计量经济学第六章-自相关资料

合集下载

第六章 自相关(计量经济学课件,南京农业大学-周曙东)

第六章    自相关(计量经济学课件,南京农业大学-周曙东)
式中若随机项 ut 满足基本假定:
E(εt ) = 0
εt 为白噪声
Var (εt ) = s2 Cov(εt , εt+s ) = 0
Yt= bo + b1 Xt + ut
(1)
如果自相关系数 为已知,将上式滞后一期
Yt-1= bo + b1 Xt-1 + ut-1
两边乘以
Yt-1= bo + b1 Xt-1 + ut-1
= (X’ P’ P X ) -1 X’ P’ P Y
= (X’ -1 X ) -1 X’ -1 Y
~ B
称为广义最小二乘估计量
1、 当 = I 时, B~ = ( X’ X ) -1 X’ Y ,广义最小二乘 估计量就是普通最小二乘估计量。
2、 当模型存在异方差时:
12
0
...
0
Ω
0
2 2
三、杜宾两步法
这种方法是先估计^ 再作差分变换,然后用OLS法来
估计参数。步骤是: 1、将模型(3)的差分形式写为
Yt = bo (1 )+ Yt-1 + b1 Xt b1 Xt-1 + Vt
Yt = ao + Yt-1 + a1 Xt + a2 Xt-1 + Vt
式中:
ao = bo (1 )
如b图所示,散点在II, IV象限,
表明存在负自相关。
二、杜宾—瓦森检验
DW检验是检验自相关的最著名、最常用的 方法。
1、适用条件 2、检验步骤
–(1)提出假设 –(2)构造统计量 –(3)检验判断
1、适用条件
(1)回归模型中含有截距项; (2)解释变量与随机扰动项不相关; (3)随机扰动项是一阶自相关; (4)回归模型解释变量中不包含滞后因变量; (5)样本容量比较大。

计量经济学 第六章 自相关

计量经济学 第六章 自相关
5
计量经济学
第六章
自相关
6
一阶自相关系数
自相关系数 的定义与普通相关系的公式形式相同
n
utut-1
t=2
n
n
ut2
u2 t 1
t2
t2
的取值范围为 -1 1
(6.1)
式(6.1)中 ut-1是 ut 滞后一期的随机误差项。 因此,将式(6.1)计算的自相关系数 称为一阶 自相关系数。
模型中
ut

-1
ut
滞后一期的值,因此称为一阶。
此式中的 也称为一阶自相关系数。
18
如果式中的随机误差项 vt 不是经典误差项,即
其中包含有 ut 的成份,如包含有 ut2 则需将 vt
显含在回归模型中,其为
ut = 1ut-1 + 2ut-2 + vt
其中,1 为一阶自相关系数,2为二阶自相关系
另外回归模型中的解释变量在不同时期通常是
正相关的,对于
Xt和
X
t
来说
j
Xt Xt+j 是大于0的。
33
因此,普通最小二乘法的方差 Var(ˆ2) = 2 Σxt2
通常会低估 ˆ2 的真实方差。当 较大和 Xt 有
较强的正自相关时,普通最小二乘估计量的方 差会有很大偏差,这会夸大估计量的估计精度, 即得到较小的标准误。 因此在有自相关时,普通最小二乘估计 ˆ2 的标 准误就不可靠了。
许多农产品的供给呈现为 蛛网现象,供给对价格的 反应要滞后一段时间,因 为供给需要经过一定的时
间才能实现。如果时期 t
的价格 Pt 低于上一期的 价格 Pt-1 ,农民就会减少 时期 t 1 的生产量。如

计量经济学第六章 自相关

计量经济学第六章 自相关

X X
t
t+ j
是大于0的。
43
ˆ ) = 2 Σx2 因此,普通最小二乘法的方差 Var( 2 t ˆ 的真实方差。当 较大和 X 有 通常会低估 2 t
较强的正自相关时,普通最小二乘估计量的方
差会有很大偏差,这会夸大估计量的估计精度,
即得到较小的标准误。
ˆ 的标 因此在有自相关时,普通最小二乘估计 2

由于使用了广义差分数据,样本容量减少了1个,为22
个。查5%显著水平的DW统计表可知dL = 0.997,dU

= 1.174,模型中DW = 1.3979> dU, 说明广义差 分模型中已无自相关。同时,可决系数R2、t、F统计 量均达到理想水平。 10
最终模型结果
由差分方程可知:
7.7649 ˆ 1 41 .9271 1 0.8148
vt 是经典误差项,满足零均值 E(vt ) = 0 ,同方
差 Var(v ) = 2 ,无自相关 E(vt vs ) 0 (t s ) t v 的假定。
32
33
可以推得:
E(ut ) = r E(vt-r ) = 0
r =0

2 σ 2 Var(vt ) = 2 n Var(vt-r ) = v 2 = u 1- r =0
R 2 0.9966 F 4122.531
2
检验结果表明:回归系数的标准误差非常小,t 统 计量较大,说明居民收入 X 对居民储蓄存款 Y 的 影响非常显著。同时可决系数也非常高,F统计量 为4122.531,也表明模型异常的显著。
但此估计结果可能是虚假的,t统计量和F统计量
都被虚假地夸大,因此所得结果是不可信的。为

最新-第六章自相关-PPT文档资料

最新-第六章自相关-PPT文档资料
第二、最小二乘估计量不具有最小方差性, 即不是最优的
第三、OLS估计量的方差是有偏的。 第四、T检验和F检验一般是不可靠的。 第五、计算得到的误差方差
2
RSS/d.f.
是真实的σ2有偏估计量,可能低估,也可能高估
第六、通常计算的R2也不能测度真实的R2
第七、预测的方差和标准差可能也是无效 的。
Q产出量 解释变量 资本(K)劳动(L) 技术(T)
注意:有些因素如政策因素对产出是有影响的但并没有 包含在解释变量中,所以应当包含在随机误差项中。
如果该影响构成随机误差项的的主要部分,则可能 出现序列相关
这是由于政策的影响是连续的。
而在做产出对劳力和资本投入的回 归中,我们用了季度时间序列数据。如 果某一季度的产出受到罢工的影响,却 没有理由认为这一生产中断会持续到下 一季度,就是说,即令本季度产出下降, 却没有理由预期下一季度的产出也下降。
表明干扰中的一个上升线性趋势
表明干扰中的一个下降线性趋势 表明干扰中兼有线性和二次趋势项
表示无系统性模样,符合于经典线性回归 模型的无相关假定。
§6.2 自相关产生的原因和后果
一、自相关产生的原因 1、被解释变量的自相关 • 滞后效应
在一个消费支出对收入的时间序列回归中, 人们常常发现当前时期的消费支出除了依赖于 其他变量外,还依赖于前期的消费支出,就是:
3、随机扰动项本身的特性所决定
• 惯性
在许多情况下,真实扰动项的逐次值是相关的。 例如干旱、暴风雨、地震、战争、罢工等纯随 机因素所产生的影响,将延续一个时期以上。 显然,在农业生产中,由于反常的天气所引起 的欠收,将会在几个时期内影响其他的经济变 量;还有,地震对于某个地区经济发展的影响, 也将持续若干年,等等。诸如此类的原因,导 致了扰动项的自相关。

第六章 自相关 《计量经济学》PPT课件

第六章  自相关  《计量经济学》PPT课件

[(
1
ˆ
)
1
xt
ut
]2
(1 ˆ1)2 xt2 2(1 ˆ1) xt ut ut2
(6.2.11)
其中 xt ut xt ut (1 ˆ1) xt2
u
2 t
ut ut
ut2
1 n
ut ut
t t
(1
1 n
)
u
2 t
2 n
ut
t t
ut
所以
2 t
(1
ˆ 1 )2
xt2
第六章 自相关 【本章要点】(1)自相关的概念,自相关强度的 量度—自相关系数,了解经济现象中自相关产生 的原因;(2)自相关性对模型参数估计的影响; (3)检验自相关性的主要方法;(4)消除自相 关影响的方法。 §6.1 自相关 一、自相关的概念
如果经典回归的基本假定4遭到破坏,则
COV(ut ,us)=E(ut us)≠0 , t≠s , t,s=1,2, …,n,即u的取值与 它的前一期或前几期的取值相关,则称u存在序列相关 或自相关。 自相关有正自相关和负自相关之分,对随机项的时间 序列u1,u2,…,un,…,当ut > 0时,随后的若干个随机项 ut+1,u t+2,…都有大于0的倾向,当ut < 0时,随后若干个 随机项都有小于0的倾向,我们说u具有正相关性;而 负自相关则意味着两个相继的随机项ut和ut+1具有正负 号相反的倾向。在经济数据中,常见的是正自相关现象。
(4)根据样本容量n,自变量个数和显著水平0.05 (或0.01)从D-W检验临界值表中查出dL和du。 (5)将d 的现实值与临界值进行比较: ①若d < dL,则否定H0,即u存在一阶线性正自相关; ②若d > 4- dL,则否定H0,即u存在一阶线性负自相关; ③若du< d < 4- du,则不否定 H0,即u不存在(一阶)线 性自相关;

计量经济学第六章自相关

计量经济学第六章自相关

计量经济学第六章自相关自相关是计量经济学中一种重要的现象,它指的是一个变量与其自己在过去时间点上的相关性。

自相关在实证研究中十分常见,对经济学家来说,了解和掌握自相关性质是至关重要的。

1. 引言自相关作为计量经济学的一项基础概念,是经济学研究中不可或缺的一个重要方法。

自相关性的存在通常会引起回归结果的偏误,而忽略自相关性可能导致估计不准确的结果。

因此,探讨自相关性的性质和应对方法是计量经济学的重点之一。

2. 自相关的定义和表示自相关是指一个变量与其自身在过去时间点上的相关性。

假设我们有一个时间序列数据集,其中变量yt表示一个时间点上的观测值,t表示时间索引。

自相关系数可以通过计算观测值yt与其在过去某一时间点上的观测值yt-k(k为时间滞后期数)的相关性来得到。

数学上,自相关系数可以用公式表示为:ρ(k) = Cov(yt, yt-k) / (σ(yt) * σ(yt-k))其中,ρ(k)表示第k期的自相关系数,Cov表示协方差,σ表示标准差。

3. 自相关性的性质自相关性具有以下几个性质:3.1 一阶自相关性一阶自相关性是指变量值yt与前一期的观测值yt-1之间的相关性。

一阶自相关系数ρ(1)通常用来检验时间序列数据是否存在自相关性。

若ρ(1)大于零且显著,则表明存在正的一阶自相关性;若ρ(1)小于零且显著,则表明存在负的一阶自相关性。

3.2 高阶自相关性除了一阶自相关性,时间序列数据还可能存在高阶自相关性。

高阶自相关性是指变量值yt与过去第k期的观测值yt-k之间的相关性。

通过计算不同滞后期的自相关系数ρ(k),可以了解数据在不同时间跨度上的自相关性情况。

3.3 异方差自相关性异方差自相关性是指时间序列数据中的方差不仅与自身相关,还与过去观测值的相关性有关。

异方差自相关性可能导致在回归分析中的标准误差失效,从而产生无效的回归结果。

因此,在处理存在异方差自相关性的数据时要采取合适的修正方法。

4. 自相关性的检验方法在实证研究中,经济学家通常使用多种方法来检验数据中的自相关性,常用的方法包括:4.1 Durbin-Watson检验Durbin-Watson检验是一种常用的检验自相关性的方法,其基本思想是通过检验误差项的相关性来判断自相关是否存在。

南开大学计量经济学第6章自相关

南开大学计量经济学第6章自相关

经济模型中最常见的是一阶自回归形式。
T
ut ut1
依据 OLS 公式,模型 ut = 1 ut -1 + vt 中1 的估计公式是
aˆ1
=
t=2 T

ut12
t=2
若把 ut, u t-1 看作两个变量,则它们的相关系数是 ˆ =
T
ut ut1
t=2

T
T
ut 2
u t 1 2
(2)样本容量T
21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96
22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94 (3)原回归模型中解 23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92 释变量个数k(不包括
《Econometrics》 《计量经济学》
攸频
nkeconometrics126 南开大学经济学院数量经济研究所
第六章 自相关
Autocorrelation
§6.1 基本概念、类型及来源 §6.2 自相关的后果 §6.3 自相关的检验(DW检验、LM检验) §6.4 自相关的修正(GLS) §6.5 案例
同理,Cov(ut, ut - s) = s Var(ut)
自相关的表现形式
§6.1.3 自相关的来源
(1)惯性 大多数经济时间数据都有一个明显的特点,即
具有惯性。 如:经济周期
棘轮效应
(2)设定偏误:模型中遗漏了显著的变量
例如:如果对羊肉需求的正确模型应为
Yt=b0+b1X1t+b2X2t+b3X3t+ut

计量经济学自相关

计量经济学自相关

Yt Yt 1 (1 ) 1 ( X 1t X 1t 1 ) 2 ( X 2t X 2t 1 ) k ( X kt X kt 1 ) t
* * X 2t X 2t 1 … X2 t
令: Yt Yt 1 Yt (1 ) * X 1t X 1t 1 X 1*t * * 则: Yt* * 1 X 1*t 2 X 2 X t k kt t
四、回归检验法
回归检验法的优点是:(1)适合于任何形式的自相关检验,(2) 若结论是存在自相关,则同时能提供出自相关的具体形式与 参数的估计值。缺点是计算量大。回归检验法的步骤如下: ①用给定样本估计模型并计算残差et。 ②对残差序列et , (t = 1 ,2 ,… , T ) 用普通最小二乘法进 行不同形式的回归拟合。如: et et 1 t
* * Yt* * 1 X 1*t 2 X 2 X t k kt t
第四步:利用广义最小二乘估计量,计算原模型参数估计值:
ˆ* ˆ ˆ 1
ˆ ˆ
第五步:根据原回归模型及估计值计算残差 et :
ˆ X ˆ X ˆ X ˆ et Yt 1 1t 2 2t k kt
t 1 t 1
二、DW检验

2 et21 2 et et 1
t 2 t 2 2 e t 1 t 2 T
TTΒιβλιοθήκη 2(1 e et 2 T t 2
T
t t 1
2 e t 1
ˆ) ) 2(1
e e ˆ t 其中, 即可表示为 对 t 1 做回归的系数估计值,可等价 于 et 与 et 1 的相关系数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、时间顺序图—将残差对时间描点
e
e
a
t
b
t
• 如a图所示,扰动项为锯齿型,et随时间变化频繁 地改变符号,表明存在负自相关。
• 如b图所示,扰动项为循环型,et随时间变化不频 繁地改变符号,而是几个正之后跟着几个负的,
几个负之后跟着几个正的,表明存在正自相关。
2、绘制残差et, et-1的图形
• 自相关按形式可分为两类。 • (1)一阶自回归形式
• 当误差项ut只与其滞后一期值有关时,即
ut f (ut1) vt
• 称ut具有一阶自回归形式。
• (2) 高阶自回归形式
• 当误差项ut的本期值不仅与其前一期值有关,而且
与其前若干期的值都有关系时,即
ut f (ut1, t2 ,) vt
• 模型设定偏误: 若所用的数学模型与变量间的真实关系不一致, 误差项常表现出自相关。比如平均成本与产量呈抛 物线关系,当用线性回归模型拟合时,误差项必存 在自相关。
• 回归模型中略去了带有自相关的重要解释变量。 若丢掉了应该列入模型的带有自相关的重要解释变量 ,那么它的影响必然归并到误差项ut中,从而使误差 项呈现自相关。当然略去多个带有自相关的解释变量 ,也许因互相抵消并不使误差项呈现自相关。
=
u2 (xt x)2
当 ut 为一阶自回归形式时
Var ( ˆ1) =
u2 (xt x)2
+2 u 2
ts
(xt (
x)(xs x) s-t (xt x)2 )2
3、参数显著性t检验失效
低估了2,也低估了bi的方差和标准差,等于
夸大了T值,使t检验失去意义
4、降低预测可信度度
参数估计值不具有最小方差性,使预测区间的可信度降低。 所以用依据普通最小二乘法得到的回归方程去预测,预测是无效的。
• 则称ut具有高阶自回归形式。
• 通常假定误差项的自相关是线性的。因计量经济 模型中自相关的最常见形式是一阶自回归形式,所 以下面重点讨论误差项的线性一阶自回归形式,即

ut ut1 vt
第一节 自相关的来源和形式
一、自相关的来源
• 经济惯性 大多数经济时间序列都存在自相关。其本期值往 往受滞后值影响。突出特征就是惯性与低灵敏度。 如国民生产总值,固定资产投资,国民消费,物价 指数等随时间缓慢地变化,从而建立模型时导致误 差项自相关。
= (
1 (xt
x)2 )2
E{
(x1- x
)2u12+(x2- x
)2u22+…++(x1- x
)(x3- x
)u1u3+…]}
=
(
(xt x)2 u 2 (xt x)2 )2
+2
ts
(xt (
x)(xs x) (xt x)2 )2
E(ut us)
第六章 自 相 关
在经济计量研究中,自相关是一种常见现象,它是指 随机扰动项序列相邻之间存在相关关系,即各期随机扰 动项不是随机独立的。
在经典线性回归模型基本假定中,我们假设随机扰
动项序列的各项之间不相关,由经典模型的假定条件之一是

Cov(ui , u j ) E(uiu j ) 0 i, j T , i j
et
.
... ..
. et ..
..
变量I et e2 e3 e4
..
en
.. ..
变量II et-1 e1 e2 e3
..
en-1
e t-1
..
e t-1
.. .
.
a
b
如a图所示,散点在I,III象限,
表明存在正自相关。
如b图所示,散点在II, IV象限,
表明存在负自相关。
二、杜宾—瓦森检验
DW检验是检验自相关的最著名、最常用的 方法。
• 蛛网现象(Cobweb phenomenon) • 随机扰动项序列本身的自相关 • 数据处理造成自相关-平滑处理
自相关也可能出现在横截面数据中,但主要出现在时 间序列数据中。
二、一阶自回归
线性回归模型
Yt=bo + b1Xt + ut 若 ut 的取值只与它的前一期取值有关,即
ut = f (ut-1 ) 则称为一阶自相关 经典经济计量学对自相关的分析仅限于一阶自
第三节 自 相 关 的 检 验
1、图示法 2、杜宾—瓦森检验(Durbin-Watson) 3、回归检验法 4、偏相关系数检验 5、拉格朗日乘数(LM)检验 其中,4、5为高级自相关检验
一、图示法
1、用给定的样本估计回归模型,计算残差 ,
2、按时间顺序绘制残差et的图形 3、绘制残差et, et-1的图形
= + (X 'X)-1 X ' E(u) =
^
以一元线性回归模型,yt = 0 + 1 xt + ut,为例,
E( ˆ1)=E(
(xt x)(yt y) )= E( (xt x)2
(xt
x)[1(xt (xt x)2
x)
ut
]
)=1+
(xt (xt
x)E(ut x)2
)
=
1、适用条件 2、检验步骤
–(1)提出假设 –(2)构造统计量 –(3)检验判断
即误差项ut的取值在时间上是相互无关的。称误差项ut非自相关。
• 如果这一假定不满足,则 • 称之为自相关。即用符号表示为:
Cov(ui ,u j ) E(uiu j ) 0 i j

自相关是对无自相关假定的违反。自相关
主要表现在时间序列中。
• 自相关又称序列相关。原指一随机变量在时间上与其滞后 项之间的相关。这里主要是指回归模型中随机误差项ut与 其滞后项的相关关系。自相关也是相关关系的一种。
回归形式:
ut = ut-1 +εt
为自相关系数 > 0 为正自相关
|| 1 < 0 为负自相关
第二节 自 相 关 的 后 果
1、参数的估计值仍然是线性无偏的
(1) 只要假定条件 Cov(X ' u) = 0 成立,回归系数ˆ 仍具有无偏性。
E( ˆ ) = E[ (X 'X )-1 X 'Y ] = E[ (X 'X )-1 X ' (X + u) ].
1
2、参数的估计值不具有最小方差性,因而
是无效的,不再具有最优性质
以一元线性回归模型,yt = 0 + 1 xt + ut,为例,当 ut 非自相关时
Var ( ˆ1 ) = E( ˆ1 -1)2 = E(
(xt
x)ut
)2
( = E[
(xt x)ut ) 2 ]
(xt x)2
( (xt x)2 )2
相关文档
最新文档