材料腐蚀与防护-高温热腐蚀(7)..
腐蚀和防护概论 第一章 高温腐蚀

VMe ZmD
PBR>1只是氧化膜具有保护性的必要条件。 因为PBR过大(如大于2),膜的内应力过大, 易使膜破裂,也会失去保护性或保护性很差。
实践证明,保护性较好的氧化膜的PBR值应 为1<PBR<2.5。
一些金属氧化膜的PBR比值 Nhomakorabea金属氧化膜 PBR 金属氧化膜
WO3 SiO2 Cr2O3 TiO2
三、常用金属的高温抗氧化性
1、金属铁的高温抗氧化性
金属铁在570℃以下有着良好的抗氧化性, 氧化膜是由Fe2O3和Fe3O4组成。当温度高 于570℃,生成FeO,其熔点为1377 ℃ , 为p型半导体氧化膜,晶体中存在大量缺陷, 此时金属铁的抗氧化性急剧下降。
2、金属Ni的高温抗氧化性
用而破坏。 • (4)膜的附着性,有与基体有相近的膨胀系数,
不易剥落。 • (5)膜的力学性,有足够的强度和塑性。
二、金属氧化膜的结构类型
纯金属在不同环境中所形成的氧化膜,其颜色、厚 薄、连续性虽各有特色,但从结构上可把它们概括 为常见的几种类型:
(1)离子型化合物氧化膜; (2)尖晶石型氧化膜; (3)刚玉型氧化膜; (3)半导体化合物类型氧化膜。
3、控制氧化膜的晶格缺陷浓度,降低离子 扩散速率
当氧化膜抗氧化性不好时,可往合金中加 入一些微量元素来改善基体氧化物的抗氧 化性。例如,根据氧化物的半导体性质, 加入少量某些金属元素,会改变氧化物晶 格缺陷密度,降低离子扩散速率,从而使 金属氧化速度受到相当的抑制。
哈菲(Hauffe)通过实验总结出一个原子价规 律,它描述了合金元素对氧化膜晶格缺陷、电 子和离子导电性以及氧化速率的影响。
化膜而排除掉基体金属抗蚀性差的氧化膜。 例如,在钢中加入与氧亲合力较大(参考氧势
高温合金的热腐蚀机理及其防护措施

高温合金的热腐蚀机理及其防护措施一、高温合金的概念及用途高温合金是指在高温、高氧环境下仍能保持优异性能的合金材料。
它具有高温抗氧化、高强度、高韧性、高耐腐蚀性等特点,广泛应用于航空、航天、化工、电力、石化等领域。
二、高温合金的热腐蚀机理在高温、高氧、高湿、高盐等极端环境下,高温合金容易受到热腐蚀的影响,导致其性能下降或失效。
其主要热腐蚀形式包括氧化腐蚀、硫化腐蚀、氯化物腐蚀、碳酸盐腐蚀等。
1.氧化腐蚀氧化腐蚀是高温合金在高温氧化气氛中所遭受的最常见形式的腐蚀,它是指合金表面发生的氧化反应,生成氧化物层。
氧化层沿晶腐蚀现象也是氧化腐蚀的一种重要表现。
2.硫化腐蚀硫在高温燃烧的过程中,容易形成SO2等硫化性气体,这些气体与含硫化合物和水蒸气等反应,形成比氧化层更为薄的硫化层,引起高温合金材料内部的腐蚀问题。
3.氯化物腐蚀氯化物腐蚀是一种以氯离子作为催化剂的高温热腐蚀形式。
在大气中能够形成氯离子的化合物有盐酸、NaCl、KCl等。
氯化物在高温下能和金属表面反应,产生不溶于氯化物的金属氯化物或在金属表面形成氯化物纹理。
4.碳酸盐腐蚀碳酸盐腐蚀是在高温下由于含有CO2和氧气的气氛而形成的一种腐蚀现象。
碳酸盐腐蚀主要发生在高温下氧化和硫化气氛之外的环境中,通常在电站汽轮机和炉膛中发生。
三、高温合金的防护措施高温合金在使用过程中,应采取以下防护措施:1.涂层技术涂层技术是目前最常用的高温合金防腐蚀措施之一。
涂层材料的主要性能表现为抗氧化、抗腐蚀、高耐热性能、抗磨损、涂层附着度好等。
2.氩弧焊堆焊技术氩弧焊堆焊技术是一种高温合金受腐蚀的修复方法。
通过采用氩弧焊堆焊技术,将高温合金无损修复,伸长其使用寿命。
3.添加合金元素合理添加合金元素能够提高高温合金的耐腐蚀性能。
比如,添加Cr、Si等元素能够增强氧化膜的稳定性;添加Al能够增加材料的高温强度等。
4.正常维护正常维护也是高温合金防护的重要措施,如灰尘清理、水分控制、及时更换受腐蚀部件等。
材料腐蚀与防护

材料腐蚀与防护材料腐蚀是指在特定环境条件下,材料表面遭受化学或电化学作用而发生的破坏现象。
腐蚀不仅会降低材料的强度和耐久性,还会对设备和结构的安全性造成严重威胁。
因此,对材料腐蚀进行有效的防护至关重要。
本文将就材料腐蚀的原因、分类及防护方法进行探讨。
首先,材料腐蚀的原因主要包括化学腐蚀、电化学腐蚀和微生物腐蚀。
化学腐蚀是指材料与化学物质直接发生反应,导致材料表面腐蚀。
电化学腐蚀是指在电解质存在的情况下,材料表面发生的电化学反应所致的腐蚀。
微生物腐蚀是由微生物产生的代谢产物对材料表面造成的腐蚀。
这些腐蚀形式各有特点,需要针对性地采取防护措施。
其次,根据腐蚀的性质和特点,可以将材料腐蚀分为干腐蚀和湿腐蚀。
干腐蚀是指在干燥的环境中发生的腐蚀现象,主要包括氧化腐蚀、硫化腐蚀和氯化腐蚀等。
湿腐蚀是指在潮湿或液态环境中发生的腐蚀现象,主要包括腐蚀、孔蚀和应力腐蚀等。
针对不同类型的腐蚀,需要采取相应的防护措施。
针对材料腐蚀问题,可以采取多种防护方法。
首先是选用耐腐蚀材料,例如不锈钢、耐蚀合金等,这些材料具有良好的耐腐蚀性能,能够有效地延缓腐蚀的发生。
其次是表面涂层防护,通过在材料表面涂覆一层防腐蚀涂层,可以有效地隔绝材料与腐蚀介质的接触,起到防腐蚀的作用。
另外,还可以采取阴极保护、阳极保护等电化学防护方法,以及改变环境条件、控制腐蚀介质浓度等措施来防止材料腐蚀的发生。
综上所述,材料腐蚀是一种常见的材料破坏现象,对设备和结构的安全性造成严重威胁。
为了有效地防止材料腐蚀,需要深入了解腐蚀的原因和分类,针对不同类型的腐蚀采取相应的防护措施。
只有通过科学的防护方法,才能有效地延缓材料腐蚀的发生,保障设备和结构的安全运行。
《材料腐蚀与防护》习题与思考题

《材料腐蚀与防护》习题与思考题第一章绪论1.何谓腐蚀?为何提出几种不同的腐蚀定义?2.表示均匀腐蚀速度的方法有哪些?它们之间有何联系?3.镁在海水中的腐蚀速度为 1.45g/m2.d, 问每年腐蚀多厚?若铅以这个速度腐蚀,其ϖ深(mm/a)多大?4.已知铁在介质中的腐蚀电流密度为0.1mA/cm2,求其腐蚀速度ϖ失和ϖ深。
问铁在此介质中是否耐蚀?第二章电化学腐蚀热力学1.如何根据热力学数据判断金属腐蚀的倾向?如何使用电极电势判断金属腐蚀的倾向?2.何谓电势-pH图?举例说明它在腐蚀研究中的用途及其局限性。
3.何谓腐蚀电池?有哪些类型?举例说明可能引起的腐蚀种类。
4.金属化学腐蚀与电化学腐蚀的基本区别是什么?5.a)计算Zn在0.3mol/LZnSO4溶液中的电解电势(相对于SHE)。
b) 将你的答案换成相对于SCE的电势值。
6.当银浸在pH=9的充空气的KCN溶液中,CN-的活度为1.0和Ag(CN)2-的活度为0.001时,银是否会发生析氢腐蚀?7.Zn浸在CuCl2溶液中将发生什么反应?当Zn2+/Cu2+的活度比是多少时此反应将停止?第三章电化学腐蚀反应动力学1.从腐蚀电池出发,分析影响电化学腐蚀速度的主要因素。
2.在活化极化控制下决定腐蚀速度的主要因素是什么?3.浓差极化控制下决定腐蚀速度的主要因素是什么?4.混合电位理论的基本假说是什么?它在哪方面补充、取代或发展了经典微电池腐蚀理论?5.何谓腐蚀极化图?举例说明其应用。
6.试用腐蚀极化图说明电化学腐蚀的几种控制因素以及控制程度的计算方法。
7.何谓腐蚀电势?试用混合电位理论说明氧化剂对腐蚀电位和腐蚀速度的影响。
8.铁电极在pH=4.0的电解液中以0.001A/cm2的电流密度阴极化到电势-0.916V(相对1mol/L甘汞电极)时的氢过电势是多少?9.Cu2+离子从0.2mol/LCuSO4溶液中沉积到Cu电极上的电势为-0.180V(相对1mol/L甘汞电极),计算该电极的极化值。
材料腐蚀与防护-高温热腐蚀(7)..

氧化物中应力对氧化膜的破坏
第五节
高温氧化动力学
*动力学测量方法 *氧化动力学规律
5.1 测定金属的高温氧化速度方法: 重量法;(常用的方法) 容量法; 压力计法。 测量试样的氧化速度可采用不同的氧化方式,常见的有: 1)恒温氧化,氧化时温度不随时间变化; 2)循环氧化,氧化时温度随时间变化,一般是周期性变化; 3)动力学氧化,指高速气流(即零点几到一个声速,340m/s) 中的氧化。
第四节
金属氧化膜的性质和晶体结构
4.1 氧化物的基本性质 与抗氧化性能相关的氧化物的基本性质: • 物理性能:氧化物的熔点; 挥发性; 氧化物与金属体积比(PB); • 氧化物间的溶解与反应:氧化物间的溶解性; 氧化物间的固相反应。
4.2 氧化物的结构
从结合键上,纯金属氧化物的三种结合形式: 1)离子型化合物(离子键) 2)半导体型化合物(金属键+离子键) p-半导体,n-半导体 3)间隙型化合物(金属键)
纯金属氧化物的结构
氧化物的晶体结构 1)理想配比离子晶体: 没有提供电子可以迁移的机制,依靠空位来迁移。 2)非理想配比(也叫非化学计量比)离子晶体: 指金属与非金属原子数之比不是准确地符合按化学 分子式给出的比例,但仍保持电中性。在晶体中除了离子 迁移外,还有电子迁移的可能性,这类晶体具有半导体的 性质。 在非理想配比的离子晶体中根据过剩组分(Me+或O2-) 的不同可分为两类:
第七章 金属与合金的高温氧化
本章主要内容 1.高温氧化及分类 2.金属高温氧化的热力学 3.金属高温氧化形成 4.氧化物的结构及性质 5.金属高温氧化动力学 6.影响金属氧化的因素 7.金属高温抗蚀性 8.合金氧化及抗氧化性 9.高温热腐蚀 10.高温氧化防护
高温高压环境下金属腐蚀的防护措施

高温高压环境下金属腐蚀的防护措施一、引言在工业生产和科学研究等领域,高温高压环境下的金属腐蚀问题一直是一个严重的挑战。
受到高温和高压的影响,金属表面容易发生氧化、腐蚀和磨损等问题,导致金属材料的性能下降甚至失效,从而对设备的可靠性和寿命造成负面影响。
为了解决这一问题,人们开发了各种防护措施来提高金属材料在高温高压环境下的耐腐蚀性能,本文将对其中一些常用的防护措施进行探讨。
二、表面涂层防护技术1. 金属涂覆技术金属涂覆技术是一种将防腐蚀合金涂层覆盖在金属基体上的方法。
通过涂覆耐腐蚀合金,可以有效地防止金属表面与高温高压介质接触,从而减少腐蚀的可能性。
常见的金属涂覆技术包括热喷涂、电镀和镀金等,这些方法可以选择不同的合金材料进行覆盖,以适应不同条件下的腐蚀环境。
2. 陶瓷涂层技术陶瓷涂层技术是利用高温下陶瓷材料的耐腐蚀性和耐热性来保护金属材料。
陶瓷涂层可以覆盖在金属表面,形成一层具有良好耐腐蚀性的保护层,有效地抵御高温和高压环境下的侵蚀作用。
常见的陶瓷涂层材料有氧化铝、碳化硅和氮化硅等,它们具有优异的耐蚀性和耐高温性能,适用于各种恶劣的工况。
三、基底材料的选择1. 高温合金在高温高压环境下,基底材料的选择是关键。
高温合金是一种特殊的合金材料,在高温和高压条件下具有出色的耐蚀性和耐热性能。
这种合金通常由镍、铬、钼等元素组成,可以有效地抵抗氧化、硫化和腐蚀等作用,保持较好的机械性能和化学稳定性。
2. 不锈钢不锈钢是另一种常用的基底材料,具有良好的耐腐蚀性能。
通过控制合金元素的含量和添加合适的稳定剂,不锈钢可以在高温高压环境下形成一层致密的氧化物膜,防止金属表面腐蚀。
此外,不锈钢还具有良好的机械性能和可焊性,适用于各种工程和装备。
四、电化学防护技术1. 阳极保护阳极保护是一种通过施加外加电流或阳极材料来保护金属腐蚀的技术。
在高温高压环境下,可以使用阳极电位的方法来减少金属表面的腐蚀速率。
例如,通过向金属表面施加一定电压,在金属表面形成一层保护性的氧化层,从而抵御腐蚀介质的侵蚀。
腐蚀与防护-第十一章 高温腐蚀

(3)金属氧化膜的完整性
VOX M OX M PBR VM nAM OX
M、A分别为分子量、原子量,n为一个氧化物分子中金属原 子原子的个数。 当PBR>1,金属氧化膜是完整的(能够完全覆盖整个金属 表面),具有保护性 PBR过大,如大于2.5时,内应力过大,易使膜破裂,如 钨的氧化膜的值为3.4,保护性很差 当PBR<1,金属氧化膜是疏松多孔的,保护性差
高温腐蚀
高温腐蚀的定义
• 材料在高温下与环境介质发生化学或电化 学反应,导致材料变质的现象称为高温腐
蚀(High Temperature Corrosion)
• 高温:
对于金属指再结晶温度以上,即大约
在0.3~0.4倍材料熔点以上的温度
变形金属加热时组织和性能变化示意图
高温腐蚀的分类
按环境介质的状态 • 高温气体介质腐蚀
金属高温氧化的热力学基础
(1)金属氧化可能性的判断
• 金属氧化过程的自由能变化
G 0 ,反应自发进行
M O2 MO2
MO G G RT ln M O
2 2
G G RT ln pO2
G G RT ln pO2
热力学数据表明,自然界中绝大多数金属氧化物的 pO 2.13104 Pa ) G 均为负值,即使在常压条件下( G 稍正,但仍为负值。 G 比 ( 注意除以标准大气压P0 ) 常态下,氧化反应的 G 随温度升高有由负向正 变化的趋势,即金属自发氧化的趋势随温度上升而 减小,这与人们的直觉相反,然而这正是金属冶炼 要在高温下进行的热力学依据
高温腐蚀与材料防护研究

高温腐蚀与材料防护研究第一章前言随着工业化和城市化的发展,高温腐蚀问题愈发普遍。
高温腐蚀是指在高温条件下,材料遭受的化学反应而铁元素被腐蚀,从而导致材料的降解和失效。
这对材料的使用寿命和安全带来了威胁,因此,研究如何防止高温腐蚀已经成为当今材料科学的一个重要领域。
第二章高温腐蚀的基本原理高温腐蚀的发生机制十分复杂,各种因素互相作用。
常见的高温腐蚀过程主要分为以下几种。
2.1 氧化腐蚀高温下,金属表面会与氧气反应,形成金属氧化物。
在此过程中,氧化物涂层可以保护底层材料避免其被继续氧化。
但是,频繁的热膨胀和收缩,以及涂层磨损和损坏等原因都可能导致氧化物层失效,从而加速材料的腐蚀。
2.2 硅化腐蚀在高温下,硅会与金属发生反应,形成金属硅层。
这种层通常能够提供一定的保护作用,但如果硅的层厚度过大,它会开裂,导致下面的表面暴露于高温气体中而遭受腐蚀。
2.3 氯化腐蚀有些材料,如不锈钢和镍合金,在高温氯气环境下容易发生氯化腐蚀。
该过程通常是由氯化钠或氯化钾生成的氯气引起的,氯气与表面的材料反应,形成氯化物,在氯化物的作用下,材料逐渐腐蚀。
2.4 硫腐蚀高温下,硫化物可以与金属表面形成硫化物层,这种层可以提供一定的抵抗氧化的保护效果。
但是,硫为带点非金属元素,它与金属的化合物不稳定,很容易引起腐蚀。
第三章高温腐蚀和材料的选择对于高温工作环境来说,正确的材料选择尤为重要。
正确选择的材料比使用防护涂层更有保障。
例如,如果钢材在工作时遭受氢的侵蚀,则应选用合适的合金钢或其他类似的材料,而不是简单地在其表面涂上氢敏感性更低的材料。
对于高温工作环境,应该选择材料具有良好的机械性能、耐热性能和耐蚀性能、耐胶结性能和耐磨性能。
常用的材料如下。
3.1 镍基合金镍基合金是一种非常常用的高温材料。
它们具有高温强度、高耐热性和优异的耐蚀性能。
除了可用于制造高温部件外,还广泛用于航空、航天、电力、石油化工和医疗器械等行业。
3.2 钨合金钨合金通常被用于高温切削工具中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高温是相对的,与材料的熔点和活性有关。
例如: • α-Fe熔点为909℃,450 ℃以上为高温; • Al熔点为660 ℃,200 ℃以上为高温; • Β-Ti熔点为1660 ℃,500 ℃以上为高温;
• 一般认为,金属在某一温度下发生了明显的氧化反应,那 么这一温度对这种金属材料的氧化而言就属高温。
主要涉及的方面: (1)在化学工业中存在的高温过程. 如:生产氨水和石油化工等领域产生的氧化。 (2)在金属生产和加工过程中. 如:在热处理中碳氮共渗和盐浴处理易于产生增 碳、氮化损伤和熔融盐腐蚀。 (3)含有燃烧的各个过程. 如:柴油发动机、燃气轮机、焚烧炉等所产生的 复杂气氛高温氧化高温高压水蒸气氧化及熔融碱盐腐蚀。 (4)核反应堆运行过程中. (5)在航空航天领域。 如:宇宙飞船返回大气层过程中的高温氧化和高 温硫化腐蚀,以及航空发动机叶片受到的高温氧化和高温硫 化腐蚀。
2
氧化-还原条件:
在T温度下的标准自由能变化值( 氧化物的标准生成自由能:
,即金属
根据
值分析金属氧化的倾向大小
金属氧化物在1000 ℃下的
值
2.2 金属氧化物的高温稳定性 1) GT T 平衡图------判断金属氧化的可能性。
应用:(1)判断金属氧化物的稳定性。值愈负,则该金属的 氧化物愈稳定,即图中线的位置愈低,它所代表的氧化物就 愈稳定。 (2)同时它还可以预测一种金属还原另一种金属氧化 物的可能性。 (3)可以直接读出在给定温度下金属氧化物的平衡氧 压、标准自由能变化值。 2)金属氧化物的蒸汽压 当固体氧化物的蒸气压低于该温度下相平衡蒸气压时, 则固体氧化物蒸发。蒸气反应中蒸气压与标准自由能的关系 与上述氧化、还原反应相同:
另外:由于 存在晶界扩 散,氧化膜 还可能以另 外一种形式 内氧化形成 和生长。
Байду номын сангаас 3.3
氧化膜的P-B比:
氧化物与金属的体积差对氧化物的保护性的影响,又 称毕林—彼得沃尔斯原理或P—B比。 该原理认为氧化过程中金属氧化膜具有保护性的必要 V 条件是:氧化时所生成的金属氧化膜的体积( )与生成 这些氧化膜所消耗的金属的体积( VMe )之比必须大于l, 而不管氧化膜的生长是由金属还是由氧的扩散所形成,
4. 高温氧化理论
■高温氧化研究内容
热力学、动力学、氧化产物性质 ■高温氧化的形成机制 高温氧化物的形成过程和组织结构特征 ■合金的高温腐蚀 合金高温氧化的特点
第二节
金属高温氧化的热力学
2.1金属高温氧化的可能性
通式: 根据Vanthoff等温方程式:
得到:
PO2
其中: ------给定温度下的MeO2的分解压(平衡分压); PO ------给定温度下的氧分压; R----------气体常数。
传输途径:反应物质在氧化膜内,根据金属体系和氧化温 度的不同而存在三种方式:
(1)晶格扩散。 常见于温度较高,氧化膜致密,而且氧化膜内部存在 高浓度的空位缺陷的情况下,通过测量氧化速度,可直接 计算出反应物质的扩散系数,如钴的氧化。 (2)晶界扩散。 在较低的温度下,由于晶界扩散的激活能小于晶格扩 散,而且低温下氧化物的晶粒尺寸较小,晶界面积大,因 此晶界扩散显得更加重要,如镍、铬、铝的氧化。 (3)同时晶格和晶界扩散。 如钛、锆在中温区域(400一600℃)长时间氧化条件。
第三节 金属氧化膜形成
3.1氧化膜的形成过程:
(1) 吸附 (2)形核 (3)晶粒长大
氧化膜形成和发展的决定因素: (1)界面反应速度 (氧化初期的主要控制因素) 包括金属-氧化膜界面及气体-氧化膜界面上的 反应速度。
(2)参加反应的物质通过氧化膜的扩散速度(氧化中 后期主要控制因素) 当氧化膜很薄时,反应物质扩散的驱动力是膜内 部存在的电位差;当膜较厚时,将由膜内的浓度梯 度引起迁移扩散。
第七章 金属与合金的高温氧化
本章主要内容 1.高温氧化及分类 2.金属高温氧化的热力学 3.金属高温氧化形成 4.氧化物的结构及性质 5.金属高温氧化动力学 6.影响金属氧化的因素 7.金属高温抗蚀性 8.合金氧化及抗氧化性 9.高温热腐蚀 10.高温氧化防护
第一节
什么是高温氧化?
1. 高温氧化 在高温条件下,金属与环境介质中的气相或凝 聚相物质发生化学反应而遭受变质或破坏的过程, 亦称高温腐蚀。
蒸气压与温度关系可用克拉伯隆(Clapeyron)方程式表示:
dp S H dT V TV
其中 H ---标准摩尔熵; V ---氧化物摩尔体积; S ---标准摩尔焓。
当固相与气相的体积比可以忽略,及把蒸气近似当作为理 想气体处理,上式可以变化为
因温度变化很小, H
3.2 氧化膜的生长方式:
在氧化膜的生长过程中,反应物质传输的形式有三种: a).金属离子单向向外扩散,在氧化膜-气体界面上 进行反应,如铜的氧化过程; b)氧单向向内扩散,在金属-氧化膜界面上进行反应, 如钛的氧化过程;
c)金属离子向外扩散,氧向内扩散,两者在氧化膜中 相遇并发生反应,如钴的氧化反应。
可看作常数,积分后得到:
可见:蒸发热愈大,蒸气压愈小,固态氧化物愈稳定。
一般地,热力学分析可以说明纯金属发生氧化的倾向和形成的稳定的 氧化物相;对合金氧化而言,热力学分析只能说明不同合金元素对氧 亲和力的大小。
3)金属氧化物的熔点 一些金属氧化物的熔点低于该金属的熔点。
合金氧化时,往往出现两种以上的金属氧化物。当两种氧 化物形成共晶时,其熔点更低。
• 高温氧化示意图:
界面反应:介质直接和金属表面作用
2. 高温氧化的分类
• (1)气体介质(干腐蚀) • (2)液体介质(热腐蚀) • (3)固体介质(磨蚀或冲蚀)
3. 高温腐蚀危害及意义
• 事例一 航空发动机叶片,燃气轮机(复杂气氛:高温氧、硫 ,磨蚀) • 事例二 原子反应堆热交换器(高温水) • 事例三 石油蒸馏(硫化)
危害性:造成大量金属的耗损 高温腐蚀使许多金属腐蚀生锈,破坏了金属表面许多优良 的使用性能,降低了金属横截面承受负荷的能力。 使高温机械疲劳和热疲劳性能下降。 意义:1)有助于认识各种金属及其合金在不同环境介质中的 腐蚀行为。 2)掌握腐蚀产物对金属性能破坏的规律。 3)有助于进行耐蚀合金的设计,并能正确选择防护工 艺和涂层材料来改善金属材料的高温抗蚀性,减少金属的损失, 延长金属制品的使用寿命,提高生产企业的经济效益。