第15章量子力学习题解答

合集下载

周世勋《量子力学》习题解答

周世勋《量子力学》习题解答

第二章2.1.证明在定态中,几率流与时间无关。

证明:对于定态,可令()()()()Et ier t f r t r -==ψψψ,)]()()()([2 ])()()()([2 )(2******r r r r mi e r e r e r e r mi mi J Et iEt i Et i Et iψψψψψψψψ∇-∇=∇-∇=ψ∇ψ-ψ∇ψ=----)()(可见t J 与无关。

2.2 由下列定态波函数计算几率流密度:ikr ikr e re r -==1)2( 1)1(21ψψ从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。

解:分量只有和r J J 21在球坐标中ϕθθϕθ∂∂+∂∂+∂∂=∇sin 110r e r e r r r mrk r mr k r r ik r r r ik r r m i r e r r e r e r r e r m i mi J ikr ikr ikr ikr 30202201*1*111)]11(1)11(1[2)]1(1)1(1[2)(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψr J 1与同向。

表示向外传播的球面波。

rmrk r mr k r r ik r r r ik r r m i r e r r e r e r r e r m i mi J ikr ikr ikr ikr3020220*2*222 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )2(-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。

表示向内(即向原点) 传播的球面波。

补充:设ikx e x =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化?∞==⎰⎰∞∞dx dx ψψ*∴波函数不能按1)(2=⎰dx x ψ方式归一化。

其相对位置几率分布函数为12==ψω表示粒子在空间各处出现的几率相同。

练习册量子力学(15章)解答

练习册量子力学(15章)解答

练习三十七1. 因为在单位时间内辐射的能量只是温度的函数,所以填(相等),而物体吸收的能量与周围环境有关。

A 物体周围的温度低于A 的,B 物体周围的温度高于B 的,所以,B 物体吸收的能量大于A 物吸收的能量。

填(不相等)2. 由红限波长和逸出功的关系得:Jchh W 1901018.3-⨯≈==λν3. 由黑体的定义可知,选[3]4. 光电效应过程中能量守恒但动量不守恒,而康普顿效应能量和动量都守恒。

所以选[2]。

5. 由维恩位移定律 b T m =λ 得:38.15.069.02112===m m T T λλ 再由斯忒藩—玻耳兹曼定律 4)(T T M σ=得:36.338.1)()(4412414212==⎪⎪⎭⎫ ⎝⎛==T T T T T M T M σσ 6.(1)因为入射光子的能量ε为:eV J hch 4.51065.8103.21031063.6197834=⨯=⨯⨯⨯⨯===---λνε没有加外电场时光电子的初动能为:eV W h m 9.05.44.5212=-=-=νυ 加了外电场后光电子到达阳极附近时的总动能为:eV eU m E k 5.16.09.0212=+=+=υ 所以光电子到达阳极附近时的速度为:s m m E k /103.7101.9106.15.12253119⨯=⨯⨯⨯⨯=='--υ(2)设光电流恰好被抑制时的反向电势差为a U ,则 k a E eU = V e eVe E U k a 5.15.1===∴练习三十八1.22/ c hv m mc h E =∴==ν ,c hv h P /==λ2.eVE E n n 6.130,,11=-=∴∞→=∆电离态时基态时3.由能量守恒和动量守恒可知:⎩⎨⎧+-=+=+mv h h mc c h c m c h (反弹回)动量守恒:能量守恒:λλλλ02200 所以选[3]4.因为这个过程是辐射光子,说明n m E E >,选[3]n =2n =3 n =15*.由产生激光的条件选[3]6.因为经康普顿散射后散射光子的波长增加了0020,所以光子损失的能量就是反冲电子获得的动能.则得:MeVhv hc hc hv hv E k 1.062.111110000==⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=-=λλλ∆7.设基态的氢原子获得12.6eV 的能量后跃迁到n 态。

量子力学习题答案

量子力学习题答案

量子力学习题答案1.2在0k附近,钠的价电子能量约为3eV,求其德布罗意波长。

解:由德布罗意波粒二象性的关系知:Eh;ph/由于所考虑的电子是非相对论的电子(Ek(3eV)ec2(0.51106)),故:EP2/(2e)h/ph/2eEhc/692ecE621.24100.7110/20.51103m0.71nm1.3氦原子的动能是E=1.5kT,求T=1K时,氦原子的德布罗意波长。

解:对于氦原子而言,当T1K时,其能量为E于是有h/ph/2HeE3432kT321.3811023JK11K2.071023J6.6261026.6901027J231.26nmJkg2.0710一维谐振子处于(某)Ae2某/22状态中,其中为实常数,求:1.归一化系数;2.动能平均值。

(解:1.由归一化条件可知:e某22d某/)(某)(某)d某A2某Ae2某22d某1/1取相因子为零,则归一化系数A1/2/1/42.T222某(某)T(某)d某Ae某222/222某/2(P/2)ed某2A2e某/2(2222d2d某dd某)e某22/2d某222A22e某/2(某e2某22/2)d某2/2A{某e22某22(某e22某22)d某}22222A24某e1212222某22d某222A(241222)2某d(e某22)A(24){某e某e某d某}422=A(24())=A422=若=,则该态为谐振子的基态,T4解法二:对于求力学量在某一体系能量本征态下的平均值问题,用F-H定理是非常方便的。

一维谐振子的哈密顿量为:H22d2d某12某22它的基态能量E012选择为参量,则:dE0d12;dHdTd2d某2(2d22d某)2T0dHd020dHd02T12由F-H定理知:可得:dE0dT1422.2由下列定态波函数计算几率流密度:(1)11reikr(2)21reikr从所得结果说明1表示向外传播的球面波,2表示向内(即向原点)传播的球面波。

量子力学作业及参考答案

量子力学作业及参考答案

15-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度.解:将这些星球看成绝对黑体,则按维恩位移定律:K m 10897.2,3⋅⨯==-b b T m λ对太阳: K 103.51055.010897.236311⨯=⨯⨯==--mbT λ对北极星:K 103.81035.010897.236322⨯=⨯⨯==--mbT λ对天狼星:K 100.11029.010897.246333⨯=⨯⨯==--mbT λ15-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000οA 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少?(2)遏止电势差为多大?(3)铝的截止(红限)波长有多大?解:(1)已知逸出功eV 2.4=A 据光电效应公式221m mv hv =A +则光电子最大动能:A hcA h mv E m -=-==λυ2max k 21eV0.2J 1023.3106.12.41020001031063.6191910834=⨯=⨯⨯-⨯⨯⨯⨯=----m2max k 21)2(mvE eUa==∴遏止电势差 V 0.2106.11023.31919=⨯⨯=--a U(3)红限频率0υ,∴000,λυυcA h ==又∴截止波长 1983401060.12.41031063.6--⨯⨯⨯⨯⨯==Ahc λm 0.296m 1096.27μ=⨯=-15-4 在一定条件下,人眼视网膜能够对5个蓝绿光光子(m 105.0-7⨯=λ)产生光的感觉.此时视网膜上接收到光的能量为多少?如果每秒钟都能吸收5个这样的光子,则到 达眼睛的功率为多大? 解:5个兰绿光子的能量J1099.1100.51031063.65187834---⨯=⨯⨯⨯⨯⨯===λυhcn nh E功率 W 1099.118-⨯==tE15-5 设太阳照射到地球上光的强度为8 J ·s -1·m -2,如果平均波长为5000οA ,则每秒钟落到地面上1m 2的光子数量是多少?若人眼瞳孔直径为3mm ,每秒钟进入人眼的光子数是多少? 解:一个光子能量 λυhch E ==1秒钟落到2m 1地面上的光子数为21198347ms1001.21031063.6105888----⋅⨯=⨯⨯⨯⨯⨯===hcEn λ每秒进入人眼的光子数为11462192s1042.14/10314.31001.24--⨯=⨯⨯⨯⨯==dnN π15-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量.解:电子的静止质量S J 1063.6,kg 1011.934310⋅⨯=⨯=--h m 当 20c m h =υ时,则Hz10236.11063.6)103(1011.92034283120⨯=⨯⨯⨯⨯==--hc m υο12A 02.0m 104271.2=⨯==-υλc122831020122sm kg 1073.21031011.9sm kg 1073.2-----⋅⋅⨯=⨯⨯⨯=====⋅⋅⨯==c m cc m c E p cpE hp 或λ15-7 光电效应和康普顿效应都包含了电子和光子的相互作用,试问这两个过程有什么不同? 答:光电效应是指金属中的电子吸收了光子的全部能量而逸出金属表面,是电子处于原子中束缚态时所发生的现象.遵守能量守恒定律.而康普顿效应则是光子与自由电子(或准自由电子)的弹性碰撞,同时遵守能量与动量守恒定律.15-8 在康普顿效应的实验中,若散射光波长是入射光波长的1.2倍,则散射光子的能量ε与反冲电子的动能k E 之比k E /ε等于多少? 解:由 2200mc h c m hv +=+υ)(00202υυυυ-=-=-=h h h cm mcE kυεh =∴5)(00=-=-=υυυυυυεh h E k已知2.10=λλ由2.10=∴=υυλυc2.11=υυ则52.0112.110==-=-υυυ15-10 已知X 光光子的能量为0.60 MeV ,在康普顿散射之后波长变化了20%,求反冲电子的能量.解:已知X 射线的初能量,MeV 6.00=ε又有00,ελλεhchc =∴=经散射后 000020.1020.0λλλλ∆λλ=+=+= 此时能量为 002.112.1ελλε===hc hc反冲电子能量 MeV 10.060.0)2.111(0=⨯-=-=εεE15-11 在康普顿散射中,入射光子的波长为0.030 οA ,反冲电子的速度为0.60c ,求散射光子的波长及散射角. 解:反冲电子的能量增量为202022020225.06.01c m cm cm cm mcE =--=-=∆由能量守恒定律,电子增加的能量等于光子损失的能量, 故有 20025.0c m hchc=-λλ散射光子波长ο121083134103400A043.0m 103.410030.0103101.925.01063.610030.01063.625.0=⨯=⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯=-=------λλλc m h h由康普顿散射公式2sin0243.022sin22200ϕϕλλλ∆⨯==-=cm h可得 2675.00243.02030.0043.02sin2=⨯-=ϕ散射角为 7162'=οϕ15-12 实验发现基态氢原子可吸收能量为12.75eV 的光子. (1)试问氢原子吸收光子后将被激发到哪个能级?(2)受激发的氢原子向低能级跃迁时,可发出哪几条谱线?请将这些跃迁画在能级图上. 解:(1)2eV 6.13eV 85.0eV 75.12eV 6.13n -=-=+-解得 4=n 或者 )111(22n Rhc E -=∆75.12)11.(1362=-=n解出 4=n题15-12图 题15-13图(2)可发出谱线赖曼系3条,巴尔末系2条,帕邢系1条,共计6条.15-13 以动能12.5eV 的电子通过碰撞使氢原子激发时,最高能激发到哪一能级?当回到基态时能产生哪些谱线?解:设氢原子全部吸收eV 5.12能量后,最高能激发到第n 个能级,则]11[6.135.12,eV 6.13],111[2221nRhc nRhc E E n -==-=-即得5.3=n ,只能取整数,∴ 最高激发到3=n ,当然也能激发到2=n 的能级.于是ο322ο222ο771221A 6563536,3653121~:23A 121634,432111~:12A1026m 10026.110097.18989,983111~:13===⎥⎦⎤⎢⎣⎡-=→===⎥⎦⎤⎢⎣⎡-=→=⨯=⨯⨯===⎥⎦⎤⎢⎣⎡-=→-R R R n R R R n RR R n λυλυλυ从从从可以发出以上三条谱线.题15-14图15-14 处于基态的氢原子被外来单色光激发后发出巴尔末线系中只有两条谱线,试求这两 条谱线的波长及外来光的频率.解:巴尔末系是由2>n 的高能级跃迁到2=n 的能级发出的谱线.只有二条谱线说明激发后最高能级是4=n 的激发态.ο1983424ο101983423222324A4872106.1)85.04.3(1031063.6A6573m 1065731060.1)51.14.3(10331063.6e 4.326.13e 51.136.13e 85.046.13=⨯⨯-⨯⨯⨯=-==⨯=⨯⨯-⨯⨯⨯⨯=-=∴-=∴-==-=-=-=-=-=-=-----E E hc E E hcE E hc E E hch VE V E V E a mn mn βλλλλυ基态氢原子吸收一个光子υh 被激发到4=n 的能态 ∴ λυhcE E h =-=14Hz 1008.310626.6106.1)85.06.13(15341914⨯=⨯⨯⨯-=-=--hE E υ15-15 当基态氢原子被12.09eV 的光子激发后,其电子的轨道半径将增加多少倍? 解: eV 09.12]11[6.1321=-=-nE E n 26.1309.126.13n =-51.16.1309.12.1366.132=-=n , 3=n12r n r n =,92=n,19r r n =轨道半径增加到9倍.15-16德布罗意波的波函数与经典波的波函数的本质区别是什么?答:德布罗意波是概率波,波函数不表示实在的物理量在空间的波动,其振幅无实在的物理意义,2φ仅表示粒子某时刻在空间的概率密度.15-17 为使电子的德布罗意波长为1οA ,需要多大的加速电压? 解: ooA 1A 25.12==uλ 25.12=U∴ 加速电压 150=U 伏15-18 具有能量15eV 的光子,被氢原子中处于第一玻尔轨道的电子所吸收,形成一个 光电子.问此光电子远离质子时的速度为多大?它的德布罗意波长是多少?解:使处于基态的电子电离所需能量为eV 6.13,因此,该电子远离质子时的动能为eV 4.16.13152112=-=+==E E mvE k φ它的速度为31191011.9106.14.122--⨯⨯⨯⨯==mE v k -15s m 100.7⋅⨯=其德布罗意波长为:o953134A 10.4m 1004.1100.71011.91063.6=⨯=⨯⨯⨯⨯==---mvh λ15-19 光子与电子的波长都是2.0οA ,它们的动量和总能量各为多少? 解:由德布罗意关系:2mc E =,λhmv p ==波长相同它们的动量相等.1-241034s m kg 103.3100.21063.6⋅⋅⨯=⨯⨯==---λhp光子的能量eV 102.6J 109.9103103.3316824⨯=⨯=⨯⨯⨯====--pc hch λυε电子的总能量 2202)()(c m cp E +=,eV 102.63⨯=cp而 eV 100.51MeV 51.0620⨯==c m∴ cp c m >>2∴ MeV 51.0)()(202202==+=c m c m cp E15-20 已知中子的质量kg 1067.127n -⨯=m ,当中子的动能等于温度300K 的热平衡中子气体的平均动能时,其德布罗意波长为多少? 解:kg 1067.127n -⨯=m ,S J 1063.634⋅⨯=-h ,-123K J 1038.1⋅⨯=-k中子的平均动能 mpKT E k 2232==德布罗意波长 oA 456.13===mkTh phλ15-21 一个质量为m 的粒子,约束在长度为L 的一维线段上.试根据测不准关系估算这个粒子所具有的最小能量的值.解:按测不准关系,h p x x ≥∆∆,x x v m p ∆=∆,则h v x m x ≥∆∆,xm h v x ∆≥∆这粒子最小动能应满足222222min 22)(21)(21mLhxm hxm h m v m E x =∆=∆≥∆=15-22 从某激发能级向基态跃迁而产生的谱线波长为4000οA ,测得谱线宽度为10-4οA ,求该激发能级的平均寿命. 解:光子的能量 λυhch E ==由于激发能级有一定的宽度E ∆,造成谱线也有一定宽度λ∆,两者之间的关系为: λλ∆=∆2hcE由测不准关系,h t E ≥∆⋅∆,平均寿命t ∆=τ,则λλτ∆=∆=∆=c Eh t 2s 103.51010103)104000(81048210----⨯=⨯⨯⨯⨯=15-23 一波长为3000οA 的光子,假定其波长的测量精度为百万分之一,求该光子位置的测不准量.解: 光子λhp =,λλλλ∆=∆-=∆22hhp由测不准关系,光子位置的不准确量为cm 30A 103103000o962=⨯=====-λλ∆λλ∆λ∆∆p h x。

量子力学练习题答案

量子力学练习题答案

Wmk =| am (t) |2
∫ ∫ 其中
am
(t)
=
1 i=
t 0
eiωmkτ
H

mk


H

mk
=
ϕm* Hl ′(t)ϕkdτ ,ωmk = (Em − Ek ) / =
二、 证明题 1. 证明黑体辐射的辐射本领 E(ν ,T ) 与 E(λ,T ) 之间的关系。 证明:黑体的辐射本领是指辐射体单位面积在单位时间辐射出来的、单位 频率间隔内的能量,用 E(ν ,T ) 表示。由于ν = c / λ ,所以黑体的辐射本领也 可以表示成 E(λ,T ) 。由定义得单位面积、单位时间内辐射的能量为
的同时决定,也使得它们的分布同时制约,这种制约就是不确定性原理,
它是任何两个力学量在任何状态下的涨落(用均方差表示)必须满足的相
互制约关系,公式表示为
ΔA⋅ ΔB ≥ 1 ⋅ [lA, Bl] 2
23. 如果算符 Aˆ 的本征值分别为 A1, A2, A3,",在算符 Aˆ 的自身表象中写出
算符 Aˆ 的矩阵形式。
下,所有力学量的概率分布不随时间改变;在一切状态下,守恒量的概率
分布不随时间改变。
25. 在 Sz 表象下,写出算符 Sˆz 及其本征态|↑〉 和|↓〉 的矩阵表达式。
答:在 Sz 表象下,算符 Sˆz 的矩阵表达式为
Sz
=
= ⎛1
2
⎜ ⎝
0
0⎞ − 1⎟⎠
其本征态|↑〉 和|↓〉 的矩阵表达式分别为
v∫ 答: pkdqk = nkh (nk = 1, 2,3,")
其中 (qk , pk ) 代表一对共轭的正则坐标和动量。 7. 利用光波的双缝干涉实验,说明 Born 的概率波解释。 答:Born 认为,微观粒子的运动状态用“波函数”来描述,粒子通过双缝 时,每一个缝都有一个所谓的“波”通过,只不过与经典波的强度对应的, 是粒子在某点附近出现的相对概率。对通过双缝的粒子,其概率“分成” 了两束(波动性),但对某个具体的粒子,它只能通过其中的一个缝(粒子

中国石油大学华东 量子力学习题及解答综合版-new

中国石油大学华东 量子力学习题及解答综合版-new

12、 重要公式:
1) 光电效应方程: 1 2 m vm h 0 eU a eU 0 . 2 U0:逸出电压 2) 康普顿散射: h 0 (1 cos ). m0 c h E k A 反冲电子动能: Ek ( m m0 ) c 2 h ( 0 ). 3) 氢原子巴耳末公式: 1 1 ~ 1 R ( 2 2 ). ( n k ) k n ~ 1 E1 ( 1 1 ). ( n k ) h c k 2 n2
代入数值,得
1
k 2(巴耳末系)
1 1 再由 R( 2 2 )可求得, n 3 2 n
E1 En 2 n 始态 E3 1.51eV ; 终态 E2 3.4eV .
1
17. α 粒子在磁感应强度为 B= 0. 025 T 的均匀磁场 中沿半径为 R = 0. 83 cm 的圆形轨道运动。 (1)计算其德布罗意波长。 (2) 若使质量 m = 0. 1 g 的小球以与 α 粒子相同的速率运动,则 其波长为多少? (mα =6. 64×10 -27 kg )
h 6. 63 10 34 J s 称为普朗克常量。
2、 玻尔氢原子理论三条基本假设:
(1). 定 态 假 设 . ( 2). 跃 迁 假 设 : nk 1 En Ek . h
h ( 3). 量 子 化 条 件 假 设L mvr n : n . 2
3、 爱因斯坦光子理论:
氢原子的能量完全由 n 决定。 L l (l 1) .
(2)角量子数 l 0, 1, 2, ..., (n 1).决定电子轨道角动量: (3) 磁量子数 ml 0, 1, 2, ...,l.决定电子轨道角动量 在外磁场方向的分量: Lz ml .

量子力学习题答案9页word

量子力学习题答案9页word

2.1 如图所示右设粒子的能量为,下面就和两种情况来讨论(一)的情形此时,粒子的波函数所满足的定态薛定谔方程为其中其解分别为(1)粒子从左向右运动右边只有透射波无反射波,所以为零由波函数的连续性得得解得由概率流密度公式入射反射系数透射系数(2)粒子从右向左运动左边只有透射波无反射波,所以为零同理可得两个方程解反射系数透射系数(二)的情形令,不变此时,粒子的波函数所满足的定态薛定谔方程为其解分别为由在右边波函数的有界性得为零(1)粒子从左向右运动得得解得入射反射系数透射系数(2) 粒子从右向左运动左边只有透射波无反射波,所以为零 同理可得方程由于全部透射过去,所以反射系数 透射系数2.2如图所示在有隧穿效应,粒子穿过垒厚为的方势垒的透射系数为总透射系数2.3以势阱底为零势能参考点,如图所示 (1)左 中 0 a x时只有中间有值在中间区域所满足的定态薛定谔方程为其解是由波函数连续性条件得∴∴ 相应的因为正负号不影响其幅度特性可直接写成由波函数归一化条件得所以波函数(2) ∞∞左 中 右0 x显然时只有中间有值在中间区域所满足的定态薛定谔方程为其解是由波函数连续性条件得当,为任意整数,则当,为任意整数,则综合得∴当时,,波函数归一化后当时,,波函数归一化后2.4如图所示左中0 a 显然其中其解为由在右边波函数的有界性得为零∴再由连续性条件,即由得则得得除以得再由公式 ,注意到令,其中,不同n对应不同曲线, 图中只画出了在的取值范围之内的部分65n=0只能取限定的离散的几个值,则E 也取限定的离散的几个值,对每个E ,确定归一化条件得2.5则该一维谐振子的波函数的定态薛定谔方程为令则上式可化成令则只有当有解2.6由 和已知条件可得第三章3.1能量本征值方程为即分离变量法,令则有令则同理令则式中能级简并度为3.2角动量算符在极坐标系下则由能量本征值方程令其解为由周期性得归一化条件则3.4由能量本征值方程令当令 此时 满足的方程为时时只考虑时令其解分别为由波函数有界性得由波函数连续性得再由公式,注意到令,其中 , 不同n 对应不同曲线,图中只画出了在的取值范围之内的部分65只能取限定的离散的几个值,则E也取限定的离散的几个值,对每个E,确定归一化条件得 1 可求得3.5同理方差算符则由测不准关系代入,验证该式是成立的第四章4.1在动量表象中,则代入得令得则归一化后的4.5本征方程的矩阵形式上式存在非零解的条件是即解得当再由得当,同样第六章6.3解:在z S ˆ 表象,nS ˆ的矩阵元为 其相应的久期方程为 即所以nS ˆ的本征值为2±。

量子力学答案完全版

量子力学答案完全版

⒈热辐射的峰值波长与辐射体温度之间的关系被维恩位移定律: 表示,其中。

求人体热辐射的峰值波长(设体温为)。

解:,由题意,人体辐射峰值波长为:。

⒉宇宙大爆炸遗留在宇宙空间的均匀各向同性的背景热辐射相当于黑体辐射。

此辐射的峰值波长是多少?在什么波段?解:T=2.726K ,由维恩位移定律,属于毫米波。

⒊波长为的X 射线光子与静止的电子发生碰撞。

在与入射方向垂直的方向上观察时,散射X射线的波长为多大?碰撞后电子获得的能量是多少eV ?解:设碰撞后,光子、电子运动方向与入射方向夹角分别为θ,α,由能量守恒,,动量守恒:;;整理得:;联立第一式:nm c m h e 01.0;2sin 20201===-λλθλλ ;则X 射线的波长为:01.02sin 221+=θλc m h e ;电子能量:1λλhchc E e -= ⒋在一束电子束中,单电子的动能为,求此电子的德布罗意波长。

解:电子速度远小于光速,故:;则:。

5.设归一化函数: (x )=Aexp(-2x 2)(-)a 为常数,求归一化常数A 。

解:由归一化条件 |2dx=1 得A 2==A=6.设归一化波函数=A(0n为整数,a为常数,求归一化常数A解:由归一化条件|2dx得A2=1解得A=7.自由粒子的波函数为=Aexp()其中和是粒子的动量和能量,和t是空间与时间变量,ℏ是普朗克常数,A是归一化常数,试建立自由粒子波函数所满足的方程。

解:由=Aexp(),将其对时间求偏微商,得到=-E,然后对其空间求偏微商,得到:=-利用自由粒子的能量和动能的关系式:E=就可以得到:i=---------自由粒子波函数所满足的方程8.设一个微观粒子的哈密顿算符的本征方程为Ĥ=该粒子的初始波函数为=+设和是实数,求任意时刻的波函数及粒子的几率密度.解:由=exp()=dx=== exp()+ exp()粒子的几率密度===[ exp()+ exp()][ exp()+ exp()]因为和是实数,利用欧拉公式:原式=9.宽度为a的一维无限深势阱中粒子的本征函数为=求证本征函数的正交性:dx=0(m)证:===[]=0()10.原子核内的质子和中子可以粗略地当成处于无限深势阱中而不能逸出,它们在核中可以认为是自由的,按一维无限深势阱估算,质子从第一激发态(n=2)跃迁到基态(n=1)时,释放的能量是多少MeV?核的线度按a=1.0m计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第15章 量子物理基础习题
15.1 钾的光电效应红限波长为μm 62.00=λ。

求(1)钾的逸出功;(2)在波长nm 330=λ的紫外光照射下,钾的遏止电势差。

解:(1)逸出功eV 01.2J 1021.31900=⨯==
=-λνhc h W (2)由光电效应方程W m h m +=221υν及022
1eU m m =υ 可得 V 76.10=-=-=e
W e hc e W e h U λν
15.2 铝的逸出功为4.2eV ,今用波长为200nm 的紫外光照射到铝表面上,发射的光电子的最大初动能为多少?遏止电势差为多大?铝的红限波长是多大?
解:(1)由光电效应方程W m h m +=22
1υν,得 eV 0.2J 1023.321192=⨯=-=-=-W hc W h m m λ
νυ (2)由022
1eU m m =υ,得 V 0.22120==e
mv U m (3)由00λνhc
h W ==,得
nm 2960==W
hc λ 15.3 钨的逸出功是4.52eV ,钡的逸出功是2.50eV ,分别计算钨和钡的截止频率。

哪一种金属可以作可见光范围内的光电管阴极材料?
解:由光电效应方程W m h m +=22
1υν可知,当入射光频率
.02
120===υννm h W 表面,其初动能时,电子刚能逸出金属因此0ν是能产生光电效应的入射光的最低频率(即截止频率),它与材料的种类有关。

钨的截止频率 z h
W H 1009.115101⨯==ν 钡的截止频率 z h W H 10603.015202⨯==
ν 对照可见光的频率范围0.395×1015~0.75×1015z H 可知,钡的截止频率02ν正好处于该范围内,而钨的截止频率01ν大于可见光的最大频率,因而钡可以用于可见光范围内的光电管阴极材料。

15.4 钾的截止频率为4.62×1014z H ,今以波长为435.8nm 的光照射,求钾放出的光电子的初速度。

解:根据光电效应的爱因斯坦方程
W m h m +=22
1υν 其中 0νh W =, λ
νc = 所以电子的初速度
152/10s m 1074.5)(2-⋅⨯=⎥⎦⎤⎢⎣⎡-=νλυc m h
由于逸出金属的电子的速度c <<υ,故式中m 取电子的静止质量。

15.5 用波长nm 1.00=λ的光子做康普顿散射实验。

求散射角为900的散射波长是多少?(普朗克常量h =6.63×10-34J ·s ,电子静止质量m e =9.11×10-31kg )
解:(1)康普顿散射光子波长改变为:
m 10024.0)cos 1(10-⨯=-=∆θλc
m h e m 10024.1100-⨯=∆+=λλλ
15. 7 求动能为1eV 的电子的德布罗意波长。

m 1023.1101.9106.121063.622,93119340----⨯=⨯⨯⨯⨯⨯====
==<<e k e k m E h P h h P m E P m m c v λλ 可得由德布罗意关系式,动能和动量的关系为时,解:当电子运动速度
15.8 已知α粒子的静止质量为6.68×10-27kg 。

求速率为5000 km ·s -1的α粒子的德布罗意波长。

解:由于α粒子运动速率c <<υ,故有0m m =,则其德布罗意波长为
nm 1099.1m 1099.15140--⨯=⨯===υ
λm h p h 15.9 若一个电子的动能等于它的静能,试求该电子的速率和德布罗意波长。

解:相对论的动能为 202c m mc E K -= ①
根据题意,有 20c m E K = ②
可得电子的运动质量为 02m m =
再根据相对论质量公式可得
2
20
012c m m m υ-== ③
由③式解得 18s m 106.2866.02
3-⋅⨯===c c υ 所以,该电子的德布罗意波长为
nm 104.1m 104.123120--⨯=⨯===υ
λm h p h 15.10 一个光子的波长为3.0×10-7m ,如果测定此波长的精确度为10-6,试
求此光子位置的不确定量。

m 024.0100.34)100.3(442
,,m 100.310,1013
2
7221366=⨯⨯⨯=∆=∆≥∆≥∆⋅∆∆=∆=⨯=⨯=∆=∆-----πλπλπλλλλλλ
λP h x P x h
P h
P 所以根据不确定关系 所以 又知 解:由题意可知
15.11 设粒子在沿x 轴运动时,速率的不确定量为cm/s 1=∆υ,试估算下列情况下坐标的不确定量x ∆:(1)电子;(2)质量为10-13kg 的布朗粒子;(3)质量为10-4kg 小弹丸。

解:根据不确定关系,粒子沿x 轴运动的动量和坐标的不确定量为
2
≥∆⋅∆=∆∆x x m x p x υ 即 υ
πυ∆=∆≥∆m h m x 42 可得 (1)电子:cm 58.0≥∆x
(2)布朗粒子:cm 103.518-⨯≥∆x
(3)小弹丸:cm 103.527-⨯≥∆x
15.12 作一维运动的电子,其动量的不确定量是m/s kg 1025⋅=∆-x p ,能将这个电子约束在内的最小容器的大概尺寸是多少? 解:由不确定关系2 ≥∆∆x p x ,得 m 103.5410-⨯=∆≥∆x
p h x π。

相关文档
最新文档