆数据过拟合了模型集。
这就导致在实验室很成功的模型,拿到实际就令人很失望。
建模的目标不是产生最好的模型。
数据挖掘的目标是能处理现实世界中的问题,从而可以影响某种变化。
你需要的稳定,即该模型不仅在模型集中工作的很好,在未知的数据上工作的也得很好。
导致不稳定有四大原因:1、把事情搞错:由于不了解具体的需求,就动手。
导致矛盾在实际过程中爆发。
2、过拟合:该模型记忆模型集,而不是认识更多的一般模式。
人们很在意认识模式(字面上的认识),致使认识模式可能脱颖而出。
而认识模式(实际意义)却并非如此。
一个过拟合的例子。
3、样本偏臵:利用建立模型的数据无法准确地反映真实的世界,当不是通过原始数据的随机抽样创建模型时,这问题就可能发生。
比如:一个地区的数据与另一个地区数据的关键词不同,所以不能硬性的把一个地区的数据强加到另一个地区。
4、未来的事情可能与过去的不一样:模型是建立在历史数据上的,但利用在其他时段。
这里隐含一个假设——用过去发生的事情指导未来发生的事情。
虽然不要求模型总是假设过去式未来的序幕。
时间帧:模型集中的每个变量都有一个与它相关的时间帧,它描述了该变量产生作用的时间段。
可以理解为对在过去一段时间的数据的整合,超过这个时间的数据就作废。
输入变量和目标变量都有时间帧。
输入变量的时间帧严格早于目标变量,任何建立在此模型集上的模型都是一种预测模型。
另一方面:当输入变量和目标来自同一个时间帧内,它们产生剖析模型。
预测模型:很多数据挖掘问题都可以概括为预测问题:基于过去的响应,基于过去的相应,谁将会有相应?基于过去的注销记录,谁有一个不良风险?解决问题最好的办法是限定输入变量严格产生于目标变脸之前。
如:考虑到一个零售商,它拥有一个目标网站,并计划在9月份举行一个活动。
我们的目的,收集9月1日之前的数据,并对这些数据建立一个模型,以确定哪些客户才加该活动,以及应采用哪些的营销措施。
应该使用什么样的数据建立模型?而且应该使用相同时间段的数据进行此模型评分。
把日历回翻一年,即前一年的9月1日,对那个用户数据作为一个起点,然后把结束日期放到去年年底的营销数据上,这种就保证没有“未来”数据的输入信息会影响模型的目标估计能力。
预测面临的挑战是创建模型集所需的工作量。
把日历往回翻,这一做法写起来很容易,但是在以客户为中心、规范化的数据仓库中很难实现。
目的结果是为了获取更稳定的结果,这些模型能发现导致客户的一些重要行为的原因。
剖析模型:剖析,从字面上的理解是,基于人口统计变量,例如:地理位臵、性别和年龄等。
剖析模型能发现同一条件下的关系,但他们不能指出原因和影响。
出于这个原因,剖析模型经常使用客户的人口统计信息作为输入,而把客户行为作为目标,在这种情况下,确定原因和影响更直观。
有指导数据挖掘方法:〃把业务问题转换为数据挖掘问题〃选择合适的数据〃认识数据〃创建一个模型集〃修复问题数据〃转换数据以揭示信息〃构建模型评估模型部署模型评估结果重新开始。