高二下学期期中考试数学试卷含答案

合集下载

2023-2024学年北京市怀柔区高二下学期期中考试数学试卷

2023-2024学年北京市怀柔区高二下学期期中考试数学试卷

2023-2024学年北京市怀柔区高二下学期期中考试数学试卷一、选择题(共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知数列{}n a 满足12a =,121n n a a +=+,则3a =()A.1B.2C.65D.23【正确答案】C【分析】根据数列的递推关系式,逐项递推,即可求解.【详解】由数列{}n a 满足12a =,且121n na a +=+,令1n =,可得212213a a ==+;令2n =,可得322615a a ==+.故选:C.2.某班周一上午共有四节课,计划安排语文、数学、美术、体育各一节,要求体育不排在第一节,则该班周一上午不同的排课方案共有()A.24种B.18种C.12种D.6种【正确答案】B【分析】从4门学科的全排列数中去掉体育排第一节的排列数即可作答.【详解】语文、数学、美术、体育4门学科的全排列数为44A 种,其中体育排在第一节的有33A 种,所以该班周一上午不同的排课方案共有4343A A 18-=(种).故选:B3.若a 、b 、c 成等差数列,则()A.2b a c =+ B.2b ac= C.2b a c=+ D.2b ac=【正确答案】A【分析】由等差数列的性质化简可得结果.【详解】因为a 、b 、c 成等差数列,则b a c b -=-,可得2b a c =+.故选:A.4.在6(2)x +的展开式中二项式系数最大的项是()A.第3项和第4项B.第4项和第5项C.第3项D.第4项【正确答案】D【分析】根据二项式系数的定义计算二项式展开式中各项的二项式系数,进而确定二项式系数最大的项【详解】二项式()na b +展开式中第1r +项的二项式系数为rn C 所以题中二项式展开式的第1r +项的二项式系数为6rC 0r =时,061C =;1r =时,166C =;2r =时,2615C =;3r =时,3620C =;4r =时,4615C =;5r =时,566C =;6r =时,661C =.所以3r =时二项式系数最大,即第四项的二次项系数最大,答案D 正确.故选:D.5.某种灯泡的使用寿命为2000小时的概率为0.85,超过2500小时的概率为0.35,若某个灯泡已经使用了2000小时,那么它能使用超过2500小时的概率为()A.1720B.717 C.720D.317【正确答案】B【分析】直接根据条件概率公式即可求出.【详解】记灯泡的使用寿命为2000小时为事件A ,超过2500小时为事件B ,则若某个灯泡已经使用了2000小时,那么它能使用超过2500小时的概率为()0.357(|)()0.8517P AB P B A P A ===.故选:B .6.为了配合创建全国文明城市的活动,我校现从4名男教师和5名女教师中,选取3人,组成创文明志愿者小组,若男女至少各有一人,则不同的选法共有A.140种 B.84种C.70种D.35种【正确答案】C【分析】通过算没有限制时的总数,减去全是男生或全是女生的情况数即可得解.【详解】从4名男教师和5名女教师中,选取3人,共有39C 种情况.若全为男生,共有34C 种情况;若全为女生,共有35C 种情况.所以若男女至少各有一人,则不同的选法共有33394570.C C C --=故选C.本题主要考查了组合问题,用到了正难则反的思想,属于基础题.7.若离散型随机变量X 的分布列为:X 01P2a 22a 则X 的数学期望()E X =()A.2B.2或12 C.2和12D.12【正确答案】D【分析】由分布列的性质求出a ,再由数学期望公式求解即可.【详解】解:由离散型随机变量X 的分布列可得22012012122a a a a ⎧≤≤⎪⎪⎪≤≤⎨⎪⎪+=⎪⎩,解得1a =,∴X 的数学期望111()01222E X =⨯+⨯=.故选:D .8.某学生回家途中遇到红灯的概率为35,这名学生回家途中共有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,设X 表示这名学生回家途中遇到红灯的次数,则()2P X ≥等于()A.81125B.54125C.36125D.27125【正确答案】A【分析】根据题意,由互斥事件的性质可得(2)(2)(3)P X P X P X ≥==+=,进而计算可得答案.【详解】根据题意,()()()2323323542781223C 555125125125P X P X P X ⎛⎫⎛⎫⎛⎫≥==+==+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:A .9.设{}n a 是首项为正数的等比数列,公比为q ,则“0q <”是“对任意正整数n ,212n n a a ->”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【正确答案】A【分析】根据充分条件和必要条件的定义判断.【详解】{}n a 是首项为正数的等比数列,若公比0q <,则数列中奇数项为正,偶数项为负,一定有212n n a a ->,充分性满足,但是01q <<时,数列各项均为正,2212n n n a a q a -=<,也就是说221n n a a -<时,得不出0q <,不必要.故选:A .10.对任意*m ∈N ,若递增数列{}n a 中不大于2m 的项的个数恰为m ,且12100n a a a +++= ,则n 的最小值为()A .8B.9C.10D.11【正确答案】C【分析】先由条件得出2n a n ≤,进而结合等差数列前n 项和列出不等式,解不等式即可.【详解】由递增数列{}n a 中不大于2m 的项的个数恰为m 可知2n a n ≤,又12100n a a a +++= ,故2462100n ++++≥ ,即()221002n n +≥,解得12n -≤或12n -≥,又*n ∈N ,故n 的最小值为10.故选:C.二、填空题(共5小题,每小题5分,共25分)11.计算:()11111223341n n ++++=⨯⨯⨯+ ______.【正确答案】1nn +【分析】利用裂项相消法求和.【详解】原式111111111...122334111n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭.故1nn +12.261()x x+的展开式中常数项是_________.【正确答案】15【分析】先写出二项展开式的通项公式,令指数为0,再利用组合数公式求常数项.【详解】261()x x+的展开式的通项公式为()()621123166C C k kkkk k T x x x ---+=⋅⋅=⋅,令1230k -=,解得4k =,所以展开式中常数项是426665C =C ==152⨯.故15.13.已知等差数列{}n a 的前n 项和为n S ,且34567150a a a a a ++++=,则9S =_________.【正确答案】270【分析】由等差数列的性质先求得5a ,再根据959S a =即可获解.【详解】等差数列{}n a 的前n 项和为n S 且34567150a a a a a ++++=3456755150a a a a a a ∴++++==解得530a =,()9195992702S a a a ∴=+==故270.14.若实数1,,,4x y 成等差数列,2,,,,8a b c --成等比数列,则y xb-=___________.【正确答案】14-【详解】实数1,,,4x y 成等差数列,则4113y x --==,2,,,,8a b c --成等比数列,则()()22816b =--=.由2,,a b -成等比得:()22b 0a =->,所以b 0<,所以b 4=-.则14y x b -=-.故答案为14-.15.“斐波那契数列”是数学史上的一个著名的数列.在斐波那契数列{}n a 中,11a =,21a =,()*21N n n n a a a n ++=+∈.设数列{}n a 的前n 项和为n S ,若99a λ=,()99R S μλμ=∈,,则100a =__________.【正确答案】1μλ-+【分析】对于()*21Nn n n a a a n ++=+∈分别令1,2,,98n =⋅⋅⋅,得到98个等式,相加化简可得结果.【详解】解:依题意,123a a a +=,234a a a +=,345a a a +=,……,979899a a a +=,9899100a a a +=,以上各式相加得,1239899349899100222a a a a a a a a a a +++⋯⋯++=++⋯⋯+++,∴1299991002a a a a a a ++⋯⋯+=+-,∴99991001S a a =+-,∵99a λ=,()99R S μλμ=∈,,∴1001a μλ=-+.故1μλ-+.三、解答题(共6小题,共85分.解答应写出文字说明,演算步骤或证明过程)16.袋中有大小相同,质地均匀的3个白球,5个黑球,从中任取2个球,设取到白球的个数为X .(1)求()1P X =的值;(2)求随机变量X 的分布列和数学期望.【正确答案】(1)1528(2)分布列见解析;期望为34【分析】(1)直接利用古典概型求解概率即可.(2)得出X 的可能取值,求出对应的概率,列出分布列,即可得出数学期望.【小问1详解】根据题意可知,“1X =”指事件“取出的2个球中,恰有1个白球”,所以113528C C 15(1)C 28P X ===.【小问2详解】根据题意可知,X 的可能取值为:0,1,2.023528C C 5(0)C 14P X ===;113528C C 15(1)C 28P X ===;2328C 3(2)C 28P X ===.所以随机变量X 的分布列为:X12P5141528328则X 的数学期望5153213()012142828284E X =⨯+⨯+⨯==.17.数列{}n a 是等差数列,n S 表示其前n 项之和,26a =,370a a +=.(1)求{}n a 的通项公式;(2)求n S 的最大值.【正确答案】(1)102n a n =-(2)20【分析】(1)设数列{}n a 的公差为d ,然后根据题意列方程组可求出1a 和d ,从而可求出通项公式;(2)由(1)可求出n S ,对其配方后可求出其最大值.【小问1详解】根据题意,设数列{}n a 的公差为d ,由于26a =,370a a +=,则216a a d =+=,①3711126280a a a d a d a d +=+++=+=,即140a d +=②,联立①②,解可得18a =,2d =-;所以数列{}n a 的通项公式为()11102n a a n d n =+-=-;【小问2详解】根据题意,由(1)的结论,102n a n =-,则()212(8102)981(9)92224n n n a a n n S n n n n n ++-⎛⎫===-=-+=--+ ⎪⎝⎭,而*n ∈N ,所以,当4n =或5x =的,n S 取最大值,且其最大值为4520S S ==.18.某中学羽毛球兴趣小组有甲、乙、丙三位组员,在单打比赛中,没有平局,且甲赢乙的概率为0.5,甲赢丙的概率为0.6.甲想挑战乙和丙.于是甲和乙、丙两位组员各自进行了一场比赛.(1)若甲两场比赛都赢了,则挑战成功,求甲挑战成功的概率;(2)设甲赢的场数为随机变量X ,求X 的分布列及数学期望.【正确答案】(1)0.3(2)分布列见解析;期望为1.1【分析】(1)根据题意,利用相互独立事件的概率公式,即可求解;(2)根据题意得到X 的可能取值为0,1,2,求得相应的概率,得出分布列,利用期望的公式,即可求解.【小问1详解】解:由题意知,甲赢乙的概率为0.5,甲赢丙的概率为0.6,根据相互独立事件的概率公式,可得甲挑战成功的概率0.50.60.3P =⨯=.【小问2详解】解:由题意可知,随机变量X 的可能取值为0,1,2,则()()()010.510.60.2P X ==-⨯-=,()()()110.50.60.510.60.5P X ==-⨯+⨯-=,()20.3P X ==,所以随机变量X 的分布列:X012P0.20.50.3则数学期望()00.210.520.3 1.1E X =⨯+⨯+⨯=.19.已知数列{}n a 的前n 项和为n S ,在条件①、条件②、条件③这三个条件中选择一个作为已知.(1)求数列{}n a 的通项公式;(2)若1n n b a ⎧⎫-⎨⎬⎩⎭是公差为2的等差数列,12b =,求数列{}n b 的前n 项和n T .条件①:11a =且()1202n n a a n --=≥;条件②:21n n S =-;条件③:21n n a S -=.注:如果选择多个条件分别解答,按第一个解答计分.【正确答案】(1)12n n a -=(2)21122n n -+-【分析】(1)选①:由题意可得出数列{}n a 是以1为首项,2为公比的等比数列,即可求出数列{}n a 的通项公式;选②③:当1n =时,求出1a ,当2n ≥时,由1n n n a S S -=-,整理可得12n n a a -=,可求出数列{}n a 是以1为首项,2为公比的等比数列,即可求出数列{}n a 的通项公式;(2)由(1)可求出{}n b ,再由分组求和法求出数列{}n b 的前n 项和n T .【小问1详解】选①:因为11a =,且()1202n n a a n --=≥,即12n n a a -=,所以数列{}n a 是以1为首项,2为公比的等比数列,所以12n n a -=;选②:解:(1)当1n =时,111a S ==,当2n ≥时,()11112121222nn n n n n n n a S S ----=-=---=-=,因为当1n =时满足上式,所以12n n a -=;选③:因为21n n a S -=,得21n n S a =-,当1n =时,1121a S -=,得11a =,当2n ≥时,()111212122n n n n n n n a S S a a a a ---=-=---=-,整理得12n n a a -=,所以数列{}n a 是以1为首项,2为公比的等比数列,所以12n n a -=;【小问2详解】因为1n n b a ⎧⎫-⎨⎬⎩⎭是公差为2的等差数列,12b =,所以112(1)21n nb n n a -=+-=-,所以11121212n n n b n n a -=-+=-+,所以数列{}n b 的前n 项和11111135242n n T -=+++++++ 1111[135(21)]1242n n -⎛⎫=++++-+++++ ⎪⎝⎭11 (121)21 212nn n⎛⎫- ⎪+-⎝⎭=+-21122nn-=+-.20.为研究某地区2021届大学毕业生毕业三个月后的毕业去向,某调查公司从该地区2021届大学毕业生中随机选取了1000人作为样本进行调查,结果如下:毕业去向继续学习深造单位就业自主创业自由职业慢就业人数2005601412898假设该地区2021届大学毕业生选择的毕业去向相互独立.(1)若该地区一所高校2021届大学毕业生的人数为2500,试根据样本估计该校2021届大学毕业生选择“单位就业”的人数;(2)从该地区2021届大学毕业生中随机选取3人,记随机变量X为这3人中选择“继续学习深造”的人数.以样本的频率估计概率,求X的分布列和数学期望()E X;(3)该公司在半年后对样本中的毕业生进行再调查,发现仅有选择“慢就业”的毕业生中的a(098)a<<人选择了上表中其他的毕业去向,记此时表中五种毕业去向对应人数的方差为2s.当a为何值时,2s最小.(结论不要求证明)【正确答案】(1)1400(2)分布列见解析;期望为3 5(3)42a=【分析】(1)用样本中“单位就业”的频率乘以毕业生人数可得;(2)先由样本数据得选择“继续学习深造”的频率,然后由二项分布可得;(3)由方差的意义可得.【小问1详解】由题意得,该校2021届大学毕业生选择“单位就业”的人数为5602500=14001000⨯.【小问2详解】由题意得,样本中1000名毕业生选择“继续学习深造”的频率为2001 10005=.用频率估计概率,从该地区2021届大学毕业生中随机选取1名学生,估计该生选择“继续学习深造”的概率为1 5.随机变量X的所有可能取值为0,1,2,3.所以()030311640155125P X C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭,()21311481155125P X C ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭,()22311122155125P X C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭,()30331113155125P X C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭.所以X 的分布列为X 0123P 641254812512125112564481213()01231251251251255E x =⨯+⨯+⨯+⨯=.【小问3详解】易知五种毕业去向的人数的平均数为200,要使方差最小,则数据波动性越小,故当自主创业和慢就业人数相等时方差最小,所以42a =.21.对于给定的正整数m 和实数α,若数列{}n a 满足如下两个性质:①12m a a a α++⋅⋅⋅+=;②对*n N ∀∈,+=n m n a a ,则称数列{}n a 具有性质()m P α.(1)若数列{}n a 具有性质2(1)P ,求数列{}n a 的前10项和;(2)对于给定的正奇数t ,若数列{}n a 同时具有性质4(4)P 和()t P t ,求数列{}n a 的通项公式;(3)若数列{}n a 具有性质()m P α,求证:存在自然数N ,对任意的正整数k ,不等式12N N N k a a a k mα+++++⋅⋅⋅+≥均成立.【正确答案】(1)5(2)1n a =(3)证明见解析【分析】(1)根据题意得到当n 为奇数时,1n a a =,当n 为偶数时,2n a a =,从而()110255S a a +==;(2)根据题干条件得到21n n n a a a ++==,故{}n a 为常数列,结合12344a a a a +++=求出1n a =;(3)对要证明的不等式变形,构造n n b ma α=-,研究其性质,证明出结论.【小问1详解】由题意得:121a a +=,2n n a a +=,则当n 为奇数时,1n a a =,当n 为偶数时,2n a a =,所以数列{}n a 的前10项和()110255S a a +==;【小问2详解】由题意得:12344a a a a +++=,4n n a a +=,对于给定的正奇数t ,12t a a a t ++⋅⋅⋅+=,对*n N ∀∈,n t n a a +=,则令21t k =-,k *∈N ,得:2221214n n k k n k n a a a a +++-+-+===,11212n n k n k n a a a a +++-+===,综上:{}n a 为常数列,由12344a a a a +++=可得:1n a =【小问3详解】要证12N N N k a a a k m α+++++⋅⋅⋅+≥,只需证12N N N k a a a k mα+++++⋅⋅⋅+≥⋅,即证120N N N k a a a m m m ααα+++⎛⎫⎛⎫⎛⎫-+-+⋅⋅⋅+-≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令数列n n b ma α=-,由于{}n a 具有性质()m P α,即12m a a a α++⋅⋅⋅+=,对*n N ∀∈,+=n m n a a ,则12120m mb b b a a a m m m ααα++⋅⋅⋅+=-+-+⋅⋅⋅+-,对*n N ∀∈,n m n m n n b m mb a a αα++=--==,所以{}n b 具有性质(0)m P ,令()123i i S b b b b i N *=+++∈ ,设12,,m S S S 的最小值为()1N S N m ≤≤,对*k N ∀∈,令N k pm r +=+,,,0p r N r m ∈<≤,由于{}n b 具有性质(0)m P ,则有0pm S =,所以123123N k pm r pm pm pm pm pm r r r N S S S b b b b b b b b S S ++++++==+++++=++++=≥ ,所以0N k N S S +-≥,所以12N N N k a a a k mα+++++⋅⋅⋅+≥成立本题数列不等式证明题目,要根据题干中条件对数列进行变形,用到了构造新数列,数论的基础知识,对学生的逻辑思维能力要求较高.。

广东省广州市广东实验中学越秀学校2023-2024学年高二下学期期中考试数学试题(含简单答案)

广东省广州市广东实验中学越秀学校2023-2024学年高二下学期期中考试数学试题(含简单答案)

广东实验中学越秀学校2023-2024学年高二下学期期中考试数学本试卷分选择题和非选择题两部分,共4页,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号填写在答题卷上.2.选择题每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将答题卷收回.第一部分选择题(共58分)一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目的要求.)1. 在等差数列中,,则值是()A. 12B. 18C. 24D. 302. 已知函数 的导函数 的图象如图所示,那么对于函数 ,下列说法正确的是( )A. 在 上单调递增B. 在 上单调递减C. 在 处取得最大值D. 在 处取得极大值3. 已知离散型随机变量X 的分布列,则( )A. 1B.C.D.4. 已知等比数列的各项互不相等,且,,成等差数列,则( )的{}n a 3712a a +=72S S -()y f x =()f x '()y f x =(),1∞--()1,∞+1x =2x =(1,2,3,4,5)5k P X ak k ⎛⎫=== ⎪⎝⎭13105P X ⎛⎫<<= ⎪⎝⎭231513{}n a 14a 312a 23a 2021202320202022a a a a -=-A. 1B. 2C. 3D. 45. 老师有6本不同的课外书要分给甲、乙、丙三人,其中甲分得2本,乙、丙每人至少分得一本,则不同的分法有( )A. 248种B. 168种C. 360种D. 210种6. 的展开式中常数项为( )A. 120B. C. 180D. 7. 若函数恰有2个零点,则实数a 的取值范围是( )A. B. C. D. 8. 已知数列的前n 项和为且,若对任意恒成立,则实数a 的取值范围是( )A. B. C. D. 二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 甲,乙,丙,丁,戊五人并排站成一排,下列说法正确的是( )A. 如果甲,乙必须相邻且乙在甲右边,那么不同的排法有24种B. 最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C. 甲乙不相邻的排法种数为82种D. 甲乙丙按从左到右的顺序排列的排法有20种10. 定义“等方差数列”:如果一个数列从第二项起,每一项的平方与它的前一项的平方的差都等于同一个常数,那么这个数列就叫做等方差数列,这个常数叫做该数列的方公差.设数列是由正数组成的等方差数列,且方公差为2,,则( )A. 数列的前60项和B. 数列的前60项和的()62132x x x ⎛⎫-- ⎪⎝⎭120-180-()e x f x a x =-10,e ⎛⎫ ⎪⎝⎭(0,1)1,e ⎛⎫-∞ ⎪⎝⎭(,0)-∞{}n a n S 2n nn a =(1)nn n S a a +>-*N n ∈(,1)(2,)-∞-⋃+∞(1,2)-3(1,)2-3(,1)(,)2-∞-+∞ {}n a 135a =11n n a a +⎧⎫⎨⎬+⎩⎭60S =11n n a a +⎧⎫⎨⎬+⎩⎭605S =C. 数列的通项公式是D. 数列的通项公式是11. 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1000件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为万元,且当该公司在这一品牌服装的生产中所获得的年利润最大时,则有( )A. 年产量为9000件B. 年产量为10000件C. 年利润最大值38万元D. 年利润最大值为38.6万元第二部分 非选择题(共92分)三、填空题:(本题共3小题,每小题5分,共15分.)12 已知数列满足,且对任意,有,则______.13. 设抛掷一枚骰子的点数为随机变量X______.14. 已知定义在上的函数满足,且,则的解集是______.四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数在点处的切线与直线垂直.(1)求的值;(2)求的单调区间和极值.16. (1)若,求的值;(2)在的展开式中,二项式系数最大的项只有第五项,①求的值;②若第项是有理项,求的取值集合;③求系数最大的项.为.{}2n a221n a n =-{}2n a 221n a n =+()R x ()22110.8,010,301081000,103x x R x x xx ⎧-<≤⎪⎪=⎨⎪->⎪⎩{}n a 11a =*n ∈N ()11nn n a a n +=+-⋅22a ==()0,∞+()f x ()()0xf x f x '-<()22f =()e e0xxf ->()21ex x af x -+=()()1,1f 420240x y ++=a ()f x 423401234(2x a a x a x a x a x -=++++1234a a a a +++22nx ⎫-⎪⎭n k k17. 已知数列的前项和为,满足.(1)求的通项公式;(2)删去数列的第项(其中),将剩余的项按从小到大的顺序排成新数列,设的前项和为,请写出的前6项,并求出和.18. 为建设“书香校园”,学校图书馆对所有学生开放图书借阅,可借阅的图书分为“期刊杂志”与“文献书籍”两类.已知该校小明同学的图书借阅规律如下:第一次随机选择一类图书借阅,若前一次选择借阅“期刊杂志”,则下次也选择借阅“期刊杂志”的概率为,若前一次选择借阅“文献书籍”,则下次选择借阅“期刊杂志”的概率为.(1)设小明同学在两次借阅过程中借阅“期刊杂志”的次数为X ,求X 的分布列与数学期望;(2)若小明同学第二次借阅“文献书籍”,试分析他第一次借哪类图书的可能性更大,并说明理由.19. 已知函数在处取得极值.(1)求的值;(2)设(其中),讨论函数的单调性;(3)若对,都有,求n 取值范围.的{}n a n n S 22n n S a =-{}n a {}n a 3i 1,2,3,i =⋅⋅⋅{}n b {}n b n nT{}n b 6T 2n T 1335()ln ()af x x x a x=+∈R 1x =(e)f ()322111()2()2x P x m x x f x x x+=--+m ∈R ()P x [1,3]x ∀∈2164()ln 11nx x f x x n x x +--+-≤-+广东实验中学越秀学校2023-2024学年高二下学期期中考试数学简要答案一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目的要求.)【1题答案】【答案】D【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】D【6题答案】【答案】D【7题答案】【答案】A【8题答案】【答案】C二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)【9题答案】【答案】ABD【10题答案】【答案】BC【11题答案】【答案】AD第二部分非选择题(共92分)三、填空题:(本题共3小题,每小题5分,共15分.)【12题答案】【答案】【13题答案】【14题答案】【答案】四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)(2)单调递减区间为和,单调递增区间为,的极大值为,极小值为.【16题答案】【答案】(1);(2)①;②;③.【17题答案】【答案】(1)(2)前6项为2,,,,,;;【18题答案】【答案】(1)分布列略,(2)小明第一次选择借阅“期刊杂志”的可能性更大,理由略【19题答案】【答案】(1) (2)答案略(3)10-(),ln 2-∞3a =-(),1-∞-()3,+∞()1,3-()f x ()263ef =()212e f -=-88-8n ={}1,3,5,7,91171792T x -=2n n a =22425272826438T =()26817nn T =-2930()1e e ef =+5,2⎡⎫+∞⎪⎢⎣⎭。

天津市河西区2023-2024学年高二下学期期中考试数学试卷(含解析)

天津市河西区2023-2024学年高二下学期期中考试数学试卷(含解析)

天津市河西区2023-2024学年高二下学期期中考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.已知全集,集合,,则( )A. B. C. D.2.对变量x ,y 有观测数据,得散点图1;对变量u ,v 有观测数据,得散点图2.由这两个散点图可以判断( )A.变量x 与y 正相关,u 与v 正相关B.变量x 与y 正相关,u 与v 负相关C.变量x 与y 负相关,u 与v 正相关D.变量x 与y 负相关,u 与v 负相关3.设,则“且”是“”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.即不充分也不必要条件4.的展开式中,系数最大的项是( )项B.第n 项C.第项D.第n 项与第项5.已知随机变量X 服从正态分布,且,则( )A.0.6B.0.3C.0.2D.0.16.设X 为随机变量,,若随机变量X 的数学期望,则等于( ){}1,2,3,4U ={}1,2A ={},32B =()U A B ð{}1,3,4{}3,4{}3{}4(),i i x y ()1,2,,10= i (),i i u v ()1,2,,10i = ,x y ∈R 2x ≥2y ≥224x y +≥()2*1()n x n +∈N 1+1n +1n +()22,N σ()40.8P X <=()02P X <<=1,3X B n ⎛⎫⎪⎝⎭()2E X =()2P X =7.某学习小组共有11名成员,其中有6名女生,为了解学生的学习状态,随机从这11名成员中抽选2名任小组组长,协助老师了解情况,A 表示“抽到的2名成员都是女生”,B表示“抽到的2名成员性别相同”,则( )8.的展开式中各项系数的和为2,则该展开式中常数项为( )A.-40 B.-20 C.20 D.409.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A.243 B.252 C.261 D.279二、填空题10.的展开式中的系数为________.11.命题,的否定是________.12.已知,则________.13.含有3个实数的集合可表示为,又可表示为,则________.14.三位老师分配到4个贫困村调查义务教育实施情况,若每个村最多去2个人,则不同的分配方法有种________.15.某公司有甲、乙两家餐厅,小李第一天午餐时随机地选择一家餐厅用餐,如果第,则小李第二天去乙家餐厅的概率为________.三、解答题16.(1)证明:组合数性质;(2)计算:(用数字作答).17.已知集合,若()|P A B =512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭822x y :p x ∀∈R 210x +>7270127(12)x a a x a x a x -=++++ 1357a a a a +++=,,1b a a ⎧⎫⎨⎬⎩⎭{}20,,a a b +20242024a b +=()1*1C C C ,m m n n n m n π-+=+∈N 2222234100C C C C ++++ {}23100A x x x =--≤(1),,求实数m 的范围;(2),,求实数m 的范围;(3),,求实数m 的范围.18.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(x 吨)与相应的生产能耗y (吨)标准煤的几组对照数据:(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程;(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考:用最小二乘法求线性回归方程系数公式(参考数值:)19.某班主任对班级22名学生进行了作业量多少的调查,数据如下:在喜欢玩电脑游戏的12人中,有9人认为作业多,3人认为作业不多;在不喜欢玩电脑游戏的10人中,有4人认为作业多,6人认为作业不多.(1)根据以上数据填写列联表;关系?参考公式:B A ⊆{}121B x m x m =+≤≤-A B ⊆{}621B x m x m =-≤≤-B A ={}621B x m x m =-≤≤-ˆybx a =+ˆb=ˆy =-3 2.543546 4.566.53242526286⨯+⨯+⨯+⨯=+++=22⨯2K =参考数据:,,,.20.已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出3球所得分数之和.(Ⅰ)求X 的分布列;(Ⅱ)求X 的数学期望E(X).2( 2.072)0.15P K ≥=2( 2.706)0.10P K ≥=2( 3.841)0.05P K ≥=()2 5.0240.025P K ≥=参考答案1.答案:D解析:易知,则,故选:D.2.答案:C解析:变量x 与中y 随x 增大而减小,为负相关;u 与v 中,u 随v 的增大而增大,为正相关.3.答案:A解析:试题分析:若且,则,,所以,即;若,则如满足条件,但不满足且.所以“且”是“”的充分而不必要条件.故选A.4.答案:C解析:在的展开式中,第项的系数与第项的二项式系数相同,再根据中间项的二项式系数最大,展开式共有项,可得第项的系数最大,故选C.5.答案:B解析:由题意,随机变量X 服从正态分布,则正态分布曲线关于对称,又由,根据正态分布曲线的对称性,可得,所以,故选B.6.答案:A解析:因为,得,即.所以故选A 7.答案:A解析:由题意可知{}1,2,3A B = {}()4U A B = ð2x ≥2y ≥24x ≥24y ≥228x y +≥224x y +≥224x y +≥()2,2--2x ≥2y ≥2x ≥2y ≥224x y +≥()()2*1x n n +∈N 1r +1r +21n +1n +22,N σ()2x =(4)0.8P X <=(0)(4)1(4)0.2P X P X P X ≤=≥=-<=1(02)(0)0.50.20.32P X P X <<=-≤=-=()123E X n ==6n =16,3X B ⎛⎫ ⎪⎝⎭()2426112C 133P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭()2265211C C C P B +==()26211C C AB ==所以故选:A.8.答案:D解析:令得.故原式=.的通项,由得,对应的常数项,由得,对应的常数项,故所求的常数项为40,故选D 9.答案:B解析:由分步乘法原理知:用0,1,…,9十个数字组成的三位数(含有重复数字的)共有,组成无重复数字的三位数共有,因此组成有重复数字的三位数共有.10.答案:70解析:设的展开式中含的项为第项,则由通项知.令,解得,的展开式中的系数为.11.答案:,或,解析:全称量词命题的否定是存在量词命题,要注意否定结论,所以命题,的否定是:,故答案为:,12.答案:-1094解析:令,则,,()()()|P AB P A B P B ==1x =1a =5112x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭512x x ⎛⎫- ⎪⎝⎭521552155C (2)()C (1)2r r r r rr r r T x x x ----+=-=-521r -=2r =80=521r -=-3r =80=-91010900⨯⨯=998648⨯⨯=900648252-=822x y 1r +()811882222188C 1C rrr rr r r r r r T xy x y x y -----+--++⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭822r r -+-=4r =∴822x y ()4481C 70-=0x ∃∈R 2010x +≤x ∃∈R 210x +≤:p x ∀∈R 210x +>0x ∃∈R 2010x +≤0x ∃∈R 2010x +≤()7270127()12f x x a a x a x a x =-++++= 0127(1)1a a a a f ++++==- 701273(1)32187a a a a f a -++--==-=所以.故答案为:-109413.答案:1解析:因为有3个实数的集合可表示为,又可表示为,所以,即,则,即或,当时,集合为,与集合元素的互异性矛盾,故,,.故答案为:1.14.答案:60解析:若每个村去一个人,则有种分配方法;若有一个村去两人,另一个村去一人,则有种分配方法,所以共有60种不同的分配方法.解析:设“第1天去甲餐厅用餐“,“第1天去乙餐厅用餐”,“第2天去甲餐厅用餐”,“第2天去乙餐厅用餐”,根据题意得,则则由全概率公式得:,即1357(1)(1)10942f f a a a a --==-+++,,1b a a ⎧⎫⎨⎬⎩⎭{}2,0,a a b +a ≠0=0b =21a =1a =1a =-1a ={1,0,1}{1,1,0}1a =-0b =202420241a b +=34A 24=1234C A 36⨯=1A =1B =2A =2B =1122()()()()P A P B P A P B ====()21|A A =()21|P A B =21(|)P B A =()()()21211|P A B A B P B ==()214152P A B =⨯=()()()2112225|12P A B P B A P A ===()22|B A =21222121222()()()()(|)()(|)P B P A B P A B P A P B A P A P B A =+=+212113()252510P B =⨯+⨯=16.答案:(1)证明见解析;(2)166650解析:(1)证明:;(2)=.17.答案:(1);(2)(3)不存在满足题意的实数m解析:(1);当时,满足,则,解得:;当时,由得:,解得:;综上所述:实数m 的取值范围为.(2)由得:,解得:,即实数m 的取值范围为.(3),,方程组无解,不存在满足题意的实数m .18.答案:(1)见解析;(2);()()1!!!!(1)!C 1!C m m n n n n m n m m n m -+---++=()()()()()!1!1!!1!!1!!1!n n m n n m m n mm n m m n m m n m -+-++=+=-+-+-+()()11!!(1)C !(1)!!1!m n n n n m n m m n m +++===-+-+3223102222223223410044041300C C C C C C C C C C C =+++=+++++++ 22323310010010515100C C 10110099C C C 16665032C ⨯⨯==+++==+=⨯ (],3-∞[]3,4{}()(){}{}2310052025A x x x x x x x x =--≤=-+≤=-≤≤B =∅B A ⊆121m m +>-2m <B ≠∅B A ⊆12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩23m ≤≤(],3-∞A B ⊆62126521m m m m -≤-⎧⎪-≥-⎨⎪≤-⎩34m ≤≤[]3,4A B = 62215m m -=-⎧∴⎨-=⎩∴ˆ0.70.35yx =+(3)19.65吨解析:(1)把所给的四对数据写成对应的点的坐标,在坐标系中描出来,得到散点图如下;(2)由对照数据,计算得,,,,回归方程的系数为,,所求线性回归方程为;(3)由(2)的线性回归方程,估计生产100吨甲产品的生产能耗为(吨,吨,预测比技改前降低了19.65吨标准煤.19.答案:(1)答案见解析;(2)有关系解析:(1)根据题中所给数据,得到如下列联表:1(3456) 4.54x =⨯+++=1(2.534 4.5) 3.54y =⨯+++=4222221345686ii x==+++=∑413 2.543546 4.566.5iii x y==⨯+⨯+⨯+⨯=∑∴266.54 4.5 3.5ˆ0.7864 4.5b -⨯⨯==-⨯ 3.50.7 4.5ˆ0.35a =-⨯=∴ˆ0.70.35yx =+0.71000.3570.35⨯+=)9070.3519.65∴-=22⨯由(1)中的的列联表,可得,所以有充分的理由认为假设不成立,即认为喜欢玩电脑游戏与认为作业多少有关,这种判断出错误的概率不超过0.10.20.答案:(Ⅰ)见解析;解析:(Ⅰ)X 的可能取值有:3,4,5,6.故,所求X 的分布列为22⨯()220.10226943 2.7641 2.7061210139K K ⨯⨯-⨯=≈>=⨯⨯⨯3539C (3)C P X ===215439C C (4)C X ===125439C C (5)C P X ===3439C (6)C P X ===()51051345642211421E X ⨯+⨯+⨯+⨯==。

河北省唐山市十县一中联盟2023-2024学年高二下学期期中考试数学试题(含简单答案)

河北省唐山市十县一中联盟2023-2024学年高二下学期期中考试数学试题(含简单答案)

唐山市十县一中联盟2023-2024学年高二下学期期中考试数学本试卷共4页,19小题,满分150分.考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 某公园有4个门,从一个门进,另一个门出,则不同的走法种数为( )A. 4B. 6C. 12D. 162. 下列运算正确的是( )A. B. C. D. 3. 4幅不同的国画和2幅不同的油画排成一列,2幅油画不相邻,则不同的排法种数为( )A. 240B. 360C. 480D. 7204. 若曲线在点处的切线与直线平行,则( )A B. C. 0 D. 15. 在的展开式中只有第5项的二项式系数最大,则正整数( )A. 7B. 8C. 9D. 106. 从4名医生,3名护士中选出3人组成一个医疗队,要求医生和护士都有,则不同的选法种数为( )A. 12B. 18C. 30D. 607. 已知函数,则( )A. B. C. D. 8. 如图,已知正方形,边长为2,点,分别在线段,上,,将沿折起,使得点到达点的位置,且平面平面,则五棱锥体积的最大值为( ).ππ(sin )cos 33'=(2)2ln 2x x '=1[ln()]x x '-=-(cos )sin x x'=()sin ln(1)f x a x x =++(0,0)21y x =-=a 2-1-()1n x +n =22()e (2)1x f x f x -'=++(3)f '=e 2-e 2+e 5+e 10+ABCD E F AB BC //EF AC BEF △EF B P PEF ⊥ADCFE P ADCFE -A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知为函数导数,的图象如图所示,则( )A. 是的极大值点B. 当时,取得最小值C. 在区间上单调递减D. 在区间上单调递增10. 已知,是正整数,且,则下列等式正确的是( )A. B. C D. 11. 已知函数有两个极值点,,且,则( )A. B. C. D. 三、填空题:本题共3小题,每小题5分,共15分.12. 已知为函数的导数,则______.13. 从黄瓜、白菜、豆角、韭菜、青椒5种蔬菜种子中选出3种分别种在,,三块不同土地上,每块土地只种1种,其中黄瓜不种在土地上,则不同的种法共有__________种.14. 展开式中的的系数为__________.的.的()f x '()f x ()y f x ='0x =()f x 1x =()f x ()f x ()0,1()f x ()1,∞+m n m n ≤461010A A =3441C C C n n n ++=()111A A m m n n n +++=123C C C C 2n n n n n n ++++= ()32f x x kx =-+a b a b <0k ≥0a b +=()2f a >()2f b <()f x '21()f x x x=+()1f '=A B C A ()52x y y -+25x y四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15. 某学习小组共6人,其中男生3名,女生3名.(1)将6人排成一排,3名男生从左到右的顺序一定(不一定相邻),不同排法有多少种?(2)从6人中选出4人,女生甲和女生乙至少1人在内的不同选法共有多少种?16. 已知曲线上一点.(1)当时,求曲线在点处的切线方程;(2)若在点处的切线与两坐标轴围成的三角形面积为9,求实数的值.17. 已知函数.(1)求极值;(2)若方程有两个不相等的实数根,求的值.18. 已知,求下列各式的值.(1);(2);(3).19. 已知,为的导数.(1)证明:当时,;(2)讨论在上的零点个数,并证明的()31f x x mx =--()()1,1P f 2m =()y f x =P ()f x P m ()2e xf x x =()f x ()()f x a a =∈R a ()()523456012345621x x a a x a x a x a x a x a x +-=++++++5a 0246a a a a +++12345623456a a a a a a +++++()2cos e x f x x x =+-()f x '()f x 0x ≥()1f x '≤()f x R ()f x <唐山市十县一中联盟2023-2024学年高二下学期期中考试数学简要答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C【2题答案】【答案】B【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】B【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】A二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AC【10题答案】【答案】BC【11题答案】【答案】BCD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】1【13题答案】【答案】48【14题答案】【答案】四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)120(2)14【16题答案】【答案】(1);(2)或.【17题答案】【答案】(1)极大值为,极小值为0 (2)【18题答案】【答案】(1)3(2)16 (3)0【19题答案】【答案】(1)证明略(2)有2个零点,证明略30-3y x =-527224e 24e a =。

福建省福州市2023-2024学年高二下学期期中联考试题 数学含答案

福建省福州市2023-2024学年高二下学期期中联考试题 数学含答案

2023-2024学年第二学期期中质量检测高二数学试卷(答案在最后)(满分:150分;考试时间:120分钟)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:选择性必修第二册第五章、选择性必修第三册第六章、第七章第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.计算52752+C A 的值是()A.62B.102C.152D.5402.下列导数运算正确的是()A.cos sin x x x '⎛⎫=- ⎪⎝⎭B.()21log ln 2x x '=C.()22xx'= D.()32e 3exxx x '=3.若9290129(2)x a a x a x a x -=++++L ,则129a a a +++ 的值为()A.1- B.1 C.511- D.5124.若2()f x x bx c =++的图象的顶点在第二象限,则函数()f x '的图象是()A. B.C. D.5.曲线()(22e 21xf x x x =--+-在0x =处的切线的倾斜角是()A.2π3B.5π6C.3π4 D.π46.现有完全相同的甲,乙两个箱子(如图),其中甲箱装有2个黑球和4个白球,乙箱装有2个黑球和3个白球,这些球除颜色外完全相同.某人先从两个箱子中任取一个箱子,再从中随机摸出一球,则摸出的球是黑球的概率是()A.1115B.1130C.115D.2157.有7种不同的颜色给下图中的4个格子涂色,每个格子涂一种颜色,且相邻的两个格子颜色不能相同,若最多使用3种颜色,则不同的涂色方法种数为()A.462B.630C.672D.8828.已知函数()e 2xx k f x =-,若0x ∃∈R ,()00f x ≤,则实数k 的最大值是().A.1eB.2eC.12eD.e e二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1)nx+*(N )n ∈展开式中常数项是2C n ,则n 的值为().A.3B.4C.5D.610.高中学生要从必选科目(物理和历史)中选一门,再在化学、生物、政治、地理这4个科目中,依照个人兴趣、未来职业规划等要素,任选2个科目构成“1+2选考科目组合”参加高考.已知某班48名学生关于选考科目的结果统计如下:选考科目名称物理化学生物历史地理政治选考该科人数36392412a b下面给出关于该班学生选考科目的四个结论中,正确的是()A.33a b +=B.选考科目组合为“历史+地理+政治”的学生可能超过9人C.在选考化学的所有学生中,最多出现6种不同的选考科目组合D.选考科目组合为“历史+生物+地理”的学生人数一定是所有选考科目组合中人数最少的11.若不等式e ln 0x ax a -<在[)2,x ∞∈+时恒成立,则实数a 的值可以为()A.3eB.2eC.eD.2第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()P B A =___________.13.某校一次高三数学统计,经过抽样分析,成绩X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为________.14.将4名志愿者分配到3个不同的北京冬奥场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为________.(用数字作答)四、解答题(本大题共5题,共77分,解答时应写出文字说明,证明过程或演算步骤)15.已知函数3()ln (R)f x x ax a =+∈,且(1)4f '=.(1)求a 的值;(2)设()()ln g x f x x x =--,求()y gx =过点(1,0)的切线方程.16.已知n⎛⎝在的展开式中,第6项为常数项.(1)求n ;(2)求含2x 的项的系数;(3)求展开式中所有的有理项.17.如图,有三个外形相同的箱子,分别编号为1,2,3,其中1号箱装有1个黑球和3个白球,2号箱装有2个黑球和2个白球,3号箱装有3个黑球,这些球除颜色外完全相同.小明先从三个箱子中任取一箱,再从取出的箱中任意摸出一球,记事件i A (123i =,,)表示“球取自第i 号箱”,事件B 表示“取得黑球”.(1)求()P B 的值:(2)若小明取出的球是黑球,判断该黑球来自几号箱的概率最大?请说明理由.18.为普及空间站相关知识,某部门组织了空间站模拟编程闯关活动,它是由太空发射、自定义漫游、全尺寸太阳能、空间运输等10个相互独立的程序题目组成.规则是:编写程序能够正常运行即为程序正确.每位参赛者从10个不同的题目中随机选择3个进行编程,全部结束后提交评委测试,若其中2个及以上程序正确即为闯关成功.现已知10个程序中,甲只能正确完成其中6个,乙正确完成每个程序的概率为0.6,每位选手每次编程都互不影响.(1)求乙闯关成功的概率;(2)求甲编写程序正确的个数X 的分布列和期望,并判断甲和乙谁闯关成功的可能性更大.19.已知曲线()31:3C y f x x ax ==-.(1)求函数()313f x x ax =-()0a ≠的单调递增区间;(2)若曲线C 在点()()3,3f 处的切线与两坐标轴围成的三角形的面积大于18,求实数a 的取值范围.2023-2024学年第二学期期中质量检测高二数学试卷(满分:150分;考试时间:120分钟)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:选择性必修第二册第五章、选择性必修第三册第六章、第七章第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.计算52752+C A 的值是()A.62 B.102C.152D.540【答案】A 【解析】【分析】利用组合和排列数公式计算【详解】5275762254622C A =+´+创=故选:A2.下列导数运算正确的是()A.cos sin x x x '⎛⎫=- ⎪⎝⎭B.()21log ln 2x x '=C.()22xx'= D.()32e 3exxx x '=【答案】B 【解析】【分析】利用常见函数的导数可以判断B 、C 的真假,利用积的导数的运算法则判断D 的真假,利用商的导数的运算法则判断A 的真假.【详解】∵()22cos cos cos sin cos x x x x x x x x x x x ''⋅-⋅--⎛⎫== ⎪⎝'⎭,故A 错误;∵()21log ln 2x x '=,故B 正确;∵()22ln 2x x '=,故C 错误;∵()()()33323e e e 3e e x x x x x x x x x x ⋅'''=⋅+=+,故D 错误.故选:B.3.若9290129(2)x a a x a x a x -=++++L ,则129a a a +++ 的值为()A.1- B.1 C.511- D.512【答案】C 【解析】【分析】根据题意,分别令1x =与0x =代入计算,即可得到结果.【详解】当1x =时,20911a a a a ++++=L ;当0x =时,0512a =所以,1211511a a a +++=-L 故选:C4.若2()f x x bx c =++的图象的顶点在第二象限,则函数()f x '的图象是()A.B.C.D.【答案】C 【解析】【分析】求导后得到斜率为2,再由极值点是导数为零的点小于零,综合直线的特征可得正确答案.【详解】因为()2f x x b '=+,所以函数()f x '的图象是直线,斜率20k =>;又因为函数()f x 的顶点在第二象限,所以极值点小于零,所以()f x '的零点小于零,结合直线的特征可得C 符合.故选:C5.曲线()(22e 21xf x x x =--+-在0x =处的切线的倾斜角是()A.2π3B.5π6C.3π4 D.π4【答案】A 【解析】【分析】利用导数的几何意义求得切线斜率,即可求得切线的倾斜角.【详解】()()2e 22,0xf x x f =--∴'-'= ,设切线的倾斜角为[),0,πθθ∈,则tan θ=,即2π3θ=,故选:A .6.现有完全相同的甲,乙两个箱子(如图),其中甲箱装有2个黑球和4个白球,乙箱装有2个黑球和3个白球,这些球除颜色外完全相同.某人先从两个箱子中任取一个箱子,再从中随机摸出一球,则摸出的球是黑球的概率是()A.1115B.1130C.115D.215【答案】B 【解析】【分析】根据条件概率的定义,结合全概率公式,可得答案.【详解】记事件A 表示“球取自甲箱”,事件A 表示“球取自乙箱”,事件B 表示“取得黑球”,则()()()()1212,,2635P A P A P B A P B A =====,由全概率公式得()()()()111211232530P A P B A P A P B A +=⨯+⨯=.故选:B .7.有7种不同的颜色给下图中的4个格子涂色,每个格子涂一种颜色,且相邻的两个格子颜色不能相同,若最多使用3种颜色,则不同的涂色方法种数为()A.462B.630C.672D.882【答案】C 【解析】【分析】根据题意,按使用颜色的数目分两种情况讨论,由加法原理计算可得答案.【详解】根据题意,分两种情况讨论:若用两种颜色涂色,有27C 242⨯=种涂色方法;若用三种颜色涂色,有()37C 3221630⨯⨯⨯+=种涂色方法;所以有42630672+=种不同的涂色方法.故选:C.8.已知函数()e 2xx k f x =-,若0x ∃∈R ,()00f x ≤,则实数k 的最大值是().A.1eB.2eC.12eD.e e【答案】B 【解析】【分析】将问题转化为002e x x k ≤在0x ∈R 上能成立,利用导数求2()exxg x =的最大值,求k 的范围,即知参数的最大值.【详解】由题设,0x ∃∈R 使02e x x k ≤成立,令2()exxg x =,则()21e x g x x ⋅-'=,∴当1x <时()0g x '>,则()g x 递增;当1x >时()0g x '<,则()g x 递减;∴2()(1)e g x g ≤=,故2e k ≤即可,所以k 的最大值为2e.故选:B.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1)nx+*(N )n ∈展开式中常数项是2C n ,则n 的值为().A.3B.4C.5D.6【答案】AD 【解析】【分析】根据二项式展开式得到321C n r r r nT x-+=,再令302n r-=,则得到123C C n n n =,解出即可.【详解】展开式的通项为131221C ()()C n r r n rr rr nnT x x x---+==,若要其表示常数项,须有302n r-=,即13r n =,又由题设知123C C n n =,123n \=或123n n -=,6n ∴=或3n =.故选:A D .10.高中学生要从必选科目(物理和历史)中选一门,再在化学、生物、政治、地理这4个科目中,依照个人兴趣、未来职业规划等要素,任选2个科目构成“1+2选考科目组合”参加高考.已知某班48名学生关于选考科目的结果统计如下:选考科目名称物理化学生物历史地理政治选考该科人数36392412ab下面给出关于该班学生选考科目的四个结论中,正确的是()A.33a b +=B.选考科目组合为“历史+地理+政治”的学生可能超过9人C.在选考化学的所有学生中,最多出现6种不同的选考科目组合D.选考科目组合为“历史+生物+地理”的学生人数一定是所有选考科目组合中人数最少的【答案】AC 【解析】【分析】结合统计结果对选项逐一分析即可得.【详解】对A :由3924482a b +++=⨯,则33a b +=,故A 正确;对B :由选择化学的有39人,选择物理的有36人,故至少有三人选择化学并选择了历史,故选考科目组合为“历史+地理+政治”的学生最多有9人,故B 错误;对C :确定选择化学后,还需在物理、历史中二选一,在生物、地理、政治中三选一,故共有236⨯=种不同的选考科目组合,故C 正确;对D :由于地理与政治选考该科人数不确定,故该说法不正确,故D 错误.故选:AC.11.若不等式e ln 0x ax a -<在[)2,x ∞∈+时恒成立,则实数a 的值可以为()A.3eB.2eC.eD.2【答案】BCD 【解析】【分析】构造函数()ex xf x =,将e ln 0x ax a -<恒成立问题转化为()()ln f x f a <恒成立问题,求导,研究()e xxf x =单调性,画出其图象,根据图象逐一验证选项即可.【详解】由e ln 0x ax a -<得ln ln ln e ex a x a aa <=,设()e x x f x =,则()1ex xf x ='-,当1x <时,()0f x '>,()f x 单调递增,当1x >时,()0f x '<,()f x 单调递减,又()00f =,()11e f =,当0x >时,()0ex xf x =>恒成立,所以()ex xf x =的图象如下:,ln ln e ex a x a<,即()()ln f x f a <,2x ≥,对于A :当3e a =时,ln ln 31>2a =+,根据图象可得()()ln f x f a <不恒成立,A 错误;对于B :当2e a =时,()ln ln 211,2a =+∈,根据图象可得()()ln f x f a <恒成立,B 正确;对于C :当e a =时,ln 1a =,根据图象可得()()ln f x f a <恒成立,C 正确;对于D :当2a =时,ln ln 2a =,又()()ln 22ln 212ln 2ln 2,2e 2ef f ===,因为221263ln 23ln 2e e ⨯-⨯=,且2e,e 6>>,即26ln 1,1e ><,所以221263ln 23ln 02e e⨯-⨯=->,即()()ln 22f f >,根据图象可得()()ln f x f a <恒成立,D 正确;故选:BCD.【点睛】关键点点睛:本题的关键将条件变形为ln ln e e x ax a <,通过整体结构相同从而构造函数()e x x f x =来解决问题.第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()P B A =___________.【答案】38【解析】【分析】利用条件概率的概率公式()()()P AB P B A P A =即可求解.【详解】由题意可得:()415P A =,()215P B =,()110P AB =,由条件概率公式可得()()()13104815P AB P B A P A ===,故答案为:38.13.某校一次高三数学统计,经过抽样分析,成绩X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为________.【答案】200【解析】【分析】根据X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,求得(130)p X ≥即可.【详解】因为X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,所以()()113012901300.22P X P X ⎡⎤≥=-≤≤=⎣⎦,又该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为10000.2200⨯=人.故答案为:200.14.将4名志愿者分配到3个不同的北京冬奥场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为________.(用数字作答)【答案】36【解析】【分析】先将4人分成2、1、1三组,再安排给3个不同的场馆,由分步乘法计数原理可得.【详解】将4人分到3个不同的体育场馆,要求每个场馆至少分配1人,则必须且只能有1个场馆分得2人,其余的2个场馆各1人,可先将4人分为2、1、1的三组,有211421226C C C A =种分组方法,再将分好的3组对应3个场馆,有336A =种方法,则共有6636⨯=种分配方案.故答案为:36四、解答题(本大题共5题,共77分,解答时应写出文字说明,证明过程或演算步骤)15.已知函数3()ln (R)f x x ax a =+∈,且(1)4f '=.(1)求a 的值;(2)设()()ln g x f x x x =--,求()y g x =过点(1,0)的切线方程.【答案】(1)1(2)22y x =-【解析】【分析】(1)利用导数求解参数即可.(2)先设切点,利用导数表示斜率,建立方程求出参数,再写切线方程即可.【小问1详解】定义域为,()0x ∈+∞,21()3f x ax x'=+,而(1)13f a '=+,而已知(1)4f '=,可得134a +=,解得1a =,故a 的值为1,【小问2详解】3()()ln g x f x x x x x =--=-,设切点为0003(,)x x x -,设切线斜率为k ,而2()31g x x '=-,故切线方程为300200()(31)()y x x x x x --=--,将(1,0)代入方程中,可得3200000()(31)(1)x x x x --=--,解得01x =(负根舍去),故切线方程为22y x =-,16.已知n ⎛ ⎝在的展开式中,第6项为常数项.(1)求n ;(2)求含2x 的项的系数;(3)求展开式中所有的有理项.【答案】(1)10n =;(2)454;(3)2454x ,638-,245256x.【解析】【分析】(1)求出n⎛ ⎝的展开式的通项为1r T +,当=5r 时,指数为零,可得n ;(2)将10n =代入通项公式,令指数为2,可得含2x 的项的系数;(3)根据通项公式与题意得1023010r Zr r Z -⎧∈⎪⎪≤≤⎨⎪∈⎪⎩,求出r 的值,代入通项公式并化简,可得展开式中所有的有理项.【详解】(1)n ⎛ ⎝的展开式的通项为233311122r rn r r n r r r r n n T C x x C x ----+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,因为第6项为常数项,所以=5r 时,有203n r -=,解得10n =.(2)令223n r -=,得()()116106222r n =-=⨯-=,所以含2x 的项的系数为221014524C ⎛⎫-= ⎪⎝⎭.(3)根据通项公式与题意得1023010r Zr r Z -⎧∈⎪⎪≤≤⎨⎪∈⎪⎩,令()1023r k k Z -=∈,则1023r k -=,即352r k =-.r Z ∈,∴k 应为偶数.又010r ≤≤,∴k 可取2,0,-2,即r 可取2,5,8.所以第3项,第6项与第9项为有理项,它们分别为2221012C x ⎛⎫- ⎪⎝⎭,551012C ⎛⎫- ⎪⎝⎭,8821012C x -⎛⎫- ⎪⎝⎭,即2454x ,638-,245256x .【点睛】关键点点睛:本题考查二项式展开式的应用,考查二项式展开式的通项公式以及某些特定的项,解决本题的关键点是求解展开式的有理项时,令()1023r k k Z -=∈,由r Z ∈以及010r ≤≤,求出k 的值,进而得出r 的值,代入通项公式化简可得有理项,考查了学生计算能力,属于中档题.17.如图,有三个外形相同的箱子,分别编号为1,2,3,其中1号箱装有1个黑球和3个白球,2号箱装有2个黑球和2个白球,3号箱装有3个黑球,这些球除颜色外完全相同.小明先从三个箱子中任取一箱,再从取出的箱中任意摸出一球,记事件i A (123i =,,)表示“球取自第i 号箱”,事件B 表示“取得黑球”.(1)求()P B 的值:(2)若小明取出的球是黑球,判断该黑球来自几号箱的概率最大?请说明理由.【答案】(1)712(2)可判断该黑球来自3号箱的概率最大.【解析】【分析】(1)因先从三个箱子中任取一箱,再从取出的箱中任意摸出一球为黑球,其中有三种可能,即黑球取自于1号,2号或者3号箱,故事件B 属于全概率事件,分别计算出()i P A 和(|),1,2,3i P B A i =,代入全概率公式即得;(2)由“小明取出的球是黑球,判断该黑球来自几号箱”是求条件概率(|),1,2,3i P A B i =,根据条件概率公式分别计算再比较即得.【小问1详解】由已知得:1231()()()3P A P A P A ===,12311(|),(|),(|)1,42P B A P B A P B A ===而111111()(|)(),4312P BA P B A P A =⋅=⨯=222111()(|)(),236P BA P B A P A =⋅=⨯=33311()(|)()1.33P BA P B A P A =⋅=⨯=由全概率公式可得:1231117()()()().126312P B P BA P BA P BA =++=++=【小问2详解】因“小明取出的球是黑球,该黑球来自1号箱”可表示为:1A B ,其概率为111()112(|)7()712P A B P A B P B ===,“小明取出的球是黑球,该黑球来自2号箱”可表示为:2A B ,其概率为221()26(|)7()712P A B P A B P B ===,“小明取出的球是黑球,该黑球来自3号箱”可表示为:3A B ,其概率为331()43(|)7()712P A B P A B P B ===.综上,3(|)P A B 最大,即若小明取出的球是黑球,可判断该黑球来自3号箱的概率最大.18.为普及空间站相关知识,某部门组织了空间站模拟编程闯关活动,它是由太空发射、自定义漫游、全尺寸太阳能、空间运输等10个相互独立的程序题目组成.规则是:编写程序能够正常运行即为程序正确.每位参赛者从10个不同的题目中随机选择3个进行编程,全部结束后提交评委测试,若其中2个及以上程序正确即为闯关成功.现已知10个程序中,甲只能正确完成其中6个,乙正确完成每个程序的概率为0.6,每位选手每次编程都互不影响.(1)求乙闯关成功的概率;(2)求甲编写程序正确的个数X 的分布列和期望,并判断甲和乙谁闯关成功的可能性更大.【答案】(1)0.648(2)分布列见解析,期望为95,甲比乙闯关成功的概率要大.【解析】【分析】(1)根据题意,直接列出式子,代入计算即可得到结果;(2)根据题意,由条件可得X 的可能取值为0,1,2,3,然后分别计算其对应概率,即可得到分布列,然后计算甲闯关成功的概率比较大小即可.【小问1详解】记事件A 为“乙闯关成功”,乙正确完成每个程序的概率为0.6,则()()2233C 0.610.6(0.6)0.648;P A =⨯⨯-+=【小问2详解】甲编写程序正确的个数X 的可能取值为0,1,2,3,()()()()211233464664333310101010C C C C C C 13110,1,2,3C 30C 10C 2C 6P X P X P X P X ============,故X 的分布列为:X0123P 1303101216故()1311901233010265E X =⨯+⨯+⨯+⨯=,甲闯关成功的概率1120.648263P =+=>,故甲比乙闯关成功的概率要大.19.已知曲线()31:3C y f x x ax ==-.(1)求函数()313f x x ax =-()0a ≠的单调递增区间;(2)若曲线C 在点()()3,3f 处的切线与两坐标轴围成的三角形的面积大于18,求实数a 的取值范围.【答案】(1)答案见解析(2)()()0,99,18U 【解析】【分析】(1)求出函数的导函数,分0a >、a<0两种情况讨论,分别求出函数的单调递增区间;(2)利用导数的几何意义求出切线方程,再令0x =、0y =求出在坐标轴上的截距,再由面积公式得到不等式,解得即可.【小问1详解】∵()313f x x ax =-定义域为R ,且()2f x x a '=-,①当a<0时,()20f x x a '=->恒成立,∴()f x 在R 上单调递增;②当0a >时,令()20f x x a '=->,解得x <x >,∴()f x 在(,∞-,)∞+上单调递增,综上:当a<0时,()f x 的单调递增区间为(),-∞+∞;当0a >时,()f x 的单调递增区间为(,∞-,)∞+.【小问2详解】由(1)得()2339f a a =-=-',又∵()393f a =-,∴切线方程为()()()9393y a a x --=--,依题意90a -≠,令0x =,得18y =-;令0y =,得189x a=-,切线与坐标轴所围成的三角形的面积11816218299S a a =⨯⨯=--,依题意162189a >-,即919a>-,解得09a <<或918<<a ,即实数a 的取值范围为()()0,99,18⋃.。

山东省实验中学2023-2024学年高二下学期期中考试数学试题(含简单答案)

山东省实验中学2023-2024学年高二下学期期中考试数学试题(含简单答案)

山东省实验中学2023-2024学年高二下学期期中考试数学试题(考试时间:120分钟 试卷满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.展开式中 的系数为( )A. B. C. 30D. 902. 若是区间上的单调函数,则实数的取值范围是( )A. B. C. 或 D.3. 2020年是脱贫攻坚年,为顺利完成“两不愁,三保障”,即农村贫困人口不愁吃、不愁穿,农村贫困人口义务教育、基本医疗、住房安全有保障,某市拟派出6人组成三个帮扶队,每队两人,对脱贫任务较重的甲、乙、丙三县进行帮扶,则不同的派出方法种数共有A. 15 B. 60 C. 90 D. 5404. 若,则( )A. B. C. D. 5. 在5个大小相同的球中有2个红球和3个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率是( )A.B.C.D.6. 随机变量ξ的分布列如下:其中,则等于( )A.B.()()6231x x --3x 90-30-()32112132f x x x x =-+++()1,4m m -+m 5m ≤-3m ≥5m ≤-3m ≥53m -≤≤2022220220122022(32)x a a x a x a x -=++++ 2022a a =2022220221()220222(320223()2110142512ξ1-01Pabc2b a c =+(1)P ξ=1314C.D.7. 蜂房绝大部分是一个正六棱柱的侧面,但它的底部却是由三个菱形构成的三面角. 18世纪初,法国学者马拉尔奇曾经专门测量过大量蜂巢的尺寸. 令人惊讶的是,这些蜂巢组成底盘的菱形的所有钝角都是,所有的锐角都是. 后来经过法国数学家克尼格和苏格兰数学家马克洛林从理论上的计算,如果要消耗最少的材料,制成最大的菱形容器正是这个角度. 从这个意义上说,蜜蜂称得上是“天才的数学家兼设计师”. 如图所示是一个蜂巢和部分蜂巢截面. 图中竖直线段和斜线都表示通道,并且在交点处相遇.现在有一只蜜蜂从入口向下(只能向下,不能向上)运动,蜜蜂在每个交点处向左到达下一层或者向右到达下一层的可能性是相同的.蜜蜂到达第层(有条竖直线段)第通道(从左向右计)的不同路径数为. 例如:,. 则不等式的解集为()A. B. C. D. 8. 已知函数,若恰有四个不同的零点,则a 取值范围为()A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知A ,B ,C 为随机事件,则下列表述中不正确的是( )A B. C. D. 10. 对于函数,下列说法中正确是( )A. 存在有极大值也有最大值.的122310928'︒7032'︒n n m (),A n m ()3,11A =()4,23A =()10,81A m ≤{}1,2,3,7,8,9{}1,2,3,8,9,10{}1,2,3,9,10,11{}4,5,6,7,8()xf x x e =()()()21g x fx af x =-+()2,∞+1,e e⎛⎫++∞ ⎪⎝⎭12,e e ⎛⎫+⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭()()()P AB P A P B =()()()P B C A P B A P C A ⋃=+()1P A A =()()P A B P AB ≥()222272exx x f x +-=()f xB. 有三个零点C. 当时,恒成立D. 当时,有3个不相等的实数根11. 在信道内传输信号,信号的传输相互独立,发送某一信号时,收到的信号字母不变的概率为,收到其他两个信号的概率均为.若输入四个相同的信号的概率分别为,且.记事件分别表示“输入”“输入”“输入”,事件表示“依次输出”,则( )A. 若输入信号,则输出信号只有两个的概率为B.C.D. 三、填空题:本题共3小题,每小题5分,共15分.12. 若,则实数a 取值范围为________13. 编号为A 、B 、C 、D 、E 的5种蔬菜种在如图所示的五块实验田里,每块只能种一种蔬菜,要求A 品种不能种在1,2试验田里,B 品种必须与A 种在相邻的两块田里,则不同的种植方法种数为________14. 设为随机变量,从边长为1的正方体12条棱中任取两条,当两条棱相交时,;当两条棱异面时,;当两条棱平行时,的值为两条棱之间的距离,则数学期望=________.四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分,解答应写出文字说明、证明过程或演算步骤.的的()f x x ⎫∈+∞⎪⎪⎭()0f x >450,2e a ⎛⎫∈ ⎪⎝⎭()f x a =,,M N P ()01αα<<12α-,,MMMM NNNN PPPP 123,,p p p 1231p p p ++=111,,M N P MMMM NNNN PPPP D MNPM MMMM M ()221αα-()22112P D M αα-⎛⎫= ⎪⎝⎭()3112P D P αα-⎛⎫= ⎪⎝⎭()()1112311p P M D p ααα=-+-e ln()x ax x ax -≥-+ξ0ξ=1ξ=ξE ξ15. 在二项式的展开式中,已知第2项与第8项的二项式系数相等.(1)求展开式中各项系数之和;(2)求展开式中二项式系数最大的项;(3)求展开式中的有理项.16. 学生甲想加入校篮球队,篮球教练对其进行投篮测试.测试规则如下:①投篮分为两轮,每轮均有两次机会,第一轮在罚球线处,第二轮在三分线处;②若他在罚球线处投进第一球,则直接进入下一轮,若第一次没投进可以进行第二次投篮,投进则进入下一轮,否则不预录取;③若他在三分线处投进第一球,则直接录取,若第一次没投进可以进行第二次投篮,投进则录取,否则不予录取.已知学生甲在罚球线处投篮命中率为,在三分线处投篮命中率为.假设学生甲每次投进与否互不影响.(1)求学生甲被录取的概率;(2)在这次测试中,记学生甲投篮的次数为,求的分布列.17. 已知函数在点处切线与直线垂直.(1)求的值;(2)求的单调区间和极值.18. 人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案;方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.19. 已知函数,.的1n⎫⎪⎭3423X X ()21ex x af x -+=()()1,1f 420240x y ++=a ()f x 12()23ln f x a x ⎛⎫=+⎪⎝⎭R a ∈(1)若的定义域为,值域为,求的值;(2)若,且对任意的,当,时,总满足,求的取值范围.(附加题)20. 帕德近似是法国数学家亨利.帕德发明的用有理多项式近似特定函数的方法.给定两个正整数m ,n ,函数在处的阶帕德近似定义为:,且满足:,,,…,.(注:,,,,…;为的导数)已知在处的阶帕德近似为.(1)求实数a ,b 的值;(2)比较与的大小;(3)若在上存在极值,求的取值范围.()f x {|0,R}x x x ≠∈R a 0a >1,13c ⎡⎤∈⎢⎥⎣⎦1x 2x ∈()()12ln2f x f x -≤a ()f x 0x =[,]m n 011()1mm nn a a x a x R x b x b x+++=+++ (0)(0)f R =(0)(0)f R ''=(0)(0)f R ''''=()()(0)(0)m n m n f R ++=[]()()f x f x '='''[]()()f x f x ''''''=[](4)()()f x f x ''''=(5)(4)()()f x f x '⎡⎤=⎣⎦()()n f x (1)()n f x -()ln(1)f x x =+0x =[]1,1()1ax R x bx=+()f x ()R x ()1()()()2f x h x m f x R x ⎛⎫=-- ⎪⎝⎭(0,)+∞m山东省实验中学2023-2024学年高二下学期期中考试数学试题简要答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】C【3题答案】【答案】C【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】D【7题答案】【答案】B【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AB【10题答案】【答案】CD【11题答案】【答案】BCD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】30【14题答案】四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分,解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)0(2)(3)有理项为,,【16题答案】【答案】(1)(2)分布列略【17题答案】【答案】(1)(2)单调递减区间为和,单调递增区间为,的极大值为,极小值为.【18题答案】【答案】(1) (2)①;②方案二中取到红球的概率更大.【19题答案】【答案】(1) (2)(附加题)【20题答案】【答案】(1),; (]0,e 4370x -228x -156x --1563a =-(),1-∞-()3,+∞()1,3-()f x ()263e f =()212e f -=-1120190a =45,7∞⎡⎫+⎪⎢⎣⎭1a =12b =(2)答案略;(3).10,2⎛⎫ ⎪⎝⎭。

河北省石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试题(含简单答案)

河北省石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试题(含简单答案)

石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试卷(时间:120分钟,分值150分)一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列函数的求导正确的是()A. B.C. D.2. 设曲线和曲线在它们的公共点处有相同的切线,则的值为()A. 0B.C. 2D. 33. 已知随机变量的分布列如下,随机变量满足,则随机变量的期望E(Y)等于()012A. B. C. D.4. 函数的大致图像是()A. B.C. D.5. 为了培养同学们的团队合作意识,在集体活动中收获成功、收获友情、收获自信、磨砺心志,2023年4月17日,石家庄二中实验学校成功举办了首届“踔厉奋发新征程,勇毅前行赢未来”25公里远足活动. 某班()22x x'-=-()2e2ex x'=()cos cos sinx x x x x'=-()()122xx x-'=⋅()e xf x a b=+()πcos2xg x c=+()02P,+ab cπX Y21Y X=-YXP1613a43835373()(1)ln1f x x x=+-现有5名志愿者分配到3个不同的小组里协助班主任摄影,记录同学们的青春光影,要求每个人只能去一个小组,每个小组至少有一名志愿者,则不同的分配方案的总数为( )A 120B. 150C. 240D. 3006. 的展开式中的系数为( )A B. 17C. D. 137. 设,,,则( )A. B. C. D. 8. 若方程有三个不同的解,则实数的取值范围是( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知,则下列结论正确的是( )A. B. C. D. 展开式中最大的系数为10. 已知函数,下列说法正确的有( )A. 若,,则函数F (x )有最小值B. 若,,则过原点可以作2条直线与曲线相切C. 若,且对任意,恒成立,则D. 若对任意,任意,恒成立,则的最小值是11 已知函数,若且,则有( )...()632x x ⎛- ⎝6x 17-13-35ln 23a =253e 5b =1c =c b a >>a b c >>a c b >>c a b>>()()23ln 12ln x a x ax x x--=a 224e 104e 4e ⎛⎫+ ⎪-⎝⎭,224e 114e 4e ⎛⎫+ ⎪-⎝⎭,()224e 10114e 4e ⎛⎫+⋃ ⎪-⎝⎭,,()224e 1014e 4e ⎧⎫+⋃⎨⎬-⎩⎭,()62601262a a x a x a x =+++⋯+3360a =-()()2202461351a a a a a a a +++-++=(6612622a a a ++⋯+=--2a ()()()2e 114ax F x m x m =++++0m =1a =-1m =-0a ≠()y F x =0a =m ∈R ()0F x >11x -<<R m ∈0x >()0F x ≥a 2e()()y f x x =∈R ()0f x >()()0f x xf x '+>A. 可能是奇函数或偶函数B. C. 当时, D. 三、填空题:本题共3小题,每小题5分,共15分.12. 为弘扬我国古代“六艺文化”,某夏令营主办方计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”,“数”六门体验课程,每周一门,连续开设六周,则课程“御”“书”“数”排在不相邻的三周,共有______种排法.13. 某校辩论赛小组共有5名成员,其中女生比男生多,现要从中随机抽取2名成员去参加外校交流活动,若抽到一男一女的概率为,则抽到2名男生的概率为_____________.14. 若,使得成立(其中为自然对数的底数),则实数的取值范围是_____________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知二项式的展开式中,所有项的二项式系数之和为,各项的系数之和为,(1)求的值;(2)求其展开式中所有的有理项.16. 某学校为了增进全体教职工对党史知识的了解,组织开展党史知识竞赛活动并以支部为单位参加比赛.现有两组党史题目放在甲、乙两个纸箱中,甲箱有个选择题和个填空题,乙箱中有个选择题和个填空题,比赛中要求每个支部在甲或乙两个纸箱中随机抽取两题作答.每个支部先抽取一题作答,答完后题目不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个题目放回原纸箱中.(1)如果第一支部从乙箱中抽取了个题目,求第题抽到的是填空题的概率;(2)若第二支部从甲箱中抽取了个题目,答题结束后错将题目放入了乙箱中,接着第三支部答题,第三支部抽取第一题时,从乙箱中抽取了题目.求第三支部从乙箱中取出的这个题目是选择题的概率.17. 已知函数.(1)求函数的极值;(2)若对任意恒成立,求的最大整数值.18. 张强同学进行三次定点投篮测试,已知第一次投篮命中的概率为,第二次投篮命中的概率为,前的()f x ()()11f f -<ππ42x <<()()cos22sin e cos x f x f x >()()01f >35[]0,2x ∃∈()1eln e e 1ln xa a x x a --+≥-+e 2.71828= a nx ⎛- ⎝a b 32a b +=n 5343222()ln f x x x x =+()f x ()()1k x f x -<1x >k 1312两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,如果前两次投篮均未命中,则第三次投篮命中的概率为.(1)求张强同学三次投篮至少命中一次的概率;(2)记张强同学三次投篮命中的次数为随机变量,求的概率分布.19. 设定义在R 上的函数.(1)若存在,使得成立,求实数a 的取值范围;(2)定义:如果实数s ,t ,r 满足,那么称s 比t 更接近r .对于(1)中的a 及,问:和哪个更接近?并说明理由.石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试卷 简要答案一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C 【2题答案】【答案】C 【3题答案】【答案】C 【4题答案】【答案】B 【5题答案】【答案】B 【6题答案】2315ξξ()()e xf x ax a =-∈R [)01,x ∈+∞()0e f x a <-s r t r -≤-1x ≥ex1e x a -+ln x【答案】C 【7题答案】【答案】A 【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD 【10题答案】【答案】ACD 【11题答案】【答案】BC三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】##【14题答案】【答案】四、解答题:本题共5小题,共77分. 解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)4 (2)【16题答案】【答案】(1) (2)【17题答案】【答案】(1)极小值,无极大值为1441100.121e,e ⎡⎤⎢⎥⎣⎦42135,54,81T x T x T x-===377122e --(2)3【18题答案】【答案】(1);(2)答案略.【19题答案】【答案】(1) (2)比更接近,理由略1115e a >ex1e x a -+ln x。

浙江省北斗联盟2023-2024学年高二下学期期中联考数学试题(含答案)

浙江省北斗联盟2023-2024学年高二下学期期中联考数学试题(含答案)

第二学期北斗联盟期中联考高二年级数学学科试题考生须知:1.本卷共四页满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字。

3.所有答案必须写在答题纸上,写在试卷上无效:4.考试结束后,只需上交答题纸。

一、单选题(每小题5分共40分)1.集合{}1,2,3,4A =,{}25B x x =∈<<N ,则A B = ( )A .{}234,,B .{}34,C .{}345,,D .{}2345,,,2.已知空间两条不同直线m 、n ,两个不同平面α、β,下列命题正确的是( )①m α⊥,n α⊥则m n ∥②m α∥,n β∥,αβ∥则m n ∥③m α⊥,m β⊥则αβ∥④n α⊥,n β∥则αβ⊥A .①③B .②④C .①③④D .①④3.已知非零向量a ,b ,则“两向量a ,b 数量积大于0”是“两向量a ,b夹角是锐角”的( )条件A .必要B .充分C .充要D .即不充分也不必要4.东阳市一米阳光公益组织主要进行“敬老”和“助学”两项公益项目,某周六,组织了七名大学生开展了“筑梦前行,阳光助学”活动后,大家合影留念,其中米一同学想与佳艳、刘西排一起,且要排在她们中间,则全部排法有( )种。

A .120B .240C .480D .7205.已知等差数列{}n a ,前n 项和为n S ,5a 、2020a 是方程2230x x --=两根,则2024S =( )A .2020B .2022C .2023D .20246.空间点()1,1,1A -,()1,2,3B -,()1,2,4C 则点A 到直线BC 的距离d =()A B C D 7.已知4tan 3θ=-,()3π,4πθ∈,则sin θ=( )A .45B .45-C .35D .35-8.三棱锥P ABC -中,PA PB PC ===,1AC AB ==,120CAB ∠=︒则三棱锥P ABC -的外接球的表面积为( )A .9πB .9π2C .18πD .36π二、多选题(每小题6分,共18分,多选.错选0分少选则根据比例得分)9.已知直线1l :1110A x B y C ++=和直线2l :2220A x B y C ++=,则下列说法正确的是( )A .若20A =,则2l 表示与x 轴平行或重合的直线B .直线1l 可以表示任意一条直线C .若12210A B A B -=,则12l l ∥D .若12120A A B B +=,则12l l ⊥10.已知正项等比数列{}n a 的公比为()0q q >,前n 项积为n T ,且满足71a >,781a a <,则下列说法正确的是( )A .01q <<B .1q >C .14131T T <<D .{}n T 存在最大值11.已知定义域为R 的函数()f x 不恒为零,满足等式()()()2xf x x f x '=+,则下列说法正确的是( )A .()00f =B .()f x 在定义域上单调递增C .()f x 是偶函数D .函数()f x '有两个极值点三、填空题(每小题5分共15分)12.复数34i z =+,则2iz+的虚部为______.13.一学校对高二女生身高情况进行采样调查,抽取了10个同学的身高:161,160,152,155,170,157,178,175,172,162,则估计这些女生的上四分位数是______14.三角形ABC ,AB c =,BC a =,CA b =,D 为AB 边上一点,2CD =,AC CD ⊥,45BCD ∠=︒,则)b +的最大值为______四、解答题(共77分)15.(本题13分)函数()212ln 2f x x x x =--,[]1,3x ∈,求()f x 的最大值和最小值16.(本题15分)如图多面体ABCDEF ,底面ABCD 为菱形,EF AB ∥,22AB AF EF ===,120FAB ∠=︒,60ABC ∠=︒,平面ABEF ⊥平面ABCD(1)求证BD CE⊥(2)求平面BDE 与平面ADF 所成锐角的余弦值17.(本题15分)(1)求圆O :221x y +=和圆M :22680x y y +-+=的公切线 (2)若 与抛物线24xy =相交,求弦长18.(本题17分)在高等数学中对于二阶线性递推式21n n n a pa qa ++=+求数列通项,有一个特殊的方法特征根法:我们把递推数列21n n n a pa qa ++=+的特征方程写为2x px q =+①,若①有两个不同实数根α,β,则可令1112n n n a c c αβ--=+;若①有两个相同的实根α,则可令()112n n a c nc α-=+,再根据1a ,2a 求出1c ,2c ,代入即可求出数列{}n a 的通项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下学期期中考试数学试题一、选择题1.已知i 是虚数单位,z 是z 的共轭复数,若1iz(1+i)=1i-+,则z 的虚部( ) A.12- B. 12 C. 1i 2 D. 1i 2-2.把4个不同的小球全部放人3个不同的盒子中,使每个盒子都不空的放法总数为( )A. 1333C AB. 3242C AC. 132442C C C D. 2343C A3.曲线 1x y xe =+在点()0,1处的切线方程是( )A. 210x y -+=B.10x y -+=C. 10x y --=D. 220x y -+= 4函数f (x )=x ln x 的单调递减区间是 ( ).A .B .C .(e ,+∞)D .5.二项式()()10211x x x ++-展开式中4x 的系数为( ) A.120 B.135 C.140 D.100 6设随机变量的分布列为,则的值为( ).A .B .C .D .17.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.10种B.12种C.9种D.8种 8.设函数() f x 在R 上可导,其导函数()'f x ,且函数() f x 在2x =-处取得极小值,则函数()y xf x ='的图象可能是( )A. B. C. D.9.若z C ∈且221z i +-=,则12z i --的最小值是:( )A.3B.2C.4D.510.在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品任取3件,取出的3件产品中一等品件数多于二等品件数的概率是( )A. 340B. 740C.31120D. 112011.已知(1-x )10=a 0+a 1x+a 2x 2+....a 10x 10,则8a =( )A .180-B .45C .180D .48-12.定义在R 上的函数() f x 满足: ()'()1f x f x +>,(0)4f =,则不等式()3x x e f x e >+ 的解集为( )A. ()0,?+∞B. ()(),00,-∞⋃+∞C. (,0)(3,)-∞⋃+∞D. ()3,+∞ 二、填空题13.函数33y x x a =--有三个相异的零点,则a 的取值范围为__________.14.()()522x y x y +-的展开式中,24x y 的系数为______________.15.某篮球运动员在一次投篮训练中的得分X 的分布列如下表所示,其中,,a b c 成__________.16.关于函数4431)(3+-=x x x f ,给出下列说法中正确的有_________.①它的极大值为328,极小值为34-②当[]4,3∈x 时,它的最大值为328,最小值为34-③它的单调减区间为[]2,2-④它在点()4,0处的切线方程为44+-=x y 三、解答题17、当实数 m 为何值时, ()()222332Z m m m m i =--+++ (1).为纯虚数(2).为实数(3).对应的点在复平面内的第二象限内18、端午节吃粽子是我国的传统习俗.设一盘中装有个粽子,其中豆沙粽个,肉粽个,白粽个,这三种粽子的外观完全相同.从中任意选取个. (1).求三种粽子各取到个的概率;(2).设表示取到的豆沙粽个数,求的分布列. 19、已知()1x f x e ax =--.(1).求()f x 的单调增区间;(2).若()f x 在定义域R 内单调递增,求a 的取值范围.20、甲方是一农场,乙方是一工厂,由于乙方生产需占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入.在乙方不赔付甲方的情况下,乙方的年利润x (元)与年产量t (吨)之间的关系为2?000x t =若乙方每生产一吨产品必须赔付甲方s 元(以下称s 为赔付价格),(1).将乙方的年利润w (元)表示为年产量t (吨)的函数,并求出乙方获得最大利润的年产量;(2).甲方每年受乙方生产影响的经济损失金额为20.002t 元,在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s 是多少?21、已知5756n n A C =,且2012(12)nnn x a a x a x a x -=+++⋅⋅⋅+. (1).求n 的值;(2).求123n a a a a +++⋅⋅⋅+的值; (3).求......6420a a a a +++的值.22、已知函数13()ln 22f x x m x x,()m R ∈ (1).当12m =时,求函数f ()x 在区间[]1,4上的最值 (2).若1x ,2x 是函数()()g x xf x =的两个极值点,且12x x <,求证: 121x x <新泰二中2018-2019下学期期中考试数学试题答案一、1~5 BDBDB 6~10 ABDBC 11~12 CC二、13. (-2,2) 14. 80 15. 1616.①③④三、解答题17、解:(1).由,解得3m =,∴当3m =时,复数z 为纯虚数(2).由2320m m ++=,得m 1=-或2m =-,∴当m 1=-或2m =-时,复数z 为实数3.由22230{320m m m m --<++>,解得13m -<<,∴当13m -<<时,复数z 对应的点在第二象限内18、解:( 1).令表示事件“三种粽子各取到个”,则由古典概型的概率计算公式有 .(2).的所有可能取值为,,,且,,综上知,的分布列为:19、解:(1).n=15; (2).-2; 3. 15312-20.解:(1).因为赔付价格为s 元/吨,所以乙方的实际年利润为2?000w t st =.'s t w s t t ==,令'0w =,得201000t t s ⎛⎫== ⎪⎝⎭.当0t t <时, '0w >; 当0t t >时, '0w <, 所以当'0w <时,w 取得极大值,也是最大值.因此乙方取得最大利润的年产量201000t s ⎛⎫= ⎪⎝⎭(吨).(2).设甲方净收入为v 元,则20.002v st t =-,将201000t s ⎛⎫= ⎪⎝⎭代入上式,得到甲方净收入v 与赔付价格s 之间的函数关系式234100021000v s s⨯=-. 又()232325510008000100081000's v s s s⨯-⨯=-+=, 令'0v =,得20s =.当20s <时, '0v >; 当20s >时, '0v <,所以当20s =时, v 取得最大值.因此甲方向乙方要求的赔付价格20s = (元/吨)时,获得最大净收入. 解析:21、解:(1).∵()()1?x f x e ax x R =--∈,∴()'x f x e a =-. 令()'0f x ≥,得x e a ≥.当0a ≤时, ()'0f x >在R 上恒成立; 当0a >时,有ln x a ≥.综上,当0a ≤时, ()f x 的单调增区间为(),-∞+∞;当0a >时, ()f x 的单调增区间为()ln ,a +∞.(2).由小题1知()'x f x e a =-.∵()f x 在R 上单调递增, ∴()'0x f x e a =-≥恒成立,即x a e ≤在R 上恒成立. ∵x R ∈时, 0x e >,∴0a ≤,即a 的取值范围是(],0?-∞. 22、解:(1)当12m =时, 113ln 222f x x x x,函数()f x 的定义域为()0,?+∞, 所以2213131222x x fxx xx,当(0,3)x ∈时, ()'0f x <,函数() f x 单调递减;当(3,)x ∈+∞时, ()'0f x >,函数()f x 单调递增. 所以函数() f x 在区间[]1,4上的最小值为53ln32f ,又11351ln12222f , 2342ln28f 显然14f f所以函数() f x 在区间[]1,4上的最小值为5ln32,最大值为52(2).因为213ln 22g xxf xx mx x x 所以1ln g x x m x ,因为函数()g x 有两个不同的极值点,所以1ln 0g x x m x 有两个不同的零点. 因此1ln 0x m x ,即1ln m x x 有两个不同的实数根,设1ln p xx x ,则1xp xx, 当()0,1x ∈时, ()'0p x >,函数()p x 单调递增; 当()1,x ∈+∞,()0p x '<,函数()p x 单调递减; 所以函数()p x 的最大值为111ln10p 。

所以当直线 y m =与函数图像有两个不同的交点时, 0m <,且1201.x x 要证121x x <,只要证211x x , 易知函数1ln q x g xx m x 在()1,+∞上单调递增, 所以只需证211q x qx ,而210q x q x ,所以111ln m x x即证11111111111111111ln 1ln 1ln 2ln 0qm x x x x x x x x x x ,记12ln h x x x x,则22211210x h x x xx 恒成立,所以函数()h x 在()0,1x ∈上单调递减,所以当()0,1x ∈时1110h xh所以110qx ,因此121x x .。

相关文档
最新文档