有理数和数轴解析

合集下载

数学:1.2《有理数-数轴》课件(人教新课标七年级上)

数学:1.2《有理数-数轴》课件(人教新课标七年级上)

练习
( A、1)-下21面与两0个.2数是互为B、相反31 数与的-是0.(33c3 )
C、-2.25与2
1 4
D、π与3.14
(2)写出三对非零相反数
练习
下面数轴上的A、B、C/8,点B 表示1,那么离原点较近的点是 ____.
(2)5离原点有___个单位长度,-6离 原点有___个单位长度.
注意:任意一个有理数都可以用数轴上的 点表示.
是数轴的打“√”,不是数轴的打 “×”。
对的打“√”,错的打“×”.
(1)规定正方向、单位长度的直线叫做数轴。 (2)规定单位长度的直线叫做数轴。 (3)规定正方向、原点、单位长度的直线
叫做数轴

如图,数轴上点A,B,C,D分别表示什么数?
-5
-1 0
3.5
A
BC
D
01

在数轴上表示下列各数:
(1)0.5 ,
5
5
2 , 0 , -4 , 2 ,
-0.5 , 1 , 4 ;
(2)200 , -150 , -50 , 100 , -100 .
观察数轴,-4与4有什么相同
与不同之处?它们在数轴上的位置有
什么关系?那么-
5 2

5 2
呢?
-0.5与0.5呢?
4 2.5
4 2.5
-4 -2.5
0 1 2.5 4
如果两个数只有符号不同,那么我 们称其中一个数为另一个数的相反数, 也称这两个数互为相反数
比如 , 4的相反数是-4 , -1/4 的相反数是 1/4 , 4 和 -4 互为相反 数,-1/4 和 1/4 互为相反数
注意:0的相反数是0
4 2.5

第一章 有理数 考点3 数轴(解析版)

第一章 有理数   考点3 数轴(解析版)

第一章有理数(解析板)3、数轴知识点梳理数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向.(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.同步练习一.选择题(共11小题)1.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【考点】数轴.【分析】数轴可知b<0<a,|b|>|a|,求出ab<0,a﹣b>0,a+b<0,根据以上结论判断即可.【解答】解:∵从数轴可知:b<0<a,|b|>|a|,∴①正确;②错误,∵a>0,b<0,∴ab<0,∴③错误;∵b<0<a,|b|>|a|,∴a﹣b>0,a+b<0,∴a﹣b>a+b,∴④正确;即正确的有①④,故选:B.【点评】本题考查了数轴,有理数的乘法、加法、减法等知识点的应用,关键是能根据数轴得出b<0<a,|b|>|a|.2.数轴上A、B、C三点所代表的数分别是a、1、c,且|c﹣1|﹣|a﹣1|=|a﹣c|.若下列选项中,有一个表示A、B、C三点在数轴上的位置关系,则此选项为何?()A.B.C.D.【考点】数轴;绝对值.【分析】从选项数轴上找出a、B、c的关系,代入|c﹣1|﹣|a﹣1|=|a﹣c|.看是否成立.【解答】解:∵数轴上A、B、C三点所代表的数分别是a、1、c,设B表示的数为b,∴b=1,∵|c﹣1|﹣|a﹣1|=|a﹣c|.∴|c﹣b|﹣|a﹣b|=|a﹣c|.A、b<a<c,则有|c﹣b|﹣|a﹣b|=c﹣b﹣a+b=c﹣a=|a﹣c|.正确,B、c<b<a则有|c﹣b|﹣|a﹣b|=b﹣c﹣a+b=2b﹣c﹣a≠|a﹣c|.故错误,C、a<c<b,则有|c﹣b|﹣|a﹣b|=b﹣c﹣b+a=a﹣c≠|a﹣c|.故错误.D、b<c<a,则有|c﹣b|﹣|a﹣b|=c﹣b﹣a+b=c﹣a≠|a﹣c|.故错误.故选:A.【点评】本题主要考查了数轴及绝对值.解题的关键是从数轴上找出a、B、c的关系,代入|c﹣1|﹣|a﹣1|=|a﹣c|是否成立.3.在数轴上表示﹣2的点与表示3的点之间的距离是()A.5B.﹣5C.1D.﹣1【考点】数轴.【分析】根据正负数的运算方法,用3减去﹣2,求出在数轴上表示﹣2的点与表示3的点之间的距离为多少即可.【解答】解:3﹣(﹣2)=2+3=5.所以在数轴上表示﹣2的点与表示3的点之间的距离为5.故选:A.【点评】此题主要考查了正负数的运算方法,关键是根据在数轴上表示﹣2的点与表示3的点之间的距离列出式子.4.若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4B.﹣2C.2D.4【考点】数轴.【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【解答】解:AB=|﹣1﹣3|=4.故选:D.【点评】本题考查了数轴,主要利用了两点间的距离的表示,需熟记.5.在数轴上,与表示数﹣5的点的距离是2的点表示的数是()A.﹣3B.﹣7C.±3D.﹣3或﹣7【考点】数轴.【分析】符合条件的点有两个,一个在﹣5点的左边,一个在﹣5点的右边,且都到﹣5点的距离都等于2,得出算式﹣5﹣2和﹣5+2,求出即可.【解答】解:数轴上距离表示﹣5的点有2个单位的点表示的数是﹣5﹣2=﹣7或﹣5+2=﹣3.故选:D.【点评】本题主要考查了数轴,当要求的点在已知点的左侧时,用减法;当要求的点在已知点的右侧时,用加法.6.已知三个数a+b+c=0,则这三个数在数轴上表示的位置不可能是()A.B.C.D.【考点】数轴.【分析】根据a+b+c=0可判断三个数中一定有一个正数和一个负数,讨论:若第三个数为负数,根据绝对值的意义得到两负数表示的点到原点的距离等于正数到原点的距离;若第三个数为正数,则两正数表示的点到原点的距离等于负数到原点的距离,然后利用此特征对各选项进行判断.【解答】解:已知a+b+c=0,A.由数轴可知,a>0>b>c,当|a|=|b|+|c|时,满足条件.B.由数轴可知,a>b>0>c,当|c|=|a|+|b|时,满足条件.C.由数轴可知,a>c>0>b,当|b|=|a|+|c|时,满足条件.D.由数轴可知,a>0>b>c,且|a|<|b|+|c|时,所以不可能满足条件.故选:D.【点评】考查了数轴.用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.7.如图所示的图形为四位同学画的数轴,其中正确的是()A.B.C.D.【考点】数轴.【分析】根据数轴的概念判断所给出的四个数轴哪个正确.【解答】解:A没有原点,故此选项错误;B、单位长度不统一,故此选项错误;C、没有正方向,故此选项错误;D、符合数轴的概念,故此选项正确.故选:D.【点评】本题主要考查了数轴的概念:规定了原点、正方向和单位长度的直线叫数轴.特别注意数轴的三要素缺一不可.8.如图,半径为1的圆从表示3的点开始沿着数轴向左滚动一周,圆上的点A与表示3的点重合,滚动一周后到达点B,点B表示的数是()A.﹣2πB.3﹣2πC.﹣3﹣2πD.﹣3+2π【考点】数轴.【分析】线段AB=2πr=2π,点A到原点的距离为3,则点B到原点的距离为2π﹣3,点B在原点的左侧,因此点B所表示的数为﹣(2π﹣3)=3﹣2π,于是得出答案.【解答】解:由题意得:AB=2πr=2π,点A到原点的距离为3,则点B到原点的距离为2π﹣3,∵点B在原点的左侧,∴点B所表示的数为﹣(2π﹣3)=3﹣2π,故选:B.【点评】考查实数的意义,数轴等知识,理解符号和绝对值是确定一个数在数轴上位置的两个必要条件.9.如图,数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD.若A,D两点所表示的数分别是﹣5和6,则线段BD的中点所表示的数是()A.6B.5C.3D.2【考点】数轴.【分析】首先设出BC,根据2AB=BC=3CD表示出AB、CD,求出线段AD的长度,即可得出答案.【解答】解:设BC=6x,∵2AB=BC=3CD,∴AB=3x,CD=2x,∴AD=AB+BC+CD=11x,∵A,D两点所表示的数分别是﹣5和6,∴11x=11,解得:x=1,∴AB=3,CD=2,∴B,D两点所表示的数分别是﹣2和6,∴线段BD的中点表示的数是2.故选:D.【点评】题目考查了数轴的有关概念,利用数轴上的点、线段相关性质,考察学生对数轴知识的掌握情况,题目难易程度适中,适合学生课后训练.10.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边【考点】数轴;绝对值.【分析】由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为4、1,即可得出a=±4、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.【解答】解:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原点O与A、B的距离分别为4、1,∴a=±4,b=±1,∵b=a+3,∴a=﹣4,b=﹣1,∵c=b+5,∴c=4.∴点O介于B、C点之间.故选:C.【点评】本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.11.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.﹣6B.6C.0D.无法确定【考点】数轴;相反数.【分析】根据数轴上点的位置,利用相反数定义确定出B表示的数即可.【解答】解:∵数轴上两点A,B表示的数互为相反数,点A表示的数为﹣6,∴点B表示的数为6,故选:B.【点评】此题考查了数轴,以及相反数,熟练掌握相反数的性质是解本题的关键.二.填空题(共17小题)12.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为﹣6.【考点】数轴.【分析】先根据已知条件可以确定线段AB的长度,然后根据点B、点C关于点A对称,设设点C所表示的数为x,列出方程即可解决.【解答】解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.【点评】本题主要考查实数与数轴的对应关系和轴对称的性质,熟练掌握对称性质是解本题的关键.13.如果数轴上的点A对应的数为﹣1,那么与A点相距3个单位长度的点所对应的有理数为﹣4或2.【考点】数轴.【分析】考虑在A点左边和右边两种情形解答问题.【解答】解:在A点左边与A点相距3个单位长度的点所对应的有理数为﹣4;在A点右边与A点相距3个单位长度的点所对应的有理数为2.故答案为﹣4或2.【点评】此题考查数轴上点的位置关系,注意分类讨论.14.如图,数轴上A、B两点所表示的数分别是﹣4和2,点C是线段AB的中点,则点C 所表示的数是﹣1.【考点】数轴.【分析】根据A、B两点所表示的数分别为﹣4和2,利用中点公式求出线段AB的中点所表示的数即可.【解答】解:∵数轴上A,B两点所表示的数分别是﹣4和2,∴线段AB的中点所表示的数=(﹣4+2)=﹣1.即点C所表示的数是﹣1.故答案为:﹣1【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.15.已知a,b,c在数轴上的位置如图所示,化简:|a﹣b|+|b+c|+|c﹣a|=2b+2c﹣2a.【考点】数轴;绝对值.【分析】去绝对值符号的关键是判断绝对值符号里面的数的符号,根据题意确定了符号,容易去绝对值符号.【解答】解:根据图形,a﹣b<0,b+c>0,c﹣a>0,所以|a﹣b|+|b+c|+|c﹣a|=b﹣a+b+c+c ﹣a=2b+2c﹣2a.故答案是:2b+2c﹣2a.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.16.电影《哈利•波特》中,小哈利波特穿越墙进入“站台”的镜头(如示意图的Q站台),构思奇妙,能给观众留下深刻的印象.若A、B站台分别位于﹣,处,AP=2PB,则P站台用类似电影的方法可称为“1或6站台”.【考点】数轴.【分析】先根据两点间的距离公式得到AB的长度,再根据AP=2PB求得AP的长度,再用﹣加上该长度即为所求.【解答】解:AB=﹣(﹣)=,AP=×=,P:﹣+==1;或AP=×2=,P:﹣+=6.故P站台用类似电影的方法可称为“1或6站台”.故答案为:1或6.【点评】此题考查了数轴,关键是用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.17.在数轴上与﹣2所对应的点相距4个单位长度的点表示的数是2或﹣6.【考点】数轴.【分析】由于题目没有说明该点的具体位置,故要分情况讨论.【解答】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣6,故答案为:2或﹣6【点评】本题考查数轴,涉及有理数的加减运算、分类讨论的思想.18.如图,数轴上,点A表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,点A2019表示的数是﹣3029.【考点】数轴.【分析】奇数次移动是左移,偶数次移动是右移,第n次移动3n个单位.每左移右移各一次后,点A右移3个单位,故第2018次右移后,点A向右移动3×(2018÷2)个单位,第2019次左移2019×3个单位,故点A2019表示的数是3×(2018÷2)﹣2019×3+1.【解答】解:第n次移动3n个单位,第2019次左移2019×3个单位,每左移右移各一次后,点A右移3个单位,所以A2019表示的数是3×(2018÷2)﹣2019×3+1=﹣3029.故答案为:﹣3029.【点评】本题考查数轴上点的移动规律,确定每次移动方向和距离的规律,以及相邻两次移动的后的实际距离和方向是解答次题的关键.19.在数轴上,点A表示的数是3+x,点B表示的数是2﹣x,且A,B两点的距离为8,则x= 3.5或﹣4.5.【考点】数轴.【分析】分两种情况:①当点A在点B左侧时,②当点A在点B右侧时,分别根据距离为8,列方程求解.【解答】解:①当点A在点B左侧时,2﹣x﹣(3+x)=8,解得:x=﹣4.5;②当点A在点B右侧时,3+x﹣(2﹣x)=8,解得:x=3.5.故答案为:3.5或﹣4.5【点评】本题考查了一元一次方程的应用以及数轴的知识,解答本题的关键是读懂题意,注意分情况列方程求解.20.数轴上A、B两点之间的距离为3,若点A表示数2,则B点表示的数为﹣1或5.【考点】数轴.【分析】分点B在点A的左边和右边两种情况分别求解可得.【解答】解:当点B在点A的左边的时候,点B表示的数为2﹣3=﹣1;当点B在点A的右边的时候,点B表示的数为2+3=5;所以点B表示的数为﹣1或5,故答案为:﹣1或5.【点评】本题主要考查数轴,解题的关键是掌握数轴上两点间的距离及分类讨论思想的运用.21.数轴上表示﹣3的点与表示7的点之间的距离是10.【考点】数轴.【分析】数轴上两点间的距离,即两点对应的数的差的绝对值.【解答】解:数轴上表示﹣3的点与表示7的点之间的距离是7﹣(﹣3)=10.故答案为:10.【点评】此题考查了数轴上两点间的距离的求法.22.一条数轴上有点A、B、C,其中点A、B表示的数分别是﹣16、9,现以点C为折点,将数轴向右对折,若点A对应的点A′落在点B的右边,并且A′B=3,则C点表示的数是﹣2.【考点】数轴.【分析】设出点C所表示的数,根据点A、B所表示的数,可以表示出AC的距离,在根据A′B=3,表示出A′C,由折叠得,AC=A′C,列方程求解即可.【解答】解:设点C所表示的数为x,则AC=x+16,BC=9﹣x,∵A′B=3,B点表示的数为9,∴点A′表示的数为9+3=12,根据折叠得,AC=A′C∴x+16=12﹣x,解得,x=﹣2,故答案为:﹣2.【点评】考查数轴表示数的意义,掌握数轴上两点之间的距离公式是解决问题的关键,点A、B在数轴上表示的数为a、b,则A、B两点之间的距离为AB=|a﹣b|.23.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,点A4表示的数,是7,如果点A n与原点的距离不小于20,那么n的最小值是13.【考点】数轴.【分析】序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A的右侧,各点所表示的数依次增加3,于是可得到A13表示的数为﹣17﹣3=﹣20,A12表示的数为16+3=19,则可判断点A n与原点的距离不小于20时,n的最小值是13.【解答】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;…则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,所以点A n与原点的距离不小于20,那么n的最小值是13.故答案为7,13.【点评】本题考查了规律型问题,认真观察、仔细思考,找出点表示的数的变化规律是解决问题的关键.24.在数轴上与表示数﹣1的点的距离为3个单位长度的点所表示的数是﹣4或2.【考点】数轴.【分析】此题可借助数轴用数形结合的方法求解.由于点与﹣1的距离为3,那么应有两个点,记为A1,A2,分别位于﹣1两侧,且到﹣1的距离为3,这两个点对应的数分别是﹣1﹣3和﹣1+3,在数轴上画出A1,A2点如图所示.【解答】解:因为点与﹣1的距离为3,所以这两个点对应的数分别是﹣1﹣3和﹣1+3,即为﹣4或2.故答案为﹣4或2.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.25.已知在数轴上,位于原点左边的点A到原点的距离是5,那么点A所表示的数是﹣5.【考点】数轴.【分析】根据题意求出点A表示的数即可.【解答】解:根据题意得:A点表示的数为﹣5.故答案为:﹣5.【点评】此题考查了数轴,解题是注意:数轴上点A到原点的距离等于5个单位的数有5与﹣5,题中点A位于原点左边这个条件.26.a、b、c在数轴上的对应点的位置如图所示,下列式子:①a+b>0;②a+b>a+c;③bc >ac;④ab>ac.其中正确的有(填上序号)①②③④【考点】数轴.【分析】先确定a,b,c的关系,再运用不等式的性质判定大小.【解答】解:由数轴上数的位置可得c<0<b<a,①a+b>0;正确,②a+b>a+c;正确,③bc>ac,正确,④ab>ac正确,所以4个式子都正确,故选答案为:①②③④【点评】本题主要考查了数轴及不等式的性质,解题的关键是运用不等式的性质判定大小.27.数轴上到原点的距离小于3个单位长度的点中,表示整数的点共有7个.【考点】有理数;数轴.【分析】利用数形结合的思想,结合数轴观察即可得出正确结果.【解答】解:画出数轴,如下图从数轴上可以看到,若|a|<3.5,则﹣3.5<a<3.5,表示整数点可以有:﹣3,﹣2,﹣1,0,1,2,3共七个故答案为7.【点评】本题考查的是绝对值的概念,结合数轴理解绝对值的定义更为简单.28.在数轴上,与表示﹣1的点距离为3的点所表示的数是2或﹣4.【考点】数轴.【分析】此类题注意两种情况:要求的点可以在已知点的左侧或右侧.【解答】解:若点在﹣1的左面,则点为﹣4;若点在﹣1的右面,则点为2.故答案为:2或﹣4.【点评】注意:要求的点在已知点的左侧时,用减法;要求的点在已知点的右侧时,用加法.三.解答题(共9小题)29.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.【考点】数轴.【分析】(1)根据路程除以速度等于时间,可得答案;(2)根据相遇时P,Q的时间相等,可得方程,根据解方程,可得答案;(3)根据PO与BQ的时间相等,可得方程,根据解方程,可得答案.【解答】解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.【点评】本题考查了数轴,一元一次方程的应用,利用PO与BQ的时间相等得出方程是解题关键,要分类讨论,以防遗漏.30.在数轴上表示下列各数:0,﹣4.2,,﹣2,+7,,并用“<”号连接.【考点】数轴.【分析】先分别把各数化简为0,﹣4.2,,﹣2,7,,再在数轴上找出对应的点,注意在数轴上标数时要用原数,最后比较大小的结果也要用化简的原数.【解答】解:这些数分别为0,﹣4.2,,﹣2,7,,在数轴上表示出来如图所示,根据这些点在数轴上的排列顺序,从左至右分别用“<”连接为:﹣4.2<﹣2<0<<+7.【点评】由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.31.如图,已知A,B两点在数轴上,点A在原点O的左边,表示的数为﹣10,点B在原点的右边,且BO=3AO.点M以每秒3个单位长度的速度从点A出发向右运动.点N 以每秒2个单位长度的速度从点O出发向右运动(点M,点N同时出发).(1)数轴上点B对应的数是30,点B到点A的距离是40;(2)经过几秒,原点O是线段MN的中点?(3)经过几秒,点M,N分别到点B的距离相等?【考点】数轴.【分析】(1)根据点A表示的数为﹣10,OB=3OA,可得点B对应的数,点B对应的数减去点A对应的数就是点B到点A的距离;(2根据题意列方程解答即可;(3)根据题意分M,N在B点同侧异侧列方程解答即可.【解答】解:(1)因为点A表示的数为﹣10,OB=3OA,所以OB=3OA=30,30﹣(﹣10)=40.故B对应的数是30,点B到点A的距离是40,故答案为:30,40;(2)设经过y秒,原点O是线段MN的中点,根据题意得﹣10+3y+2y=0,解得y=2.答:经过2秒,原点O是线段MN的中点;(3)设经过x秒,点M、点N分别到点B的距离相等,根据题意得3x﹣40=30﹣2x或﹣10+3x=2x,解得x=14或x=10.答:经过14秒或10秒,点M、点N分别到点B的距离相等.【点评】此题主要考查了一元一方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.32.【阅读理解】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.【知识运用】如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数3所表示的点是{M,N}的奇点;数﹣1所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?【考点】数轴.【分析】(1)根据定义发现:奇点表示的数到{M,N}中,前面的点M是到后面的数N 的距离的3倍,从而得出结论;根据定义发现:奇点表示的数到{N,M}中,前面的点N是到后面的数M的距离的3倍,从而得出结论;(2)点A到点B的距离为80,由奇点的定义可知:分4种情况列式:①PB=3P A;②P A =3PB;③AB=3P A;④P A=3AB;可以得出结论.【解答】解:(1)5﹣(﹣3)=8,8÷(3+1)=2,5﹣2=3;﹣3+2=﹣1.故数3所表示的点是{M,N}的奇点;数﹣1所表示的点是{N,M}的奇点;(2)30﹣(﹣50)=80,80÷(3+1)=20,30﹣20=10,﹣50+20=﹣30,﹣50﹣80÷3=﹣76(舍去),﹣50﹣80×3=﹣290(舍去).故P点运动到数轴上的﹣30或10位置时,P、A和B中恰有一个点为其余两点的奇点.故答案为:3;﹣1.【点评】本题考查了数轴及数轴上两点的距离、动点问题,认真理解新定义:奇点表示的数是与前面的点A的距离是到后面的数B的距离的3倍,列式可得结果.33.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=3π+3;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC=BD;(填“=”或“≠”)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.【考点】数轴;一元一次方程的应用.【分析】(1)根据线段之间的关系代入解答即可;(2)根据线段的大小比较即可;(3)由题意可知,C点表示的数是π+1,设M点离O点近,且OM=x,根据长度的等量关系列出方程求得x,进一步得到线段MN的长度;(4)根据圆周率伴侣线段的定义可求D点所表示的数.【解答】解:(1)∵AC=3,BC=πAC,∴BC=3π,∴AB=AC+BC=3π+3.故答案为:3π+3;(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=πAC,AD=πBD,∴设AC=x,BD=y,则BC=πx,AD=πy,∵AB=AC+BC=AD+BD,∴x+πx=y+πy,∴x=y∴AC=BD故答案为:=.(3)由题意可知,C点表示的数是π+1,M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=x,x+πx=π+1,解得x=1,∴MN=π+1﹣1﹣1=π﹣1;(4)设点D表示的数为x,如图1,若CD=πOD,则π+1﹣x=πx,解得x=1;如图2,若OD=πCD,则x=π(π+1﹣x),解得x=π;如图3,若OC=πCD,则π+1=π(x﹣π﹣1),解得x=π++2;如图4,若CD=πOC,则x﹣(π+1)=π(π+1),解得x=π2+2π+1;综上,D点所表示的数是1、π、π++2、π2+2π+1.【点评】本题主要考查了数轴和一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.34.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数(填“无理”或“有理”),这个数是﹣2π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?【考点】正数和负数;数轴.【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.【解答】解:(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是﹣2π;故答案为:无理,﹣2π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;故答案为:4π或﹣4π;(3)∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,∴第4次滚动后,A点距离原点最近;第3次滚动后,A点距离原点最远.【点评】此题主要考查了数轴的应用以及绝对值的性质和圆的周长公式应用,利用数轴得出对应数是解题关键.35.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、。

有理数和数轴

有理数和数轴

1有理数知识点归纳1.正数和负数的意义(1)正数:像6,3.7,23,10%,…这样大于0的数叫做正数.①为了突出数的符号,可以在正数的前面加“+”号,如6,3.7,23,10%可以写成+6,+3.7,+23,+10%.②正数前面的“+”号可以省略.如+7可以省略“+”号写成7.(2)负数:像-3,-5.6,-50,-12,-15%,…在正数前面加上“-”号的数叫做负数.辨误区 正数和负数的理解 ①对于正数和负数的意义,不能简单地理解为带“+”号的数是正数,带“-”号的数是负数.②负数是在正数前面加上一个“-”号,如-5,-(+7)等都是负数,负数中的“-”号不能省略,如-5省略“-”号就是5,变成正数了.(3)0:0既不是正数也不是负数.0是正数和负数的分界点,如温度计上的0 ℃,也是一个特定的温度,0 ℃以下为负数,0 ℃以上为正数.【例1】 下列各数中,哪些数是正数?哪些数是负数?+12,0.15,-52,-2.05,0,-7,3.142.有理数(1)定义:整数与分数统称为有理数.(2)有理数的判断方法:①正整数、0、负整数都是有理数.②正分数和负分数都是有理数.(3)拓展发散:引入负数后,数的范围扩大为有理数,奇数和偶数也由自然数范围扩大到有理数范围.偶数不仅有正偶数和0,还有负偶数;奇数也包括正奇数和负奇数.【例2】 下列说法正确的有( ).①-5是有理数 ②73是有理数 ③0.3不是有理数 ④-2是偶数A .①②③B .①②③④C .②③④D .①②④3.有理数的分类方法 (1)按定义分(两分):(2)按性质分(三分):“不重复”的意思是说,每一个数只能属于其中的一类,不能出现某一个数属于多类的情况.如,将有理数分为非负数、非正数两类就是错误的.因为0这个数被重复分类了,把0既分在了非负数中,又分在了非正数中.“不遗漏”的意思是说,分类时,不能遗漏某些数.如,将有理数分为正有理数与负有理数两类,显然遗漏了0.【例3】 把下面各有理数填在相应的大括号里:12,-3,+1,13,-1.5,0,0.2,314,-435.正数集合:{ …}; 负数集合:{ …}; 整数集合:{ …} ; 分数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}.4.具有相反意义的量及应用 (1)具有相反意义的量: ①向东向西、买进卖出、零上零下、收入和支出、运进和运出……,都具有相反的意义.如“向东5米”和“向西3米”就是一对具有相反意义的量.②特征:a .意义相反;b .成对出现.(2)表示方法:用正数和负数表示具有相反意义的量. 当规定其中一个量用正数表示时,那么另一个就用负数表示.0是正负数的界限,是表示“基准”的数.【例4-1】 阅读下面的材料,从中找出一对具有相反意义的量,并用正数和负数表示它们.非洲“撒哈拉”是世界上著名的大沙漠,昼夜温差非常大,一个科学考察队测得某一天中午12时的气温是零上53 ℃,下午2时的气温是零上58 ℃,晚上10时的气温是零下34 ℃.【例4-2】 一种零件的尺寸在图纸上标注是10±0.05(单位:毫米),表示这种零件的标准尺寸是多少毫米?加工时,符合要求的零件最大不能超过多少毫米?最小不能少于多少毫米?2数轴1.数轴(1)定义:规定了原点、正方向和单位长度的直线叫做数轴,如图.①数轴有三要素:原点、正方向、单位长度,三者缺一不可;②原点的选定,单位长度大小的确定,都是根据实际需要“规定”的.通常取向右的方向为正方向.(2)数轴的画法画一条数轴的步骤可概括为:一画、二定、三选、四标. ①画直线:就是先画一条直线,一般画成水平的直线;②定原点:通常原点选在你所画直线居中的位置,若问题中负数的个数较多时,原点选得靠右些;正数的个数较多时,原点选得靠左些.③选正方向:通常取原点向右的方向为正方向,并选取适当的长度为单位长度,将表示刻度的点用短竖线表示.④标数:在数轴上依次标出1,2,3,4,0,-1,-2,-3,-4等各点,相应的数0,±1,±2,…写在数轴的下方;将需要在数轴上表示出的数或字母写在数轴的上方,相应的点表示为实心小圆点.要是在数轴上用到30,那得标多少单位啊! 适当的长度有两层含义:①可取实际1 cm 作为一个单位长度,也可以取2 cm 或其他实际数据作为一个单位长度;②一个单位长度可表示1,也可表示10或更多!如图所示就能做到啦!【例1】 下列图形表示的数轴正确的是( ).2.有理数与数轴上的点的关系任何一个有理数都可以用数轴上的一个点来表示,即每个有理数都对应数轴上的一个点.(1)表示正数的点都在原点的右侧;(2)表示负数的点都在原点的左侧;(3)表示0的点就是原点.【例2】 (1)画出数轴,并用数轴上的点表示下列各数:-2,0,1,-0.5,-32,212.(2)指出如图所示的A ,B ,C ,D ,E 各点分别表示什么数?点技巧 “数形结合”思想(1)根据已知数在数轴上标出对应点,分三步:①画数轴;②确定点,并用实心小圆点描出;③标数,即在实心小圆点的上方标出所表示的数.(2)根据数轴上的点读数,原点表示0,原点向右为正数,原点向左为负数.都体现了“数形结合”的思想. 3.利用数轴比较有理数的大小(1)数轴上两个点表示的数,右边的总比左边的大.(2)正数大于0,负数小于0,正数大于负数.(3)多个有理数比较大小:①把各个数在数轴上表示出来;②根据各数在数轴上的顺序,用“<”或“>”连接.析规律 两个有理数比较大小的方法分情况比较:①若两数同号(都为正数或都为负数),数轴上左边的数<右边的数; ②若两数异号,则正数>0>负数.【例3-1】 比较下列这组数的大小,并用“<”连接起来. -412,12,1,-2,3,0,-0.5.【例3-2】 有理数a ,b 在数轴上的位置如图所示,试用“=”“>”或“<”填空:a __________0,b __________0,a __________b .4.数轴上点的移动(1)相对于原点的移动:从原点向右a(a>0)个单位长度,则表示的数是a;从原点向左a(a>0)个单位长度,则表示的数是-a.(2)两个相对点的移动:点A相对于点B向右移动或向左移动一定的距离,最后表示的数要看点A移动结束时对应点距离原点的距离和位置.【例4】一探险队要沿着一东西走向的河流进行考察,第一天沿河岸向上游走了5 km,第二天又向上游走了4.3 km,第三天开始计划有变,向下游走了4.8 km,第四天又向下游走了3 km,你知道第四天之后,该探险队在出发点的上游还是下游吗?距离出发点多远?5.利用数轴求数轴上的点表示的数在数学里,数与形是密切联系的,数轴的引进使有理数与直线上的点联系了起来,利用数轴可以比较容易地写出数轴上某区域中的整数、正整数、负整数等.如,写出大于-5而小于3的所有整数.可以先画出数轴,在数轴上标出-5与3这两个点,再在这两个点之间找出满足题意的整数-4,-3,-2,-1,0,1,2即可.【例5】小红做题时,不小心把墨水洒在了数轴上,如图所示,请根据图中的数值,写出墨迹盖住的所有整数.巩固练习一、耐心填一填,1、若太平洋最深处低于海平面11034米,记作-11034米,则珠穆朗玛峰高出海平面8848米,记作______。

数学中的数轴与有理数

数学中的数轴与有理数

数学中的数轴与有理数数轴是数学中用来表示实数的重要工具之一。

它是一条直线,将整个数集划分为正数、负数和零三个部分。

而有理数则是数轴上的一类特殊数,即可以表示为两个整数的比值的数。

本文将探讨数轴与有理数的关系以及有理数在数轴上的表示。

1. 数轴简介数轴是一条直线,可以无限延伸。

在数轴上,我们使用一个点作为零点,通常将其标记为0。

然后,在零点的左侧和右侧,以相等的间隔标记其他点,这些点表示整数。

数轴上的正方向为向右,负方向为向左。

2. 有理数的定义有理数是可以表示为两个整数的比值的数。

有理数包括整数和分数两种形式。

在数轴上,整数位于点的位置上,而分数则位于整数之间的位置上。

3. 有理数在数轴上的表示在数轴上,我们可以准确地表示有理数的大小和位置。

以1/2为例,我们可以将数轴平均地分成两半,1/2的位置正好在中间。

同样地,我们可以以1/3为单位将数轴分成三段,1/2的位置在1和2之间的1/3处。

4. 正数与负数在数轴上,零点左侧的点表示负数,右侧的点表示正数。

例如,-1表示在零点左侧的第一个整数点,1表示在零点右侧的第一个整数点。

5. 有理数的相对关系数轴上的点表示了有理数的相对关系。

一个点的位置越接近零点,则对应的有理数越小;反之,离零点越远,则对应的有理数越大。

例如,-3位于-2和-4之间,因此比-2大但比-4小。

6. 有理数的运算有理数可以进行四则运算,包括加减乘除。

在数轴上进行有理数的加法和减法时,可以通过向右移动和向左移动来表示。

例如,对于-2+3,我们从-2开始,向右移动3个单位,最终到达1。

同样地,对于-2-3,我们从-2开始,向左移动3个单位,最终到达-5。

7. 有理数的应用有理数在实际生活中有广泛的应用。

例如,温度可以使用有理数来表示,负数表示低温,正数表示高温;金融领域中的借贷利率也可以用有理数来表示。

总结:数轴为我们提供了一种直观的方式来理解有理数的相对关系和运算规律。

通过数轴,我们可以更好地理解和应用有理数,提高数学的学习效果和问题解决能力。

有理数与数轴

有理数与数轴
5 5 1 11 -105 这样既是负数又是整数的数叫做负整数,3 、 这样的数叫做正分数, 、 这 7 7 2 3

样的数叫做负分数„„于是就有了有理数这个概念。
学而思培优
谌威老师
有理数:整数与分数统称为有理数. 那有一个疑问:小数算不算有理数呢? 以前学奥数的时候学过,小数可分为 3 类:有限小数,循环小数与无限不循环小数,其中前 两类都可以化成分数,所以把它们看做分数,比如 0.796 是正分数, 9.85 是负分数;而无 限不循环小数不能化成分数,当然更不是整数,所以不是有理数,而是以后会学习的无理数 (目前学过的无理数只有一个: π ) 。 其实有理数与无理数更本质的区别是能不能表示成分数形式, 能够表示成分数形式的就是有 理数(很显然整数和分数都能表示成分数) ,不能表示成分数形式的就是无理数。 有理数包含的范围非常广,为了认识的更清晰一些,我们可以对有理数进行进一步的分类。 有理数按照定义,可以分为整数和分数;按照符号,可以分为正数、负数和 0.所以我们可 以根据这两种标准对有理数进行如下分类:
3 7 1 如 5 的倒数是 , 的倒数是 7 3 5
求一个非零有理数的负倒数,有两种方法,可以先求它的相反数,再求相反数的倒数;也可 以先求倒数, 再求倒数的相反数, 如求 是可以的。
11 11 5 11 5 5 11 的负倒数, 与 都 5 5 11 5 11 11 5
学而思培优
谌威老师
例如 3 与 3 互为相反数,而 3 与 2 虽然符号不同,但它们不是相反数;而 2.5 与 2 则互为相反数。 ⑵几何意义:一对相反数在数轴上应分别位于原点两侧,并且到原点的距离相等. 这一点可以用来在数轴上标示用字母表示的某个数的相反数。

有理数与数轴(知识解读+真题演练+课后巩固)2023-2024学年七年级数学上册(人教版)(解析版)

有理数与数轴(知识解读+真题演练+课后巩固)2023-2024学年七年级数学上册(人教版)(解析版)

z!"#$#%&!"#$%&'()*+,-./0+123445"6$&60+12-7.890:;<=344>"6$0?+**********?C-D0?EFG0344H"IJ0?K&60L'MNO+-PQRSTU0TVWXYZ 4知识点1 :正数和负数(1)概念正数:大于0的数叫做正数。

负数:在正数前面加上负号“—”的数叫做负数。

注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。

(不是带“—”号的数都是负数,而是在正数前加“—”的数。

) (2)意义:在同一个问题上,用正数和负数表示具有相反意义的量。

知识点2: 有理数(1)概念整 数:正整数、0、负整数统称为整数。

分 数:正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

) 注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

(2)分类:两种⑴按正、负性质分类: ⑵按整数、分数分类:正有理数 正整数 正整数 有理数 正分数 整数 0 零 有理数 负整数 负有理数 负整数 分数 正分数 负分数 负分数z知识点3:数轴(1)概念:规定了原点、正方向、单位长度的直线叫做数轴。

三要素:原点、正方向、单位长度(2)对应关系:数轴上的点和有理数是一一对应的。

比较大小:在数轴上,右边的数总比左边的数大 。

(3)应用 求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。

(注意不带“+”“—”号)【题型 1 正数与负数】【典例1】(2023•西乡塘区二模)在﹣2,0,0.5,3四个数中,是负数的是( ) A .﹣2 B .0 C .0.5 D .3【答案】A【解答】解:在﹣2,0,0.5,3四个数中,是负数的是﹣2. 故选:A .【变式1-1】(2023•安徽模拟)数1,,0,﹣2,﹣3中正数有( )个. A .2 B .3C .4D .5【答案】A【解答】解:在:1,,0,﹣2,﹣3中, 正数有:1,,共2个. 故选:A .【变式1-2】(2022秋•防城港期末)下列各数中,是负数的是( ) A .0 B .﹣C .πD .3【答案】B【解答】解:A .0既不是正数,也不是负数,故选项不符合题意; B .﹣是负数,故选项符合题意; C .π是正数,故选项不符合题意;D.3是正数,故选项不符合题意;故选:B.【变式1-3】(2022秋•石楼县期末)下列各数:﹣2,0.8,﹣5,0,﹣3.14,8.3,﹣11,其中负数的有( )个.A.2B.3C.4D.5【答案】C【解答】解:负数有﹣2,﹣5,﹣3.14,﹣11,共4个,故选:C.【题型 2 相反意义的量表示】【典例2】(2023•船营区一模)中国是最早采用正负数表示相反意义的量并进行负数运算的国家.若气温上升7℃记作:+7℃,那么气温下降10℃可记作( )A.7℃B.10℃C.﹣10℃D.﹣7℃【答案】C【解答】解:若气温上升7℃记作:+7℃,那么气温下降10℃可记作﹣10℃.故选:C.【变式2-1】(2023•吉林一模)中国是世界上最早使用负数的国家,战国时期李悝所著的《法经》中已使用负数.如果公元前500年记作﹣500年,那么公元2023年应记作( )A.﹣2023年B.+1523年C.+2023年D.+2523年【答案】C【解答】解:∵公元前500年记作﹣500年,∴公元前为“﹣”,∴公元后为“+”,∴公元2023年就是公元后2023年,∴公元2023年应记作+2023年.故选:C.【变式2-2】(2022秋•佛山期末)下列四组量中,不具有相反意义的是( )A.海拔“上升200米”与“下降400米”B.温度计上“零上15℃”与“零下5℃”C.盈利100元与亏本25元D.长3米与重10千克【答案】D【解答】解:上升于下降具有相反意义,故A不符合题意;零上于零下具有相反意义,故B不符合题意;盈利于亏本具有相反意义,故C不符合题意;长度于质量步具有相反意义,故D符合题意;故选:D.【变式2-3】(2023•衡水二模)某日,四个城市的日平均气温如表所示:城市石家庄邢台保定张家口日平均气温/℃﹣110﹣6则日平均气温最低的是( )A.石家庄B.邢台C.保定D.张家口【答案】D【解答】解:∵﹣6<﹣1<0<1,∴日平均气温最低的城市是张家口,故选:D.【典例3】(2023•长春模拟)班级组织了一次跳远比赛,若成绩以250cm为标准,小明跳出了253cm,记做+3cm,则小亮跳出了246cm应记作( )A.+4cm B.﹣4cm C.+6cm D.﹣6cm【答案】B【解答】解:246﹣250=﹣4(cm),故选:B.【变式3-1】(2023•衡水二模)某品牌米线的包装袋上写着“300克±4%”,则下列不可能是米线的重量的是( )A.285克B.295克C.304克D.310克【答案】A【解答】解:∵300克±4%,即300×(1+4%)=312,300×(1﹣4%)=288z∴米线的重量为288~312克, 故选:A .【变式3-2】(2022秋•武陵区期末)一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不是标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .【答案】D【解答】解:|﹣1.2|=1.2;|﹣2.3|=2.3;|0.9|=0.9;|﹣0.8|=0.8, ∵0.8<0.9<1.2<2.3, ∴0.8最小. 故选:D【变式3-3】(2022秋•德州期末)某中学进行立定跳远测试,男生成绩合格标准定为1.85米,体育老师记录了甲、乙、丙、丁四位男生成绩如下表:(超出标准的部分记为“+”,不足标准的部分记为“﹣”),你认为立定跳远成绩最好的是( ) 学生 甲 乙 丙丁成绩/米 +0.25+0.45 ﹣0.10 ﹣0.25A .甲B .乙C .丙D .丁【答案】B【解答】解:∵﹣0.25<﹣0.10<+0.25<+0.45, ∴四位男同学成绩最好的是乙; 故选:Bz【题型 3 相反意义的应用】【典例4】(2022秋•社旗县期末)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重 千克. (2)这8筐白菜中最重的重 千克;最轻的重 千克. (3)若白菜每千克售价2元,则出售这8筐白菜可卖多少元? 【答案】(1)24.5; (2)27;22; (3)389.【解答】解:(1)最接近标准重量的是纪录中绝对值最小的数,因而是25﹣0.5=24.5(千克), 故答案为:24.5;(2)∵记录中最大的数为2,最小的数为﹣3 ∴25+2=27(千克),25﹣3=22(千克) ∴这8筐白菜中最重的重27克;最轻的22千克,故答案为:27;22.(3)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.525×8+(﹣5.5)=194.5(千克)194.5×2=389(元),答:出售这8筐白菜可卖389元.【变式4-1】(2022秋•绥德县期末)某登山队5名队员以大本营为基地,向距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下:(单位:米)+115,﹣30,﹣45,+180,+25,﹣20,+30,+110,﹣25,+100 (1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米? (2)登山时,5名队员在行进中全程均消耗了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?【答案】(1)没有登上顶峰,他们距离顶峰60米;(2)他们共消耗了17 升氧气.【解答】解:(1)500﹣(115﹣30﹣45+180+25﹣20+30+110﹣25+100)=60(米).答:没有登上顶峰,他们距离顶峰60米;(2)115+30+45+180+25+20+30+110+25+100=680(米),因为每人每100米消耗氧气0.5升,所以680×5÷100×0.5=17(升),答:他们共消耗了17 升氧气.【变式4-2】(2022秋•枣阳市期末)某校积极开展劳动教育活动,七年级(2)班利用劳动课举行包饺子比赛,以小组为单位(共分7个小组),以包100个饺子为基准,将这7个小组所包饺子的数量(单位:个)记录如下:﹣8,+5,+3,﹣2,+3,+7,+6.(超过100个的部分记为“+”,不足100个的部分记为“﹣”)(1)包饺子数量最多的小组与数量最少的小组相差多少个?(2)本次活动该班共包饺子多少个?【答案】(1)包饺子数量最多的小组与数量最少的小组相差15个;(2)本次活动该班共包饺子714个.【解答】解:(1)由题意,得:包的最多的小组比基准多7个,包的最少的小组比基准少8个;+7﹣(﹣8)=15(个);答:包饺子数量最多的小组与数量最少的小组相差15个;(2)(﹣8+5+3﹣2+3+7+6)+7×100=714(个);答:本次活动该班共包饺子714个.【变式4-3】(2022秋•慈溪市期末)2022年足球世界杯在卡塔尔举行.某工厂设计了某款足球纪念品并进行生产,原计划每天生产10000个该款足球纪念品,但由于种种原因,实际每天的生产量与计划量相比有出入,下表是某一周的生产情况(超出记为正,不足记为负,单位:个):星期一二三四五六日与计划量的差值+43﹣35﹣50+142﹣82+21﹣29(1)根据记录的数据可知,本周生产量最多的一天比生产量最少的一天多生产多少个?(2)本周实际生产总量是否达到了计划数量?说明理由.(3)若该款足球纪念品每个生产成本25元,并按每个30元出售,则该工厂本周的生产总利润是多少元?【答案】(1)本周生产量最多的一天比生产量最少的一天多生产224个;(2)本周实际生产总量达到了计划数量,理由见解析;(3)350050.【解答】(1)解:由表可知:因为本周生产量最多的一天是周四,最少的一天是周五,∴142﹣(﹣82)=224(个).答:本周生产量最多的一天比生产量最少的一天多生产224个.(2)∵43+(﹣35)+(﹣50)+(+142)+(﹣82)+(+21)+(﹣29)=43﹣35﹣50+142﹣82+21﹣29=10.∵10>0,∴本周实际生产总量达到了计划数量.(3)由利润=总量×(单价﹣成本)有:(10000×7+10)×(30﹣25)=70010×5=350050(元).答:该工厂本周的生产总利润是350050元.【题型 4 有理数的概念辨析】【典例5】(2022秋•朝阳区期末)下面的说法中,正确的是( )A.正有理数和负有理数统称有理数B.整数和小数统称有理数C.整数和分数统称有理数D.整数、零和分数统称有理数【答案】C【解答】解:A.正有理数、0和负有理数统称为有理数,故不符合题意;B.无限不循环小数是无理数,故不符合题意;C.整数和分数统称为有理数,故符合题意;D.整数包括零,故不符合题意.z故选:C .【变式5-1】(2022秋•长沙期末)在﹣3.5,,0.3070809,0,中,有理数有( )个. A .1 B .2C .3D .4【答案】D【解答】解:在﹣3.5,,0.3070809,0,中,有理数有﹣3.5,,0.3070809,0,共4个,故选:D .【变式5-2】(2022秋•南宫市期末)若有理数的分类表示为:,则“”表示的是( )A .正有理数B .负有理数C .0D .非负数【答案】C【解答】解:有理数包括:整数与分数,整数包括:正整数,0和负整数, 则“”表示的是0. 故选:C .【变式5-3】(2022秋•颍州区期末)下列说法正确的是( ) A .3.14不是分数B .不带“﹣”号的数都是正数C .0是自然数也是正数D .整数和分数统称为有理数 【答案】 Dz【解答】解:A 、3.14是分数,属于有理数,故A 不符合题意; B 、0不带“﹣”号,但不是正数,故B 不符合题意;C 、0是自然数,但既不是正数,也不是负数,故C 不符合题意;D 、整数和分数统称为有理数,说法正确,故D 符合题意. 故选:D .【题型 5 有理数的分类】【典例6】(2022秋•宁陕县校级期中)把下列各数填入相应的大括号里: ﹣3,3.14,﹣0.1,80,﹣25%,0,正数集合:{ }; 整数集合:{ }; 负数集合:{ }; 正分数集合:{ }. 【答案】3.14,80,;﹣3,80,0;﹣3,﹣0.1,﹣25%;3.14,.【解答】解:﹣3,3.14,﹣0.1,80,﹣25%,0,,正数集合:{3.14,80,,};整数集合:{﹣3,80,0,}; 负数集合:{﹣3,﹣0.1,﹣25%,}; 正分数集合:{3.14,,}.故答案为:3.14,80,;﹣3,80,0;﹣3,﹣0.1,﹣25%;3.14,.【变式6-1】把下列各数填入相应的集合里:﹣3.14,4.3,+72,0,,﹣6,﹣7.3,﹣12,0.4,﹣,,26.(1)正数集合:{ …}; (2)负数集合:{ …}; (3)正整数集合:{ …}; (4)负整数集合:{ …};(5)非负数集合:{ …}. 【答案】(1)4.3,+72,,0.4,,26;(2)﹣3.14,﹣6,﹣7.3,﹣12,﹣;(3)+72,26;(4)﹣6,﹣12;(5)4.3,+72,0,,0.4,,26.【解答】解:(1)正数集合:{4.3,+72,,0.4,,26…};故答案为:4.3,+72,,0.4,,26;(2)负数集合:{﹣3.14,﹣6,﹣7.3,﹣12,﹣…};故答案为:﹣3.14,﹣6,﹣7.3,﹣12,﹣;(3)正整数集合:{+72,26…};故答案为:+72,26;(4)负整数集合:{﹣6,﹣12…};故答案为:﹣6,﹣12;(5)非负数集合:{4.3,+72,0,,0.4,,26…}.故答案为:4.3,+72,0,,0.4,,26.【变式6-2】(2022秋•雁塔区校级月考)把下列各数填在相应的横线上:5%,z﹣,﹣12,0,0.,﹣3.14,+6,0.101101110,.整数集合:{…};正数集合:{…};负分数集合:{…};非负整数集合:{…}.【答案】﹣12,0,+6;5%,0.,+6,0.101101110,;﹣,﹣3.14;0,+6.【解答】解:整数集合:{﹣12,0,+6…};z正数集合:{5%,0.,+6,0.101101110,…};负分数集合:{﹣,﹣3.14…}; 非负整数集合:{0,+6…}; 故答案为:﹣12,0,+6; 5%,0.,+6,0.101101110,;﹣,﹣3.14; 0,+6.【题型 6 数轴的画法及应用】【典例7】(2022•苏州模拟)以下是四位同学画的数轴,其中正确的是( ) A . B .C .D .【答案】D【解答】解:∵数轴要有三要素:单位长度,原点,正方向,并且数轴上表示的数从左到右增大,∴四个选项中只有选项D 符合题意, 故选:D .【变式7-1】(2022•杭州模拟)下列说法中正确的是( )A .数轴是一条射线B .数轴上离开原点距离越远的点表示的数越大C .数轴上的点所表示的数从左到右依次减小D .任何一个有理数都可以用数轴上的一个点表示 【答案】D【解答】解:数轴是一条直线,A 说法错误;在数轴的负半轴上,到原点距离越远的点所表示的数一定越小,B 说法错误; 数轴上的点所表示的数从左到右依次增大,C 说法错误; 任何一个有理数都可以用数轴上的一个点表示,D 说法正确. 故选:D .【变式7-2】(2021秋•凉州区校级期末)判断下列图中所画的数轴正确的个数是( )个.A.0B.1C.2D.3【答案】B【解答】解:数轴的三要素是:原点、正方向、单位长度,图(1)没有原点,故(1)不正确;图(2)满足数轴的定义,故(2)正确;图(3)所画负半轴上的数字排列顺序不对,故(3)错误;图(4)所画单位长度不一致,故(4)不正确.故选:B.【典例8】(2022秋•自贡期末)a,b为有理数,它们在数轴上对应点的位置如z图所示.则下列关系式正确的是( )A.﹣a<﹣b<b<a B.﹣a<b<﹣b<aC.﹣b<b<﹣a<a D.a<﹣b<b<﹣a【答案】B【解答】解:如图,由数轴可得,﹣a<b<﹣b<a,故选:B.【变式8-1】(2023•贵阳模拟)有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是( )zA .a +b >0B .a ﹣b >0C .ab >0D .【答案】D【解答】解:由数轴可知b >0>a ,且b <|a|, ∴a+b <0,故A 错误,不符合题意; a ﹣b <0,故B 错误,不符合题意; ab <0,故C 错误,不符合题意;,故D 正确,符合题意.故选:D .【变式8-2】(2022秋•鼓楼区校级期末)如图,A ,B ,C ,D 是数轴上的四个点,已知a ,b 均为有理数,且a +b =0,则它们在数轴上的位置不可能落在( )A .线段AB 上 B .线段BC 上 C .线段BD 上 D .线段AD 上【答案】A【解答】解:∵a ,b 均为有理数,且a+b =0, ∴a ,b 位于原点两侧,∴a ,b 在数轴上的位置不可能落在线段AB 上.故选:A .【变式8-3】(2022秋•江阴市期末)如图,数轴上的点A ,B 分别对应有理数a ,b ,下列结论正确的是( )A .a +b >0B .a ﹣b >0C .ab >0D .以上都不正确【答案】C【解答】解:由数轴可知,a <b <0, ∴a+b <0,故A 不符合题意; a ﹣b <0,故B 不符合题意;ab >0,故C 符合题意,D 不符合题意.【题型 7 数轴上的点所表示的数】【典例9】(2022秋•天津期末)已知数轴上点A到点B的距离是4,且点B所表示的数是2,则点A所表示的数是( )A.4或﹣4B.6或﹣2C.6或2D.﹣6或﹣2【答案】B【解答】解:∵点B到点A的距离是4.∵B表示2,∴A表示为2﹣4=﹣2或2+4=6.故选:B.【变式9-1】(2022秋•武冈市期末)点A为数轴上表示﹣2的点,当点A沿数轴移动5个单位长度到点B时,点B所表示的数为( )A.7或﹣3B.3或﹣7C.3或﹣3D.7或﹣7【答案】B【解答】解:向左移动5个单位长度对应的点表示﹣2﹣5=﹣7,向右移动5个单位长度对应的点表示﹣2+5=3,故选:B.【变式9-2】(2023•义乌市校级开学)如图,小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是( )A.﹣1B.0C.1D.2【答案】C【解答】解:由图可知,被墨水盖住的整数为:﹣3,﹣2,1,2,3,相加为﹣3+(﹣2)+1+2+3=1;故选:C【变式9-3】(2023•新邵县校级一模)在数轴上表示数﹣1和2021的两个点之间的距离为( )个单位长度.A.2022B.2021C.2020D.2019z【解答】解:|﹣1﹣2021|=2022, 故选:A .【题型 8 数轴中点规律问题】【典例10】(2023•新华区校级二模)如图,不完整的数轴上有A ,B 两点,原点在A 、B 之间,沿原点将负半轴折叠到正半轴上,点A 落在点B 左侧4个单位长度处,则线段AB 的中点表示的数为( )A .2B .﹣2C .4D .﹣4【答案】A【解答】解:根据题意可设点A 表示的数为a ,则折叠后的点A 的对称点为﹣a , 因为点A 落在点B 左侧4个单位长度处,所以点B 表示的数为﹣a+4, 则AB =﹣a+4﹣a =4﹣2a , 线段AB 的一半为2﹣a ,所以AB 中点为:﹣a+4﹣(2﹣a )=2, 故选:A .【变式10-1】(2022秋•公安县期末)在数轴上,若点A ,B 表示的数分别是﹣3和5,点M 是线段AB 的中点,则M 表示的数为( ) A .1 B .2C .4D .﹣4【答案】A【解答】解:∵点A ,B 表示的数分别是﹣3和5, ∴AB =5﹣(﹣3)=8, ∵点M 是线段AB 的中点, ∴,∴点M 表示的数为:5﹣4=1; 故选:A .【变式10-2】(2022秋•江岸区期末)如图,在数轴上,点A 、B 表示的数分别是﹣19和3.点C 为线段AD 的中点,且BC =6BD ,则点C 表示的数为( )zA .﹣9B .﹣9.5C .﹣10D .﹣10.5【答案】A【解答】解:∵数轴上A ,B 两点所表示的数分别是﹣19和3, ∴AB =3+19=22, 设BD =x , ∵BC =6BD , ∴BC =6x , ∴CD =5x ,∵点C 为线段AD 的中点, ∴AD =2CD =10x , ∴AB =11x =22, ∴x =2, ∴AC =5x =10,∴点C 所表示的数是﹣19+10=﹣9. 故选:A .1.(2022•襄阳)若气温上升2℃记作+2℃,则气温下降3℃记作( ) A .﹣2℃ B .+2℃C .﹣3℃D .+3℃【答案】C【解答】解:∵气温上升2℃记作+2℃, ∴气温下降3℃记作﹣3℃. 故选:C .2.(2022•益阳)四个实数﹣,1,2,中,比0小的数是( )A .﹣B .1C .2D .【答案】A【解答】解:根据负数都小于零可得,﹣<0.故选:A.3.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作( )A.+20元B.﹣20元C.+30元D.﹣30元【答案】B【解答】解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“﹣20元”.故选:B.4.(2021•南京)北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00.小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A.10:00B.12:00C.15:00D.18:00【答案】C【解答】解:由题意得,北京时间应该比莫斯科时间早5小时,当莫斯科时间为9:00,则北京时间为14:00;当北京时间为17:00,则莫斯科时间为12:00;所以这个时刻可以是14:00到17:00之间,所以这个时刻可以是北京时间15:00.故选:C.5.(2021•滨州)在数轴上,点A表示﹣2.若从点A出发,沿数轴的正方向移动4个单位长度到达点B,则点B表示的数是( )A.﹣6B.﹣4C.2D.4【答案】C【解答】解:由题意可得,点B表示的数为﹣2+4=2,故选:C.z6.(2021•广州)如图,在数轴上,点A 、B 分别表示a 、b ,且a +b =0,若AB =6,则点A 表示的数为( )A .﹣3B .0C .3D .﹣6【答案】A【解答】解:∵a+b =0, ∴a =﹣b ,即a 与b 互为相反数. 又∵AB =6, ∴b ﹣a =6. ∴2b =6. ∴b =3.∴a =﹣3,即点A 表示的数为﹣3. 故选:A .7.(2021•凉山州)下列数轴表示正确的是( ) A . B .C .D .【答案】D【解答】解:A 选项,应该正数在右边,负数在左边,故该选项错误;B 选项,负数的大小顺序不对,故该选项错误;C 选项,没有原点,故该选项错误;D 选项,有原点,正方向,单位长度,故该选项正确; 故选:D .8.(2020•乐山)数轴上点A 表示的数是﹣3,将点A 在数轴上平移7个单位长度得到点B ,则点B 表示的数是( ) A .4 B .﹣4或10C .4或﹣10D .﹣10【答案】C【解答】解:如果A 向右平移得到,点B 表示的数是:﹣3+7=4, 如果A 向左平移得到,点B 表示的数是:﹣3﹣7=﹣10,z故点B 表示的数是4或﹣10. 故选:C .9.(2020•临沂)如图,数轴上点A 对应的数是,将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数是( )A .﹣B .﹣2C .D .【答案】A【解答】解:点A 向左移动2个单位, 点B 对应的数为:﹣2=﹣. 故选:A .10.(2020•湘潭)在数轴上到原点的距离小于4的整数可以为 .(任意写出一个即可) 【答案】见试题解答内容【解答】解:在数轴上到原点的距离小于4的整数有:﹣3,3,﹣2,2,﹣1,1,0从中任选一个即可故答案为:3(答案不唯一,3,2,1,0,﹣1,﹣2,﹣3任意一个均可);1.(2023•河北模拟)向东走2m ,记为+2m ,那么走﹣7m ,表示( ) A .向南走7m B .向东走7mC .向西走7mD .向北走7m【答案】C【解答】解:向东走2m ,记为+2m ,那么走﹣7m ,表示向西走7m . 故选:C .2.(2022秋•河池期末)下列说法错误的是( ) A .0既不是正数,也不是负数B .零上4摄氏度可以写成+4°C ,也可以写成4°CzC .若盈利100元记作+100元,则﹣20元表示亏损20元D .向正北走一定用正数表示,向正南走一定用负数表示 【答案】D【解答】解:A .0既不是正数,也不是负数,正确,故不符合题意; B .零上4摄氏度可以写成+4°C ,也可以写成4°C ,正确,故不符合题意; C .若盈利100元记作+100元,则﹣20元表示亏损20元,正确,故不符合题意; D .规定向正北走用正数表示,则向正南走才用负数表示,原说法错误,故符合题意. 故选:D .3.(2023•海安市一模)手机移动支付给生活带来便捷.如图是小颖某天微伯账单的收支明细(正数表示收入,负数表示支出,单位:元),小颖当天微信收支的最终结果是( )A .收入18元B .收入6元C .支出6元D .支出12元【答案】B【解答】解:+18+(﹣12)=6(元),即小颖当天微信收支的最终结果是收入6元.故选:B .4.(2023•官渡区校级模拟)检查四个篮球的质量,把超过标准的克数记为正数,不足标准质量的克数记为负数,结果如下表: 其中质量最好的是( )篮球编号 甲 乙 丙 丁与标准质量的差(g ) +4+7﹣3﹣8A .甲B .乙C .丙D .丁【答案】C【解答】解:根据题意可得:超过标准质量的克数记为正数,不足标准质量的克z数记为负数;观察图表,找绝对值最小的.易得|﹣3|=3最小, 故3号球最接近标准质量,质量最好, 故选:C .5.(2022秋•广西期末)在,﹣4,0,这四个数中,属于负整数的是( ) A .B .C .0D .﹣4【答案】D【解答】解:∵﹣,都是分数, ∴选项A ,B 不符合题意; ∵0既不是正数,也不是负数, ∴选项C 不符合题意; ∵﹣4是负整数, ∴选项D 符合题意, 故选:D .6.(2022秋•红河县期末)下列说法正确的是( ) A .0不是正数,不是负数,也不是整数 B .正整数与负整数包括所有的整数C .﹣0.6是分数,负数,也是有理数D .没有最小的有理数,也没有最小的自然数【答案】C【解答】解:A 0不是正数也不是负数,0是整数,故A 错误; B 正整数于负整数不包括0,故B 错误; C ﹣0.6是分数,负数,有理数,故C 正确; D 0是最小的自然数,故D 错误; 故选:C .7.(2023•晋安区校级模拟)如图,数轴的单位长度是1,若点A 表示的数是﹣1,则点B 表示的数是( )zA .1B .2C .3D .4【答案】D【解答】解:∵数轴的单位长度为1,如果点A 表示的数是﹣1, ∴点B 表示的数是:﹣1+5=4,故D 正确. 故选:D .8.(2022秋•惠阳区期末)有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣1B .﹣a <bC .a +b <0D .a ﹣b >0【答案】B【解答】解:观察数轴得:﹣2<a <﹣1,2<b <3, ∴A 选项错误,不符合题意; ∴1<﹣a <2,∴﹣a <b ,故B 选项正确,符合题意; ∴|a|<|b|,∴a+b >0,故C 选项错误,不符合题意; ∴a ﹣b <0,故D 选项错误,不符合题意; 故选:B .9.(2022秋•沈丘县月考)已知数轴上A ,B 两点到原点的距离分别是3和9,则A ,B 两点间的距离是( ) A .6 B .9或12C .12D .6或12【答案】D【解答】解:A 、B 两点表示的数同号时,A ,B 两点间的距离是9﹣3=6或﹣3﹣(﹣9)=6,A 、B 两点表示的数异号时,A ,B 两点间的距离是9﹣(﹣3)=12或3﹣(﹣9)=12,∴A ,B 两点间的距离是6或12. 故选:D .10.(2022秋•文成县期中)点A、B在同一条数轴上,其中点A表示的数为1,若点B到点A的距离为4,则点B表示的数是( )A.3B.5C.3或﹣3D.5或﹣3【答案】D【解答】解:∵1+4=5,1﹣4=﹣3,∴点B表示的数是5或﹣3,故选:D.11.(2022秋•济南期中)如图,一条数轴上有点A、B、C,其中点A、B表示的数分别是﹣14,10,现以点C为折点,将数轴向右对折,若点A落在射线CB上且到点B的距离为6,则C点表示的数是( )A.1B.﹣3C.1或﹣5D.1或﹣4【答案】C【解答】解:10+6=16,10﹣6=4,当A落在16对应的点时,C表示的数为:(16﹣14)=1,z当A落在4对应的点时,C表示的数为:(4﹣14)=﹣5,故选:C.12.(2023春•荣县月考)观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).【答案】见试题解答内容【解答】解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1,∴第16个答案为:.故答案为:.13.(2022秋•武侯区校级月考)把下列各数分别填入相应的集合里.0,,5,3.14,π,﹣3,0.1.(1)整数集合:{…};(2)分数集合:{…};(3)有理数集合:{…};(4)非负数集合:{…}.【答案】(1)0,5,﹣3;(2),3.14,0.1;(3)0,,5,3.14,﹣3,0.1;(4)0,5,3.14,π,0.1.【解答】解:0,,5,3.14,π,﹣3,0.1.(1)整数集合:{0,5,﹣3,…};故答案为:0,5,﹣3;(2)分数集合:{,3.14,0.1,…};、故答案为:,3.14,0.1;z(3)有理数集合:{0,,5,3.14,﹣3,0.1,…};故答案为:0,,5,3.14,﹣3,0.1;(4)非负数集合:{0,5,3.14,π,0.1,…}.故答案为:0,5,3.14,π,0.1.14.(2023•泰山区校级开学)自行车厂要生产一批相同型号的自行车,计划每天生产200辆.但由于各种原因,实际每天的生产量与计划量相比会有所差异.下表是工人在某周的生产情况:(超过200辆记为正,不足200辆记为负)星期一二三四五六日增减(辆)+5﹣3﹣4+13﹣10+15﹣9(1)根据记录可知,前三天共生产了辆;(2)生产量最多的一天比生产量最少的一天多生产了辆;(3)该厂实行计件工资制,每生产一辆得100元,对于每天的计划生产量,若每多生产一辆再额外奖20元,若每少生产一辆则要扣20元,求工人这一周的工资总额是多少元.【答案】(1)598;(2)25;(3)工人这一周的工资总额是140840元.【解答】解:(1)由表格可得,(200+5)+(200﹣3)+(200﹣4)=205+197+196=598(辆),即前三天共生产了598辆,故答案为:598;(2)由表格可得,生产量最多的一天比生产量最少的一天多生产了15﹣(﹣10)=15+10=25(辆),故答案为:25;(3)200×7×100+[5+(﹣3)+(﹣4)+13+(﹣10)+15+(﹣9)]×120=140000+7×120=140000+840=140840(元),答:工人这一周的工资总额是140840元.15.(2022秋•长安区校级期末)某食品厂在产品中抽出20袋样品,检查其质量是否达标,超过标准的部分用正数表示,不足的部分用负数表示:﹣3﹣2﹣1.501 1.5 2.5与标准质量的差/克袋数1434323(1)这批样品的总质量比标准总质量多还是少?多或少几克?(2)若每袋的标准质量为200克,求这批样品平均每袋的质量是多少克?【答案】(1)这批样品的总质量比标准总质量少,少2克;(2)这批样品平均每袋的质量是199.9克.【解答】解:(1)(﹣3)×1+(﹣2)×4+(﹣1.5)×3+0×4+1×3+1.5×2+2.5×3=﹣3﹣8﹣4.5+0+3+3+7.5=﹣2(克),即这批样品的总质量比标准总质量少,少2克;(2)200×20﹣2=4000﹣2=3998(克),3998÷20=199.9(克),即这批样品平均每袋的质量是199.9克.。

沪科版七年级数学上第一章《有理数》第2节《数轴、相反数和绝对值》例题与讲解

1.2数轴、相反数和绝对值1.数轴(1)数轴的概念规定了原点、正方向和单位长度的直线叫做数轴.如图所示.(2)数轴的概念包涵的意思①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度,三者缺一不可;③原点位置的选定,单位长度大小的确定都是根据实际而定的.一般取向右的方向为正方向.(3)数轴的画法:要正确迅速地画出数轴,可按以下步骤进行:①“画”就是先画一条水平的直线;②“取”就是在直线上选取一点表示原点(原点表示的数是0);③“选”就是选择向右的方向为正方向(用箭头表示),那么相反的方向,即从原点向左为负方向,然后选取适当的长度作为单位长度,用细短线在直线上画出;④“标”就是从原点向右,依次标出1,2,3,…;从原点向左,依次标出-1,-2,-3,….画数轴的步骤可简单归纳为“一画、二取、三选、四标”.解技巧确定数轴的单位长度画数轴时根据实际问题的需要可选取不同的距离作为单位长度,同一数轴上的单位长度必须一致.【例1】观察下列图形,数轴画得正确的是______.解析:判断一条直线是否为一数轴,关键看这条直线是否具有原点、正方向和单位长度这三要素.A没有原点,B没有正方向,C的单位长度不一致,E中负方向上所标注的数字顺序错误,只有D满足条件.答案:D辨误区画数轴常见的错误画数轴常出现的错误:(1)没有方向;(2)没有原点;(3)单位长度不一致;(4)标出的数值排列错误.2.有理数与数轴上的点之间的关系(1)数对应点:任何一个有理数,都可以用数轴上的一个点来表示.(2)在数轴上,正数和负数分别位于原点的两侧,所有正数对应的点都在数轴上原点的右侧,所有负数对应的点都在数轴上原点的左侧,与正数对称.(3)找出数轴上的点对应的有理数的步骤是:①确定点与原点的位置关系(左负右正);②确定点与原点的距离.辨误区有理数与数轴上的点的对应关系所有的有理数都可以用数轴上的点表示,但不能说数轴上所有的点都表示有理数,因为数轴上除了表示所有的有理数的点之外,还有表示所有的无理数的点(以后会学习).【例2-1】指出数轴上A,B,C,D,E,F各点分别表示什么数?分析:先确定已知点的位置是在原点的左边还是右边,再确定点对应的数值,特别是B ,E 两点,要看准它们所表示的数在哪两个数之间.解:A 表示4;B 表示2.5;C 表示1;D 表示0;E 表示-1.5;F 表示-3.【例2-2】把下列各数在数轴上表示出来:32,-5,0,3.6,-3,-12,-112.分析:第一步,画出数轴(按三要素);第二步,把这些数在数轴上的对应点找出来;0在原点,容易找到对应点.正数在原点的右边,所以32,3.6在原点的右边,且分别距原点32个单位长度、3.6个单位长度.负数在原点的左边,所以-5,-3,-12,-112在原点的左边,且分别距原点5个单位长度、3个单位长度、12个单位长度、112个单位长度.解:解技巧确定数在数轴上的对应点(1)确定有理数在数轴上的对应点,要先根据正负确定该点在原点的哪一边,然后再确定距原点多少个单位长度;(2)一般情况下,原数轴上的表示单位长度的数要标在数轴的下方,而要表示的数应标在数轴的上方.3.相反数(1)相反数的定义只有符号不同的两个数互为相反数,这就是说,其中一个是另一个的相反数,特别规定:0的相反数是0.辨误区相反数的意义①“0的相反数是0”是相反数定义的一部分,千万不能漏掉;②“只有符号不同”指的是除符号不同以外,其他完全相同,不能理解为只要符号不同的两个数就互为相反数,例如:-2和+3符号不同,但它们不互为相反数.(2)相反数的几何意义两个互为相反数的数在数轴上所表示的点在原点的两侧,与原点的距离相等.如:+3和-3,+4.4和-4.4互为相反数,在数轴上的位置如图所示:(3)相反数的表示方法一般地,数a 的相反数是-a ,这里a 表示任意一个数,它可以是正数、负数或者零.析规律相反数的表示方法在任意一个数前面添上“-”号,所得的数是原数的相反数,在一个数的前面添上一个“+”号,仍是原数.【例3】填空题:(1)-5的相反数是__________;(2)-(-6)的相反数__________;(3)__________的相反数是0.7;(4)18与__________互为相反数;(5)若a =13,则-a =__________.解析:根据相反数的意义求出各数的相反数.(1)-5的相反数为5;(2)-(-6)表示-6的相反数,即-(-6)=6,所以求-(-6)的相反数就是求6的相反数;(3)-0.7的相反数是0.7;(4)18与-18互为相反数;(5)-a 表示a 的相反数,即求13的相反数,所以-a =-13.答案:(1)5(2)-6(3)-0.7(4)-18(5)-134.绝对值(1)绝对值的概念在数轴上,表示数a 的点到原点的距离,叫做数a 的绝对值,记作|a |.表示数0的点即原点,到原点的距离是0,故|0|=0.(2)一个数的绝对值与这个数的关系①一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.②绝对值实际上和四则运算“加、减、乘、除”一样,也是一种运算,绝对值运算的本质就是要把带有绝对值符号的数化为不带绝对值符号的数(即去绝对值).注意:既可以说0的绝对值是它本身,也可以说0的绝对值是它的相反数.故绝对值是它本身的数是正数和0;绝对值是它的相反数的数是负数和0.③互为相反数的两个数的绝对值相等;绝对值相等、符号相反的两个数互为相反数.谈重点绝对值的意义绝对值是初中代数中的重要概念,从数轴上看,一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小.由于距离总是正数或零,则有理数的绝对值不可能是负数.也就是说,任何一个有理数的绝对值都是非负数,即a 取任意有理数,都有|a |≥0,所以绝对值最小的数是0.【例4-1】下列说法正确的是().A .|-5|表示-5的绝对值,等于-5B .负数的绝对值等于它本身C .-4距离原点4个单位长度,所以-4的绝对值是4D .绝对值等于它本身的数有两个,是0和1解析:绝对值是一个距离,不能为负数,故选项A 错误;负数的绝对值等于它的相反数,故选项B 错误;一个数的绝对值是它在数轴上对应点与原点的距离,C 正确;正数的绝对值都等于它本身,故选项D 错误.答案:C【例4-2】回答问题:(1)绝对值是3的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?(3)绝对值是-2的数是否存在?若存在,请写出来.分析:本题要正确理解绝对值的概念,尤其要理解绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.(1)表示到原点距离等于3的点对应的数有几个,显然,表示数3和-3的点到原点的距离都等于3,所以绝对值等于3的数有两个,它们互为相反数.(2)到原点的距离为0的点只有原点本身,它对应的数是0.(3)任意有理数的绝对值都是非负数,故不存在绝对值是-2的数.一般地,一个有理数的绝对值只有一个,但是绝对值为一个正数的有理数都有两个,它们互为相反数,没有绝对值为负数的有理数.解:(1)绝对值是3的数有两个,它们分别是3和-3.(2)绝对值是0的数只有一个,它是0.(3)绝对值是-2的数不存在.5.数轴上两点间的距离与点表示的数之间的关系(1)数轴使数和直线上的点建立了对应关系,它揭示了数和形的内在联系.正是这种联系,使得数轴上两点之间的距离与所表示的数之间存在密切关系.(2)数轴上表示数a 的点与原点之间的距离:当a 为一个正数时,它与原点的距离是a 个单位长度,当a 是负数时,它与原点的距离是|a |个单位长度;当a 是0时,距离为0.(3)注意:到某一点距离等于a (a 是正数)的点有两个,在原点的左右两侧各一个.解技巧确定数轴上两点间的距离解决此类问题的最好方法是画出数轴,并表示出所求的数,再求两点间的距离.【例5-1】如图,A ,B 两点在数轴上,点A 对应的数为2,若线段AB 的长为3,求点B 对应的数是多少?分析:由于点A 对应的数为2,说明它到原点的距离为2,又线段AB 的长为3,则点B 对应的数就很容易确定了.解:因为点A 对应的数为2,又线段AB 的长为3,所以点B 到原点的长为1.又因为点B 在原点的左边,所以点B 对应的数为-1.【例5-2】已知数轴上A ,B 表示的数互为相反数,并且A ,B 两点间的距离为6个单位长度,求A ,B 两点表示的数(A 在B 的左边).分析:互为相反数的数,位于原点的两侧,且到原点的距离相等,根据A ,B 的距离为6个单位长度,即可求出A ,B 两点表示的数.解:由点A ,B 表示的数互为相反数,且A ,B 两点间的距离为6,可知点A ,B 在原点的两侧,到原点距离都为3,又A 在B 的左边,所以A 点表示-3,B 点表示3.6.运用相反数化简符号(1)理解:①在任意-个数前面添上“-”号,新的数就是原数的相反数.如:+5的相反数表示为-(+5),而5的相反数就是-5,所以-(+5)=-5.因此运用相反数可以进行符号化简.(2)分类:简单的符号化简共有3种情况:①-(+a )=-a ;②+(-a )=-a ;③-(-a )=a .(3)延伸:①-[-(-a )]=-a ;-[+(-a )]=a 等.②-0=0,表示0的相反数是0.多重符号的结果是由“-”号的个数决定的,与“+”号无关,据此可以对带有多重符号的数进行化简.化简时“+”号的个数不影响结果,可省去;而“-”号的个数是偶数个时也可全部省去,奇数个时,结果保留一个“-”号即可.【例6-1】填空:(1)__________;(2),那么x =__________.解析:(1)∵127,因此此题实际上是求127的相反数,∴-127;(2)是已知x 的相反数求原数x 的问题,∵-x =+(-80.5)=-80.5,∴x =80.5.答案:(1)-127(2)80.5【例6-2】化简下列各符号:(1)-[-(-2)];(2)+{-[-(+5)]};(3)-{-{-…-(-6)…}}(共n 个负号).分析:化简的法则是:结果的符号与负号的个数有关,有偶数个负号时,结果为正;有奇数个负号时,结果为负.解:(1)-2;(2)5;(3)当n 为偶数时,为6;当n 为奇数时,为-6.7.绝对值的化简和计算化简绝对值符号主要根据绝对值的非负性,解题时看清楚“-”号在绝对值符号的里面还是外面.如果“-”号在绝对值符号的里面,化简时把“-”号去掉;如果“-”号在绝对值符号的外面,化简时不能把“-”号去掉.解技巧准确化简绝对值符号化简绝对值符号的关键是判断绝对值符号内的数是正数、负数或是0.【例7】化简:(1)-|-23|;(2)+|(3)|;(4)|-(-7.5)|.分析:先判断绝对值符号内数的符号,再求绝对值.解:(1)-|-23|=-23;(2)+|;(3)|=312;(4)|-(-7.5)|=7.5.8.字母表示的数的绝对值的求法应用因为用字母所表示的数既可以是正数也可以是负数,还可以是0.它具有不确定性,而求绝对值首先要考虑的就是符号,因此求字母表示的数的绝对值时,必须考虑题目中给定的条件,若有限定条件,就按限定条件求出,若没有限定条件,则要分正、负、0三种情况讨论.解技巧求字母表示的数的绝对值(1)限制型逆用求法,如:|a |=6,那么a =±6;(2)开放型分类讨论求法:如求|x |+x 的值,当x >0时,|x |=x ,所以|x |+x =x +x =2x ,当x <0时,|x |=-x ,原式=0,当x =0时,原式=0;(3)化简型求法:如:|a |=|-8|,|-a |=|-8|,|-a |=|8|都能化为|a |=|8|=8解决.【例8-1】已知a =-5,|a |=|b |,则b 的值等于().A .+5B .-5C .0D .±5解析:因为a =-5,所以|a |=5.所以|b |=5.所以b =±5.注:本题常见的思维误区是由|a |=|b |推出a =b ,错选B.事实上,由|a |=|b |,可得b =±a ,所以b =a 或b =-a ,即b =5或b =-5.答案:D【例8-2】下面推理正确的是().A .若|m |=|n |,则m =nB .若|m |=n ,则m =nC .若|m |=-n ,则m =nD .若m =n ,则|m |=|n |解析:A 中若|m |=|n |,则m =±n ;B 中若|m |=n (n 一定是非负数),则m =±n ,例如|±2|=2,此时m =±2,n =2,显然m =±n ;C 中若|m |=-n ,则m =n 或m =-n ,例如|±3|=-(-3)(n 一定是非正数),此时m =±3,n =-3,所以m =±n .答案:D 9.利用数轴解决生活中的实际问题本节知识常与运动问题结合在一起,利用数形结合将运动问题解决.这种利用数形结合解决问题的方法是中考考查的热点题型之一.数轴是一种数学工具,它使数和数轴上的点建立了对应关系,运用数轴可以直观表示点的移动,正确找出数在数轴上的对应点,会由数轴上的点的位置确定对应的数,是解决这类问题的关键.解题时,通常根据题意正确地画出数轴,在选取长度单位时,要根据题目中的实际情况来确定,再在数轴上表示点的移动过程,用箭头和竖线来表示.【例9】超市、书店、玩具店依次坐落在一条东西走向的大街上,超市在书店西边20米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、玩具店的位置以及小明最后的位置.分析:书店处于超市和玩具店之间,且书店与玩具店之间的距离是50米,书店与超市之间的距离是20米,这样可以画出数轴,即可表示出小明最后的位置.解决点的移动问题,可画出数轴,在数轴上表示点的移动,关键是确定原点,最后的点相对于原点来说,若在原点的右侧,表示的是正数,若在原点的左侧,则表示的是负数.解:根据题意可以画出如图所示的数轴,小明位于超市西边10米处.10.利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题.利用绝对值求距离路程问题中,当出现用“+”、“-”号表示带方向的路程,求最后实际路程时,实际上是求绝对值的和.方法:①求各个数的绝对值;②求所有数的绝对值的和;③写出答案.【例10】一天上午,出租车司机小王在东西走向的中山路上营运,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,-3,+12,-11,-13,+3,-12,-18,请问小王将最后一位乘客送到目的地时,共行驶了多少千米?分析:本题是绝对值意义在实际问题中的具体应用,有理数中的“+”和“-”在本题中表示的是方向,而它们的绝对值是小王在营运中所行驶的路程,因此求共行驶的路程应是每次行车里程绝对值之和.解:|+15|+|-3|+|+12|+|-11|+|-13|+|+3|+|-12|+|-18|=15+3+12+11+13+3+12+18=87(千米).答:小王将最后一位乘客送到目的地时共行驶了87千米.。

人教版数学七年级上册 第一章 有理数 1.2.2 数轴

人教版数学七年级上册第一章有理数1.2.2 数轴【学习目标】1.理解数轴的概念及三要素;2.理解有理数与数轴上的点的关系,并会借助数轴比较两个数的大小;【要点梳理】要点一、数轴1.定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)原点、正方向和单位长度是数轴的三要素,三者缺一不可.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.(3)原点、正方向、单位长度可以根据实际灵活选定,但一经选定就不能改动.2. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.【典型例题】类型一、数轴的概念【例题】1.如图所示是几位同学所画的数轴,其中正确的是 ( )A.(1)(2)(3) B.(2)(3)(4) C.只有(2) D.(1)(2)(3)(4)【答案】C【解析】对数轴的三要素掌握不清.(1)中忽略了单位长度,相邻两整点之间的距离不一致;(3)中负有理数的标记有错误;(4)图中漏画了表示方向的箭头.【总结升华】数轴是一条直线,可以向两端无限延伸;数轴的三要素:原点、正方向、单位长度缺一不可.【巩固练习】一、选择题1.下列说法正确的是( )A.数轴上一个点可以表示两个不同的有理数B.数轴上的两个不同的点表示同一个有理数C.有的有理数不能在数轴上表示出来D.任何一个有理数都可以在数轴上找到与它对应的唯一点2.如图,有理数a,b在数轴上对应的点如下,则有( ).(A)a>0>b (B)a>b>0 (C)a<0<b (D)a<b<03.从原点开始向右移动3个单位,再向左移动1个单位后到达A点,则A点表示的数是( ). A.3 B.4 C.2 D.-24.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这条数轴上任意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是( )A.2002或2003 B.2003或2004C.2004或2005 D.2005或20065.北京、纽约等5个城市的国际标准时间(单位:小时)可在数轴上表示如图若将两地国际标准时间的差简称为时差,则()A.首尔与纽约的时差为13小时B.首尔与多伦多的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时二、填空题1.已知数轴上有A,B两点,A,B之间的距离为1,点A与原点O的距离为3,那么点B对应的数是.2. 若a为有理数,在-a与a之间(不含-a与a)有21个整数,则a的取值范围是.3.如图所示,矩形ABCD的顶点A,B在数轴上,CD=6,点A对应的数为-1,则点B所对应的数为.4.数轴上离原点的距离小于3.5的整数点的个数为m , 距离原点等于3.5的点的个数为n , 则3____m n -=.三、解答题1.小敏的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A 、B 、C 、D ,学校位于小敏家西150米,邮局位于小敏家东100米,图书馆位于小敏家西400米.(1)用数轴表示A 、B 、C 、D 的位置(建议以小敏家为原点).(2)一天小敏从家里先去邮局寄信后.以每分钟50米的速度往图书馆方向走了约8分钟.试问这时小敏约在什么位置?距图书馆和学校各约多少米?【答案与解析】一、选择题1.【答案】D【解析】A 、B 、C 都错误,因为所有的有理数都能在数轴上表示出来,但数轴上的点不都表示有理数;一个有理数在数轴上只有一个表示它的点.数轴上表示有理数的点一个点对应一个有理数.2.【答案】C3.【答案】C4.【答案】C【解析】若线段AB 的端点与整数重合,则线段AB 盖住2005个整点;若线段AB 的端点不与整点重合,则线段AB 盖住2004个整点.可以先从最基础的问题入手.如AB =2为基础进行分析,找规律.所以答案:C5.【答案】B【解析】本题以“北京等5个城市的国际标准时间”为材料,编拟了一道与数轴有关的实际问题.从选项上分析可得:两个城市之间相距几个单位长度,两个点之间的距离即为时差.所以首尔与纽约的时差为14小时,首尔与多伦多的时差为13小时,北京与纽约的时差为13小时,北京与多伦多的时差为12小时.因此答案:B.二、填空题1.【答案】±2,±4【解析】解:∵点A 和原点O 的距离为3,∴点A 对应的数是±3.当点A 对应的数是+3时,则点B 对应的数是1+3=4或3﹣1=2;当点A 对应的数是﹣3时,则点B 对应的数是﹣3+1=﹣2或﹣3﹣1=﹣4.2. 【答案】1011-1110a a <≤≤<-或3. 【答案】5【解析】CD =AB =6,即A 、B 两点间距离是6,故点B 对应的数为5.4. 【答案】1【解析】由题意可知:7,2m n ==,所以27321m n -=-⨯=三、解答题1. 【解析】(1)如图所示(2)小敏从邮局出发,以每分钟50米的速度往图书馆方向走了约8分钟,其路程为50×8=400(米),由上图知,此时小敏位于家西300米处,所以小敏在学校与图书馆之间,且距图书馆100米,距学校150米.。

有理数之正数、负数及数轴

有理数之正数、负数及数轴本讲要点:1、理解有理数的概念,会用正数和负数表示相反意义的量,懂得有理数不仅可分为正数、零和负数,还可以分为整数(包括正整数、零和负整数)和分数(包括正分数和负分数)。

2、有理数:凡能写成pq(p、q均为整数,且0p≠)形式的数,一定都是有理数。

3、有理数是有限小数或无限循环小数。

理解数轴的概念。

【重点与难点】1、正数与负数的意义及有理数的分类方法;2、对负数意义的理解;3、数轴是一条直线,可以向两端无限延伸;数轴的三要素原点、正方向和单位长度缺一不可;在数轴上,表示的两个数,右边的数总比左边的数大【典型例题分析】例1.把下列各数-1、3.7、+3、125-、23、0、-84、93、300%。

填在相应的大括号内:正数集合:{…}整数集合:{…}分数集合:{…}负分数集合:{…}解:正数集合:3.7、+3、23、93、300%;整数集合:-1、+3、0、-84、93、300%;分数集合:3.7、125-、23。

负分数集合:125-注:明确93、300% 属于整数;3.7属于分数。

例2.观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数,你能写出第2002个数是什么吗?⑴-1,1,1,-1,-1,1,1,-1,,,…。

⑵2,-4,-6,8,10,-12,-14,16, , , …。

解:⑴ -1,1,1;第2002个数是1。

由于题中符号有规律,四个数一个周期,要确定一个数必须首先确定其符号; ⑵ 18、-20、-22;第2002个数是-4004。

同⑴也是符号出现四个数为一个循环。

注:在做题过程中,注意观察数与数之间的关系(包括符号),整体有什么规律。

例3.填空:甲、乙两人同时从A 地出发,如果甲向南走48m 记为+48m ,则乙向北走32m 记为 ;这时甲、乙两人相距 m 。

解: -32m , 80m 例4:选择题:⑴下面说法中正确的是:( )A .正数和负数统称为有理数B 。

专题02 有理数与数轴(解析版)-2024小升初数学暑假衔接讲义

专题02有理数与数轴1.知道有理数的定义;会判断一个数是否为有理数;会对有理数进行分类;2.能正确地画出数轴,掌握数轴的三要素;3.能将已知数在数轴上表示出来,能指出数轴上的点所表示的数及数轴上点的运动;4.初步感受数形结合、分类讨论的思想。

题型探究题型1、有理数的相关概念辨析 (4)题型2、有理数的分类 (5)题型3、有理数中的新定义集合 (8)题型4、数轴的三要素及其画法 (10)题型5、用数轴上的点与有理数的关系 (12)题型6、数轴上两点之间的距离 (14)题型7、数轴上的动点问题 (16)培优精练A组(能力提升) (18)B组(培优拓展) (23)【思考1】我们在小学和上一节已经学习过那些数?这些数能否写成分数的形式呢?【思考2】请读出右侧温度计的读数。

【思考3】在一条东西向的马路上,有一个汽车站,汽车站东3m和2.5m处分别有一棵柳树和一棵杨树,汽车站西3m和1.8m处分别有一棵槐树和一根电线杆。

试画图表示这一情景。

【课外作业】查阅收集有关有理数的历史资料,然后给大家讲一讲有理数的来历和发展。

1.有理数的相关概念1)整数:正整数、0、负整数统称为整数。

2)分数:正分数、负分数统称为分数。

正分数:像13,43,0.24,50%等这样的数叫作正分数;负分数:像56-,12-,-3.56等这样的数叫作负分数;有限小数和无限循环小数可以化为分数,所以它们也是分数。

3)有理数:可以写成分数形式的数称为有理数,即有理数都可以表示为qp(p、q均为整数,且p不为0)。

正有理数:可以写成正分数的形式的数为正有理数;负有理数:可以写成负分数的形式的数为负有理数;整数和分数统称为有理数。

注意:在定义有理数时,我们说整数可以写作是分母为1的分数,但是切记整数一般情况下并不是分数。

4)有理数的两种分类:5)常用数学概念的含义1)正整数:既是正数,又是整数2)负整数:既是负数,又是整数3)正分数:既是正数,又是分数4)负分数:既是负数,又是分数5)非正数:负数和06)非负数:正数和07)非正整数:负整数和08)非负整数:正整数和02.数轴1)数轴定义:在数学中,可以用一条直线上的点表示数,它满足以下要求:①原点:在直线上任取一个点表示数0,这个点叫做原点;原点是数轴的基准点.②正方向:通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向.③选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,…;-,….从原点向左,用类似的方法依次表示1-,2-,3像这样,规定了原点、正方向、单位长度的直线叫做数轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
度的点表示的数是_-__3___;距离原点4个单位长 度的点表示的数是_4_或__-_4__;点A表示的数是-1, 则距离A点2个单位长度的数是____-__3_或__1__.
例: 一个蚂蚱在数轴上跳动,先从A点向左
跳一个单位到B点,然后由B点向右跳两个 单位到C点. 如果C点表示的数是-3,则A 点表示的数是 -4 .
数缺形时少直观, 形少数时难入微; 数形结合百般好, 隔离分家万事休。
--华罗庚
-4 -3 -2 -1 0 1 2 3 4
讨论:
1.设a是一个正数,则数轴上表示数a的点在原点
的什么位置,与原点的距离是多少个单位长度;
- a呢?
-4 -3 -2 -1 0 1 2 3 4
讨论: 2. 所有有理数都能用数轴上的点表示吗? 反过来成立吗?
-4 -3 -2 -1 0 1 2 3 4
讨论: 3. 怎样比较数轴上两个数的大小?
-4 -3 -2 -1 0 1 2 3 4
结论: 1. 所有有理数都能用数轴上的点表示;反之不
成立。 2. 正数在原点右侧,负数在原点左侧; 3. 任何负数小于正数; 4. 任何负数小于0; 5. 右侧数大于左侧数.
数 数
注:所有的有理数都可以写成有
限小数或无限循环小数形式.
指出下列各数中的正数、负数、 整数、分数
-15 +6
-2
-0.9
1
30
5
31 4
0.63 -4.95
解:正数:
负数:
整数:
分数:
在生活中,你见到过用刻
在一条笔直物体上的刻度来表 示某种量的多少的用具吗?你 能举出哪些用具。
在一条东西向的马路上,有一个汽车站,汽车站 东3m和7.5处分别有一棵柳树和一棵杨树,汽车 站西3m和4.8m处分别有一棵槐树和一根电线杆, 类比温度计,画图表示这一情境.
点A表示0 点B表示-2 点C表示1 点D表示2.5 点E表示-3
原点、正方向、单位长度一个也不能少。
• 数轴的三要素( C )
A、数轴 原点 正方向 B、正方向 原点 箭头 C、正方形 原点 单位长度 D、负方向 原点 单位长度
小结:
有理数 (数)
转化 转化
数轴上 的点
(形)
数形结合
小结:
• 一个点从数轴的原点开始,先向左 移动3个单位长度,再向右移动6个 单位长度,这个点最终所对应的数
是(C)
数轴的定义:
像这样规定了正方向、原点和 单位长度的直线叫做数轴。
正方向、原点和单位长度是数轴 的三要素。
数轴的特征: 1.数轴是一条直线,可以向两端无限延伸; 2.数轴有三要素:原点、单位长度和正方 向,三者缺一不可;
判断下列各图形是否是数轴:
-1
12
-1 0 1 2
少原点 少正方向
-1 0 2
A、数轴是一条直线 B、数轴上所有的点并不都表示有理数 C、在数轴上表示2和-2的点到原点左边的点所表示
的数是( D)
A、正数 B、负数 C、不是负数 D、不是正数
判断下列图形是否是数轴 (是的打“√”,不是的打
“×”)
(×)
注 :

解:点A、B、C 表示的数分别是 -2、-0.5、3.
1、练习
(1)画 出数轴并表示下列有理数:
15. , 2, 2, 25. ,9 2 , 3 2, 0
-2.5-2
2 3
0
1.5 2
9 2
-4 -3 -2 -1 0 1 2 3 4
(2)写出数轴上点A、B、C、D、E表示的数:
EB
AC
D
-4 -3 -2 -1 0 1 2 3 4
+3表示柳树,+7.5表示杨树,-3表示槐树,-4.8表示电线杆
再次观察上图与温度计,找出他们 之间的共同之处?
共同之处:就是都把正数、0和负 数用一条直线上的点都表示出来 了.
4
7
0
-3
做一做:
-5 - 4 -3 -2 -1 0 1 2 3 4 5 6
1.画一条水平直线,再在直线的右端画一个指向右 方的箭头,我们规定,它所指的方向为正方向;
单位长度不统一
-1
0
1
不是直线
0
1
是数轴
例1 在数轴上画出表示下列各数的点:
2,0,1.5,1.5,
3 5
,3
1 2
.
解:如图
31 2
-1.5
3 5
0
1.5 2
-4 -3 -2 -1 0 1 2 3 4
例2 如图,指出数轴上点A、B、C 表示的数:
AB
C
-4 -3 -2 -1 0 1 2 3 4

(×) 数


(√) 三 要

判断以下语句是否正确(对的打“√”,错的打“×”).
(1)规定正方向、单位长度的直线叫做数轴。 (×)
(2)规定单位长度的直线叫做数轴。
(×)
(3)规定正方向、原点、单位长度的直线 叫做数轴
(√)
• 在数轴上0与3之间(不包括0,3)还有
D 个数。(

A、2个 B、3个 C、4个 D、无数个
现在我给大家一些数,请你 思考哪些数具有相同的性质
+1/3, 0, -1/2, +100,
-20, +1.3, -2.6, -3000
一、复习: 有理数如何分类?
正 整 数
整 数0
有 理 数
负 整 数 正 分 数

数 负





数正 正
整 分
数 数
有 理 数0



数负 负
整 分
例: 利用数轴比较下列各数大小,并用“<”连接
-2 .5,0,4,-1,1/3
例: 用数轴表示出x的取值范围
(1)x比-2大 (2)x比不大于5 (3)x比-1大且比+3小
例: 1.数轴上表示正数的点在原点的___右__边,
表示负数的点在原点的_左____边; 2.数轴上,在原点左边且离原点3个单位长
• 若点A在数轴上原点的左边,则 A点表示的数是( )
B
A 正数 B 负数 C 整数
• 数轴上表示两个数,____B____边
的数总比________边的数大.
A、左边 右边 B 右边 左边
• 数轴上到原点距离5个单位
长度的点表示的数是( C

5
A +5 B -5 C
• 下列说法不正确(D )
2.在这条直线上确定一个点,这个点叫做原点, 并用原点表示数字0; 3.选择一个适当的长度作为单位长度,从原点开始, 在直线上原点的两侧,连续截取和单位长度相等 的线段,可以得到多个分点;
4.在原点的右侧的各分点的下面顺次写出1,2,3, 4…;在原点的左侧的各分点下面顺次写出-1,-2, -3,-4…,我们得到的就是一条用来表示数的直线。
相关文档
最新文档