计算方法实验报告 插值
插值法实验报告

插值法实验报告插值法实验报告一、引言插值法是一种常用的数值分析方法,用于通过已知数据点的函数值来估计在其他位置的函数值。
它在科学计算、图像处理、工程设计等领域有广泛的应用。
本实验旨在通过实际操作,深入理解插值法的原理和应用。
二、实验目的1. 掌握拉格朗日插值法和牛顿插值法的原理和计算方法;2. 通过实验比较不同插值方法的精度和效率;3. 分析插值法在实际问题中的应用。
三、实验步骤1. 收集实验数据:在实验室内设置几个测量点,记录它们的坐标和对应的函数值;2. 使用拉格朗日插值法计算其他位置的函数值:根据已知数据点,利用拉格朗日插值公式计算其他位置的函数值;3. 使用牛顿插值法计算其他位置的函数值:根据已知数据点,利用牛顿插值公式计算其他位置的函数值;4. 比较不同插值方法的精度和效率:通过计算误差和运行时间,比较拉格朗日插值法和牛顿插值法的性能差异;5. 分析插值法在实际问题中的应用:结合实验结果,探讨插值法在实际问题中的优势和局限性。
四、实验结果与分析1. 拉格朗日插值法的计算结果:根据已知数据点,利用拉格朗日插值公式计算其他位置的函数值;2. 牛顿插值法的计算结果:根据已知数据点,利用牛顿插值公式计算其他位置的函数值;3. 误差分析:比较插值结果与真实函数值之间的误差,分析误差的来源和影响因素;4. 运行时间分析:比较不同插值方法的运行时间,分析其效率和适用场景。
五、实验结论1. 拉格朗日插值法和牛顿插值法都是常用的插值方法,它们在不同场景下有各自的优势;2. 插值法在实际问题中的应用需要考虑数据的分布、函数的性质和计算效率等因素;3. 本实验结果表明,拉格朗日插值法和牛顿插值法在精度和效率上存在差异,具体选择哪种方法应根据实际需求进行权衡。
六、实验总结通过本次实验,我们深入了解了插值法的原理和应用。
实验结果表明,插值法在科学计算和工程设计中具有重要的作用。
在实际应用中,我们需要根据具体问题的要求和数据的特点选择合适的插值方法,以达到更好的效果。
数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。
实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。
(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。
(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。
1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。
1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。
Matlab 脚本文件为Experiment2_1_1fx.m 。
可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。
插值运算实验报告

#### 一、实验目的1. 理解插值运算的基本概念和原理。
2. 掌握几种常见的插值方法,如拉格朗日插值、牛顿插值等。
3. 通过实验,验证插值方法在数值计算中的应用效果。
4. 培养动手能力和分析问题的能力。
#### 二、实验原理插值运算是指根据已知数据点,构造一个近似函数来描述这些数据点之间的变化规律。
常见的插值方法有拉格朗日插值、牛顿插值、分段线性插值等。
#### 三、实验内容1. 数据准备准备一组数据点,例如:```x: [1, 2, 3, 4, 5]y: [2, 4, 6, 8, 10]```2. 拉格朗日插值根据给定的数据点,构造拉格朗日插值多项式。
以三次拉格朗日插值为例,其公式如下:```L(x) = y0 ((x - x1) (x - x2) (x - x3)) / ((x0 - x1) (x0 - x2) (x0 - x3))+ y1 ((x - x0) (x - x2) (x - x3)) / ((x1 - x0) (x1 - x2) (x1 - x3))+ y2 ((x - x0) (x - x1) (x - x3)) / ((x2 - x0) (x2 - x1) (x2 - x3))+ y3 ((x - x0) (x - x1) (x - x2)) / ((x3 - x0) (x3 - x1)(x3 - x2))```将数据点代入上述公式,得到拉格朗日插值多项式。
3. 牛顿插值根据给定的数据点,构造牛顿插值多项式。
以三次牛顿插值为例,其公式如下:```N(x) = y0 + (x - x0) (y1 - y0) / (x1 - x0) + (x - x0) (x - x1) (y2 - y1) / ((x1 - x0) (x2 - x1)) + (x - x0) (x - x1) (x - x2) (y3 - y2) / ((x1 - x0) (x2 - x1) (x3 - x2))```将数据点代入上述公式,得到牛顿插值多项式。
牛顿插值的计算实习报告

一、实习目的通过本次实习,我深入了解了牛顿插值法的基本原理,掌握了其计算方法,并能够熟练运用牛顿插值法解决实际问题。
实习过程中,我结合实际数据,运用牛顿插值法进行计算,分析了插值结果,并对插值方法进行了总结和评价。
二、实习内容1. 牛顿插值法的基本原理牛顿插值法是一种构建插值多项式的方法,通过计算差商(divided differences)来逐步构建插值多项式。
该方法具有较好的计算效率和承袭性,即在添加或删除数据点时,可以基于已有计算结果进行调整,无需完全重新计算。
2. 牛顿插值法的计算步骤(1)初始化差商表,第0列初始化为ypoints。
(2)计算i阶差商,根据差商计算插值多项式。
(3)根据计算出的差商构造最终的插值多项式。
(4)计算x的估计函数值。
3. 实际应用以一组实际数据为例,运用牛顿插值法进行计算。
(1)选取一组已知数据点,计算差商。
(2)根据差商构造牛顿插值多项式。
(3)利用牛顿插值多项式估算未知点的函数值。
三、实习结果与分析1. 插值结果通过对实际数据的计算,牛顿插值法得到了较为准确的插值结果。
与实际值相比,插值值具有较高的精度。
2. 插值误差分析(1)在数据点较少的情况下,牛顿插值法具有较高的精度。
(2)在数据点较多的情况下,牛顿插值法可能会出现误差,但总体上仍具有较高的精度。
(3)插值误差与数据点的分布、差商的计算精度等因素有关。
四、实习总结与评价1. 牛顿插值法是一种有效的插值方法,具有较好的计算效率和承袭性。
2. 在实际应用中,根据数据点的分布和精度要求,选择合适的插值方法。
3. 牛顿插值法在实际应用中具有较高的精度,但在某些情况下可能会出现误差。
4. 在后续的实习中,我将进一步学习其他插值方法,如拉格朗日插值法、样条插值法等,以便在实际问题中灵活运用。
五、实习体会通过本次实习,我对牛顿插值法有了更深入的了解,掌握了其计算方法,并能够将其应用于实际问题。
在实习过程中,我认识到理论知识与实际应用相结合的重要性,以及选择合适的插值方法对于提高计算精度的重要性。
插值运算实验报告

插值运算实验报告通过实验掌握插值运算的原理和方法,并利用插值运算技术对离散数据进行插值和逼近。
实验设备:计算机、Matlab软件实验原理:插值是利用已知数据点之间的关系,使用某种函数表达式来逼近未知点的值。
插值方法可以分为多种,如拉格朗日插值、牛顿插值等。
本次实验主要涉及的是拉格朗日插值和牛顿插值。
实验步骤:1. 采集实验数据,得到需要进行插值运算的离散数据。
2. 根据所给的离散数据,选择合适的插值方法,如拉格朗日插值或牛顿插值。
3. 利用Matlab软件进行编程,实现所选择的插值方法。
4. 运行程序,得到插值结果。
5. 根据插值结果,可以确定对未知数据点的函数值,也可以进行曲线拟合和逼近。
实验结果:经过对实验数据的处理和插值运算,得到了以下结果:1. 插值函数的形式,可以通过该函数计算未知数据点的函数值。
2. 插值曲线的图像,可以通过该曲线来拟合和逼近实验数据。
实验分析:通过实验结果的分析,可以得出以下结论:1. 插值方法的选择对结果有重要影响,不同的插值方法适用于不同的数据类型。
2. 插值运算可以有效地处理离散数据,得到连续函数的逼近值。
3. 插值运算的精度也会受到数据点分布和插值方法的影响。
实验总结:通过本次实验,我对插值运算的原理和方法有了更深入的了解。
插值运算是一种常用的数值计算方法,可以在一定程度上解决离散数据的处理问题。
插值运算不仅可以用于求解未知数据点的函数值,还可以用于曲线拟合和逼近。
不同的插值方法适用于不同类型的数据,需要根据实际情况进行选择。
插值运算的精度也会受到数据点分布和插值方法的影响,需要注意选择合适的插值方法以及优化离散数据的分布。
插值数值实验报告(3篇)

第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。
2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。
3. 分析不同插值方法的优缺点,并比较其精度和效率。
4. 通过实验加深对数值分析理论的理解和应用。
二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。
它广泛应用于科学计算、工程设计和数据分析等领域。
常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。
1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。
2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。
三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。
插值实验实验报告

一、课题名称Malab 函数插值方法二、目的和意义1、学会拉格朗日插值、牛顿插值、亨密特插值方法,求函数的近似表达式,以解决其它实际问题;2、明确插值多项式和分段插值多项式各自的优缺点;3、熟悉插值方法的程序编制;4、如果绘出插值函数的曲线,观察其光滑性。
三、计算公式拉格朗日插值的公式)())(()()()()()()()2,1,0,;,0)(;,1)(()()()(1010110n n i ni i ni n n i i i i ni i i n x x x x x x x w x f x w x x x w x L j i i j x l i j x l x f x l x L ---='-==≠====+=++=∑∑ 其中或者其中牛顿差值公式[][][])())(()()(],,[)()()()()(,))((,,)(,)()(1011,010,010*******n n n n n n n n n x x x x x x x w x w x x x f x N x f x R x x x x x x f x x x x x x x f x x x x f x f x N ---==-=--++--+-+=++- 其中亨密特插值公式∑=++=ni i x i i x i x n m b f a H 0)()()(12][五、结构程序设计拉格朗日插值的程序function[c,l]=lagan1(x,y) x=input('x=:'); y=input('y=:'); w=length(x); n=w-1;l=zeros(w,w); for k=1:n+1 v=1;for j=1:n+1 if k~=jv=conv(v,poly(x(j)))/(x(k)-x(j)); endendl(k,:)=vEndc=y*l;牛顿插值的程序function[c,l]=lagan(x,y)x=input('x=:');y=input('y=:');n=length(x);d=zeros(n,n);d(:,1)=y';for j=2:nfor k=j:nd(k,j)=(d(k,j-1)-d(k-1,j-1))/(x(k)-x(k-j+1)); endendc=d(n,n);for k=(n-1):-1:1c=conv(c,poly(x(k)));m=length(c);c(m)=c(m)+d(k,k);end六、结果讨论和分析拉格朗日插值运行的结果x=:[0.4 0.55 0.65 0.80 0.95 1.05]y=:[0.41075 0.57815 0.69675 0.9 1.00 1.25382]l =1.0e+003 *-0.1865 0.7459 -1.1776 0.9167 -0.3517 0.05320 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 l =1.0e+003 *-0.1865 0.7459 -1.1776 0.9167 -0.3517 0.05321.3333 -5.1333 7.7300 -5.67122.0177 -0.27660 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 l =1.0e+004 *-0.0186 0.0746 -0.1178 0.0917 -0.0352 0.00530.1333 -0.5133 0.7730 -0.5671 0.2018 -0.0277-0.2222 0.8333 -1.2172 0.8626 -0.2955 0.03900 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 l =1.0e+004 *-0.0186 0.0746 -0.1178 0.0917 -0.0352 0.00530.1333 -0.5133 0.7730 -0.5671 0.2018 -0.0277-0.2222 0.8333 -1.2172 0.8626 -0.2955 0.03900.1778 -0.6400 0.8951 -0.6069 0.1994 -0.02540 0 0 0 0 00 0 0 0 0 0 l =1.0e+004 *-0.0186 0.0746 -0.1178 0.0917 -0.0352 0.00530.1333 -0.5133 0.7730 -0.5671 0.2018 -0.0277-0.2222 0.8333 -1.2172 0.8626 -0.2955 0.03900.1778 -0.6400 0.8951 -0.6069 0.1994 -0.0254-0.1010 0.3485 -0.4684 0.3067 -0.0978 0.01210 0 0 0 0 0 l =1.0e+004 *-0.0186 0.0746 -0.1178 0.0917 -0.0352 0.00530.1333 -0.5133 0.7730 -0.5671 0.2018 -0.0277-0.2222 0.8333 -1.2172 0.8626 -0.2955 0.03900.1778 -0.6400 0.8951 -0.6069 0.1994 -0.0254-0.1010 0.3485 -0.4684 0.3067 -0.0978 0.01210.0308 -0.1031 0.1353 -0.0869 0.0273 -0.0033 ans =121.6264 -422.7503 572.5667 -377.2549 121.9718 -15.0845121.6264*0.596^5+(-422.7503)*0.596^4+572.5667*0.596^3+( -377.2549)*0.596^2+121.9718 *0.596-15.0845ans =0.6257121.6264*0.99^5+(-422.7503)*0.99^4+572.5667*0.99^3+( -377.2549)*0.99^2+121.9718 *0.99-15.0845ans =1.0542牛顿插值的运行结果x=:[0.4,0.55,0.65,0.80,0.95,1.05]y=:[0.41075,0.57815,0.69675,0.90,1.00,1.25382]ans =121.6264 -422.7503 572.5667 -377.2549 121.9718 -15.0845121.6264*0.596^5+(-422.7503)*0.596^4+572.5667*0.596^3+( -377.2549)*0.596^2+121.9718 *0.596-15.0845ans =0.6257121.6264*0.99^5+(-422.7503)*0.99^4+572.5667*0.99^3+( -377.2549)*0.99^2+121.9718 *0.99-15.0845ans =1.0542多项式插值的主要目的是用一个多项式拟合离散点上的函数值,使得可以用该多项式估计数据点之间的函数值。
数值分析实验报告(插值法)

武汉理工大学学生实验报告书实验课程名称数值分析开课学院计算机科学与技术学院指导老师姓名学生姓名学生专业班级2010—2010学年第一学期实验课程名称:数值分析第二部分:实验调试与结果分析(可加页)一、调试过程(包括调试方法描述、实验数据记录,实验现象记录,实验过程发现的问题等)(1)用拉格朗日插值法计算时,输入及运行结果如下:拉格朗日插值法牛顿插值法(2)利用二次插值计算时,输入及运行结果如下:拉格朗日插值法牛顿插值法(3)用艾尔米特插值法计算时,f(x)的插值多项式H5(x)=(1+4*x)*(x-0.5)*(x-0.5)*(x-2)*(x-2)+(3.90807-6.03838*x)*(x-2)*(x-2)*x*x+(2.34573-4.16674*x)*x*x*(x-0.5)*(x-0.5)(4)各插值算法的精度差异比较经过比较,拉格朗日插值法要比牛顿插值法算法的计算量多一些,拉格朗日插值法后一次计算时用到了前一次计算的结果,提高了运算的效率,但拉格朗日插值法在构造艾尔米特插值法时很方便,将坐标点和对应的导数结合起来的精度比线性插值的精度又要高一些。
但从实验数据来看,在坐标不是很多的情况下,已知的点越多精度也就相对较高。
对于实验要求的第二组数据用拉格朗日插值法(或者牛顿插值法)实验结果如下:一下分别是二阶、三阶、四阶、五阶插值得到的结果以上只是实验结果的一部分,改变插值的位置时,得到的实验结果精度也是有所不同的。
由以上结果分析可知,插值次数并不是越多越好,多了反而会让结果更加偏离真实结果,这充分说明了高次插值存在“病态性质”,在已知点很多的情况下应该采用分段低次插值,将拉格朗日插值法和牛顿插值法运用到分段低次插值法当中,这样得到的结果可能胡更加精确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验名称:插值计算
1引言
在生产和科研中出现的函数是多种多样的。
常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数f(x)在区间[a,b]上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点上的函数值。
用这张函数表来直接求出其他点的函数值是非常困难的,在有些情况下,虽然可以写出f(x)的解析表达式,但由于结构十分复杂,使用起来很不方便。
面对这些情况,构造函数P(x)作为f(x)的近似,插值法是解决此类问题比较古老却目前常用的方法,不仅直接广泛地应用与生产实际和科学研究中,而且是进一步学习数值计算方法的基础。
设函数y=f(x)在区间[a,b]上连续,且在n+1个不同的点a≤x0,x1……,xn≤b上分别取值y0,y1……,yn.
插值的目的就是要在一个性质优良、便于计算的函数φ中,求一简单函数P(x),使P(xi)=yi(i=0,1…,n)而在其他点x≠xi上,作为f(x)的近似。
通常,称区间[a,b]为插值区间,称点x0,x1,…,xn为插值节点,上式为插值条件,称函数类φ为插值函数类,称P(x)为函数f(x)在节点x0,x1,…,xn处的插值函数,求插值函数P(x)的方法称为插值法。
2实验目的和要求
用matlab定义分段线性插值函数、分段二次插值函数、拉格朗日插值函数,输入所给函
数表,并利用计算机选择在插值计算中所需的节点,计算f(0.15),f(0.31),f(0.47)的近似值。
3算法描述
1.分段线性插值流程图
2.分段二次插值流程图
3.拉格朗日插值流程图
4程序代码及注释
1.分段线性插值
2.分段二次插值
3.全区间上拉格朗日插值
5算例分析
1.分段线性插值
2.分段二次插值
3.拉格朗日插值
6讨论与结论
通过对三种差值方法的绘图,可以发现差值函数均过原函数表的节点,图像均没有出现高次波动明显的现象。
其中分段线性插值是将节点顺次用直线连接起来,曲线不够光滑,但可以作为函数的近似;分段二次插值和拉格朗日插值的曲线都比较光滑,二者对f(0.15)、f(0.31)、f(0.47)的计算数值也非常接近。
二次插值和拉格朗日插值的计算量较大,用模电实验的数据测试时,由于节点较多,反正是把我的电脑卡住了,还需要对循环进行简化。
参考文献
[1]易大义,沈云宝,李有法。
计算方法。
浙江大学出版社,2015年:29-30。