地统计内插方法_克里金插值(Kriging)
克里金插值(kriging)

则当级数 xk pk 绝对收敛时,称此级数的 k 1
和为ξ的数学期望,记为E(ξ),或Eξ。
E(ξ) = xk pk k 1
②设连续型随机变量ξ的可能取值区间为(-∞,+∞),
p(x)为其概率密度函数,若无穷积分
xp(x)dx
绝对收敛,则称它为ξ的数学期望,记为E(ξ)。
P
考虑邻近点,推断待估点
区域化变量: 能用其空间分布来表征一个自然现象的变量。
(将空间位置作为随机函数的自变量)
•空间一点处的观测值可解释为一个随机变量在该点
处的一个随机实现。
• 空间各点处随机变量的集合构成一个随机函数。
(可以应用随机函数理论解决插值和模拟问题)
考虑邻近点,推断待估点 ----空间统计推断要求平稳假设
E(ξ) = xp(x)dx
•数学期望是随机变量的最基本的数字特征,
相当于随机变量以其取值概率为权的加权平均数。
•从矩的角度说,数学期望是ξ的一阶原点矩。
对于一组样本:
N
( zi )
m i1 N
(2)方差 为随机变量ξ的离散性特征数。若数学期望
E[ξ-E(ξ)]2存在,则称它为ξ的方差,记为D(ξ), 或Var(ξ),或σξ2。
第二讲
克里金插值
克里金方法(Kriging), 是以南非矿业 工程师D.G.Krige (克里格)名字命名的一项 实用空间估计技术,是地质统计学 的重要 组成部分,也是地质统计学的核心。
地质统计学
由法国巴黎国立高等矿业学院G.马特隆教授于 1962年所创立。 主要是为解决矿床储量计算和误差估计问题而 发展起来的
条件累积分布函数(ccdf)
地统计内插方法 克里金插值(Kriging)共45页

8.1 Introduction
Some common summary statistics: –Measurements of location: mean, median –Measurements of spread: variance, standard deviation, coefficient of variation –Measurements of shape: coefficient of skewness
•What are the elevation values in an unmeasured location? •How to infer elevation values from other measurements in the same and other locations?
8.1 Introduction
8.1 Introduction
Review of Probability
•Frequency table records how often (in terms of percentage) observed values fall within certain intervals or classes.
8.2 Random Field
8.1 Introduction
Probability density function (PDF): p(u)– Discrete PDF: assigns a probability to each event • The outcome of flipping a coin • The number of road in an area Continuous PDF: determines the probability that an
克里金插值法

克里金插值法及其适用范围20 巴任若测绘学院克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron随后将该方法理论化、系统化,并命名为Kriging,即克里金插值法。
1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。
其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。
因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。
假设研究区域a上研究变量Z(x),在点xi∈A(i=1,2,……,n)处属性值为Z(xi),则待插点x0∈A处的属性值Z(x0)的克里金插值结果Z*(x0)是已知采样点属性值Z(xi)(i=1,2,……,n)的加权和,即:)()(10*i n i i x Z x Z ∑==λ(1)式中i λ是待定权重系数。
其中Z(xi)之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式:11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3)式中,C (xi ,xj )是Z(xi)和Z(xj)的协方差函数。
克里金插值-Kriging插值-空间统计-空间分析

克里金插值方法-Kriging 插值-空间统计-空间分析1.1 Kriging 插值克里金插值(Kriging 插值)又称为地统计学,是以空间自相关为前提,以区域化变量理论为基础,以变异函数为主要工具的一种空间插值方法。
克里金插值的实质是利用区域化变量的原始数据和变异函数的结构特点,对未采样点的区域化变量的取值进行线性无偏、最优估计。
克里金插值包括普通克里金插值、泛克里金插值、指示克里金插值、简单克里金插值、协同克里金插值等,其中普通克里金插值是最为常用的克里金插值方法。
以下介绍普通克里金插值的原理。
包括普通克里金方法在内的各种克里金插值方法的使用前提是空间数据存在着显著的空间相关性。
判断数据空间相关性是否显著的工具是半变异函数(semi-variogram ),该函数以任意两个样本点之间的距离h 为自变量,在h 给定的条件下,其函数值估计方法如下:2||||1()[()()]2()i j i j s s h h z s z s N h γ-==-∑其中()N h 是距离为h 的样本点对的个数。
()h γ最大值与最小值的差m a x m i n γγ-可以度量空间相关性的强度。
max min γγ-越大,空间相关性越强。
如果()h γ是常数,即max min 0γγ-=,则说明无论样本点之间的距离是多少,样本点之间的差异不变,也就是说样本点上的值与其周围样本点的值无关。
在实际操作中,会取一些离散的h 值,当||s s ||i j -接近某个h 时,即视为||||i j s s h -=。
然后会通过这些离散点拟合成连续的半变异函数。
拟合函数的形式有球状、指数、高斯等。
在数据存在显著的空间相关性的前提下,可以采用普通克里金方法估计未知点上的值。
普通克里金方法的基本公式如下:01ˆ()()()n i ii Z s w s Z s ==∑普通克里金方法的基本思想是:通过调整i s 的权重()i w s ,使未知点的估计值0ˆ()Z s 满足两个要求:1.0ˆ()Z s 是无偏估计,即估计误差的期望值为0,2.估计误差的方差达到最小。
克里金插值法.pptx

针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i (i=1,2,……,
n)满足关系式:
n
i 1
i 1
以无偏为前提,kriging 方差为最小可得到求解待定权系数i 的方程组:
(5)根据求出的权重值,代入公式(1),即可求得评估领域内 n 个采样值的线性组合[2]。
克里金插值法的方法路线图如下:
3
导入数据
数据分析
是否服从 正态分布
是
是否存在 趋势
否
否 数据变换
是 泛克里金方法
根据数据选择 合适的方法
进行预测
计算克里金系数
拟合理论半 变异函数图
绘制经验半 变异函数图
绘制方差 变异云图
c 1
i
ni
dw 1
i1 c d w
(2)根据搜索策略选择合适的参估点,如图 2:
(4)
2
图 2 参估点图示
(3)根据已经求出的变异函数以及采样点数量,三个采样点列出三个等式,求出方程 组的系数,公式为:
C(1,1) C(2,1)
C(3,1)
C(1,2) C(2,2) C(3,2)
C(1,3)1 C(0,1) C(2,3)2 C(0,2)
不取决于 s 点的位置,而取决于位移量 h。为了确保自相关方程有解,必须允许某两点间自 相关可以相等。
然后,可以对方程式左边 Z(s) 进行变换。例如,可以将其转换成指示变量,即如果Z(s)
低于一定的阈值,则将其值转换为 0,将高于阈值的部分转换为 1,然后对高于阈值部分作 出预测,基于此模型作出预测便形成了指示克里金模型。如果将指示值转变成含有变量的
克里金插值

克里金(Kriging)插值克里金(Kriging)插值法又称空间自协方差最佳插值法,它是以南非矿业工程师D.G.Krige的名字命名的一种最优内插法。
克里金法广泛地应用于地下水模拟、土壤制图等领域,是一种很有用的地质统计格网化方法它首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。
该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点处的确定值)的方法。
它是考虑了信息样品的形状、大小及与待估计块段相互间的空间位置等几何特征以及品位的空间结构之后,为达到线性、无偏和最小估计方差的估计,而对每一个样品赋与一定的系数,最后进行加权平均来估计块段品位的方法。
但它仍是一种光滑的内插方法在数据点多时,其内插的结果可信度较高。
克里金法类型分常规克里金插值(常规克里金模型/克里金点模型)和块克里金插值。
常规克里金插值其内插值与原始样本的容量有关,当样本数量较少的情况下,采用简单的常规克里金模型内插的结果图会出现明显的凹凸现象;块克里金插值是通过修改克里金方程以估计子块B内的平均值来克服克里金点模型的缺点,对估算给定面积实验小区的平均值或对给定格网大小的规则格网进行插值比较适用。
块克里金插值估算的方差结果常小于常规克里金插值,所以,生成的平滑插值表面不会发生常规克里金模型的凹凸现象。
按照空间场是否存在漂移(drift)可将克里金插值分为普通克里金和泛克里金,其中普通克里金(Ordinary Kriging简称OK法)常称作局部最优线性无偏估计.所谓线性是指估计值是样本值的线性组合,即加权线性平均,无偏是指理论上估计值的平均值等于实际样本值的平均值,即估计的平均误差为0,最优是指估计的误差方差最小。
在科学计算领域中,空间插值是一类常用的重要算法,很多相关软件都内置该算法,其中GodenSoftware 公司的Surfer软件具有很强的代表性,内置有比较全面的空间插值算法,主要包括:Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modified Shepard's Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法)下面简单说明不同算法的特点。
克里金插值(kriging)(推荐完整)

则当级数 xk pk 绝对收敛时,称此级数的 k 1
和为ξ的数学期望,记为E(ξ),或Eξ。
E(ξ) = xk pk k 1
②设连续型随机变量ξ的可能取值区间为(-∞,+∞),
p(x)为其概率密度函数,若无穷积分
xp(x)dx
二、统计推断与平稳要求
•任何统计推断(cdf,数学期望等)均要求重复取样。 •但在储层预测中,一个位置只能有一个样品。 •同一位置重复取样,得到cdf,不现实
P
考虑邻近点,推断待估点
区域化变量: 能用其空间分布来表征一个自然现象的变量。
(将空间位置作为随机函数的自变量)
•空间一点处的观测值可解释为一个随机变量在该点
随机函数在空间上的变化没有明显趋势, 围绕m值上下波动。
② 在整个研究区内,Z(u)的协方差函数存在且平稳 (即只依赖于滞后h,而与u无关), 即
Cov{Z(u),Z(u+h)} = E[Z(u)Z(u+h)]-E[Z(u)]E[Z(u+h)] = E[Z(u)Z(u+h)]-㎡ = C(h)
•协方差不依赖于空间绝对位置,而依赖于相对位置 , 即具有空间的平稳不变性。
H. S. Sichel (1947) D.G. Krige (1951)
应用统计学方法研究金矿品位
Kriging法(克里金法,克立格 法):“根据样品空间位置不同、样 品间相关程度的不同,对每个样品 品位赋予不同的权,进行滑动加权 平均,以估计中心块段平均品位”
G. Materon(1962)
提出了“地质统计学”概念 (法文Geostatistique)
kriging(克里金方法,克里金插值)

(h) C(0) C(h)
(二阶平稳假设条件下变差函数与协方差的关系)
变程(Range) :指区域化变量在空间上具有相关性的 范围。在变程范围之内,数据具有相关性;而在变 程之外,数据之间互不相关,即在变程以外的观测 值不对估计结果产生影响。
具不同变程 的克里金插 值图象
块金值(Nugget) :变差函数如果在原点间断,在地质统计学中称 为“块金效应”,表现为在很短的距离内有较大的空间变异性, 无论h多小,两个随机变量都不相关 。它可以由测量误差引起, 也可以来自矿化现象的微观变异性。在数学上,块金值c0相当于 变量纯随机性的部分。
min
应用拉格朗日乘数法求条件极值
j
E
Z *x0 Zx0 2
2
n
j
0,
i1
j 1,, n
Z*(x0)
进一步推导,可得到n+1阶的线性方程组, 即克里金方程组
n
i 1
C
xi
xj
i
C
x0
n
xj
i 1
i 1
j 1,, n
当随机函数不满足二阶平稳,而满足内蕴(本征)假设时, 可用变差函数来表示克里金方程组如下:
①在整个研究区内有 E[Z(u)-Z(u+h)] = 0
可出现E[Z(u)]不存在, 但E[Z(u)-Z(u+h)]存在并为零的情况
E[Z(u)]可以变化,但E[Z(u)-Z(u+h)]=0
② 增量[Z(u)-Z(u+h)]的方差函数 (变差函数,Variogram)
存在且平稳 (即不依赖于u),即:
Var[Z(u)-Z(u+h)] = E[Z(u)-Z(u+h)]2-{E[Z(u)-Z(u+h)]}2 = E[Z(u)-Z(u+h)]2 = 2γ(u,h) = 2γ(h),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.2 Random Field
Statistical Moments • The first moment is the mean or expected value of a random field, which describes its trend
• The second moment is the autocorrelation function
•Histogram: graphical representation of frequency table.– Common to use a constant class width –The height of each bar corresponds to the frequency •Cumulative frequency table and histogram -record the total number of values below certain cutoffs.
• The correlation of a random field can be measured with the covariance
• also called covariance function
8.2 Random Field
Variogram While the correlation (or similarity) between U(xi) and U(xj) is expressed with the covariance, their dissimilarity (or, variability) may be measured by their average squared difference:
Variogram When the random field U is second-order stationary (with constant mean and variance, and covariance dependent on separation vector),
Then,
8.2 Random Field
8.2 Random Field
Insight to Variogram
h C0 w[1 eh/ a2 ]
h
C0
w 1 exp
h12 a12
h22 a22
Isotropic Variogram
Anisotropic Variogram
8.2 Randoe γ(xi,xj) is the so called semi-variogram, or simply variogram. It can be shown that if the variance and covariance of U(x) exist, one has
8.2 Random Field
When is Geostatistics needed?
• How to construct high-resolution DEM that are consistent with data of various types and scales? • Where to locate the next observation points? How many to locate?
标题
Geographic Information System
Chap 8. Spatial Statistics in GIS
标题
Geographic Information System
8.1 Introduction 8.2 Random Field 8.3 Simple Kriging
8.1 Introduction
Variogram
8.2 Random Field
Variogram
8.2 Random Field
Real Example
8.2 Random Field
Real Example
h C0 w[1 eh/ a2 ]
式中:C0为块金值;C0+w为基台值;h为样本点的空间距离;α 为变程。
Sill
8.2 Random Field
Variogram Explanation to Nugget: ➢ Ideally the nugget should be zero, because the samples from the nearly same point should have practically the same value.
event falls within a certain range • The elevation in an area
8.1 Introduction
Some common summary statistics: –Measurements of location: mean, median –Measurements of spread: variance, standard deviation, coefficient of variation –Measurements of shape: coefficient of skewness
•One should decide on the following factors and determine the corresponding parameters: –Selected separation lags –Directions –The number of pairs of data at each lag
•What are the elevation values in an unmeasured location? •How to infer elevation values from other measurements in the same and other locations?
8.1 Introduction
–Range (变程): the distance at which the variogram levels off. It implies that beyond the range, the samples are no longer correlated.
8.2 Random Field
Variogram Some quantities of a variogram: –Sill (基台值): the value of the variogram where it levels off. –Nugget (块金值): the value of the variogram at lag h=0
Spatial heterogeneity/ variability
Low variance
High variance
8.1 Introduction
When is Geostatistics needed?
To answer various estimation problems such as
8.2 Random Field
Variogram •In practice, a variogram is almost always computed with measurements from a discrete number of points such as well locations
•Example with data on grid: –25 data points on a 5x5 grid of separation distance 10m
8.2 Random Field
Variogram
8.2 Random Field
Variogram
8.2 Random Field
8.1 Introduction
8.1 Introduction
8.1 Introduction
8.1 Introduction
8.1 Introduction
8.1 Introduction
8.2 Random Field
A random variable (stochastic variable) is defined by a set of possible values (the sample space) and a probability distribution over this set. A random function, U(x), is an indexed collection of random variables. Also called random field or stochastic process.
–k(x) as permeability along a randomly packed sand column –z(x) as elevation in an area A sample function or realization of a random field: one particular trial or experiment out of many; The ensemble of the random field
x/km
Elevation/m
8.2 Random Field
N-point CDF & PDF
•The statistical properties of a random field are completely defined with all the multivariate (n-point) PDF or CDF. •In reality, it is however extremely complicated and costly to infer the multivariate PDFs.