电压波动测试方法

合集下载

开关电源32个检测项目检测方法与检测设备

开关电源32个检测项目检测方法与检测设备

开关电源32个检测项目检测方法与检测设备开关电源是现代电子产品中常见的电源类型,它具有功率转化效率高、体积小、重量轻、使用方便等优点。

为了确保开关电源的质量和性能,需要进行一系列的检测项目。

1.输入电压范围测试:通过改变电源输入电压进行测试,判断开关电源在不同电压范围内的输出情况。

检测方法为改变输入电压并观察输出电压变化,检测设备为数字电压表。

2.输出电压范围测试:通过改变开关电源的输出负载进行测试,判断开关电源的输出电压范围。

检测方法为改变输出负载并观察输出电压变化,检测设备为数字电压表。

3.输出电压精度测试:使用高精度数字电压表测量开关电源的输出电压,与设定值进行对比,判断输出电压的精度。

检测设备为高精度数字电压表。

4.输出电流范围测试:通过改变开关电源的输出负载进行测试,判断开关电源的输出电流范围。

检测方法为改变输出负载并观察输出电流变化,检测设备为数字电流表。

5.输出电流精度测试:使用高精度数字电流表测量开关电源的输出电流,与设定值进行对比,判断输出电流的精度。

检测设备为高精度数字电流表。

6.输出功率测试:通过测量输出电压和输出电流的乘积,计算出开关电源的输出功率。

检测设备为数字电压表和数字电流表。

7.效率测试:通过测量开关电源的输入功率和输出功率的比值,计算出开关电源的效率。

检测设备为数字功率计和负载。

8.开机过压测试:将开关电源的输入电压调整至设定值的两倍,观察开关电源的输出电压情况。

检测设备为数字电压表。

9.短路保护测试:在开关电源的输出端短接一个负载,观察开关电源是否能自动切换到短路保护状态。

检测设备为负载。

10.过流保护测试:在开关电源的输出端增加一个大负载,观察开关电源是否能自动切换到过流保护状态。

检测设备为负载。

11.过载保护测试:在开关电源的输出端增加一个超出额定负载的负载,观察开关电源是否能自动切换到过载保护状态。

检测设备为负载。

12.输出电压波动测试:在开关电源的输出端接入一个示波器,观察输出波形是否正常。

(优选)电压波动和闪烁检测详解.

(优选)电压波动和闪烁检测详解.
d U1 U2 100 % UN
5.1 电压波动和闪烁检测的基础内容
1、考核的指标及其限值
(2) 电压波动
几个概念:相对稳态电压变动值dc 、相对动态电压 变动值dd 、相对最大电压变动值dmax:
dc
U c UN
100 %
dd
U d UN
100 %
dmax
U UN
100 %
IEC相关标准规定:dc不超过3%;dd超过3%的持 续时间小于200ms;dmax不超过4%。
压有效值的两个极值之差,且用其相对值的百分数表示:
d
U max
U m in
100%
U
N
通常以 d 的大小作为电压波动的量度。
5.1 电压波动和闪烁检测的基础内容
2、 Pst 1 曲线
图 2 周期性矩形(或阶跃)电压变动的单位闪变(Pst=1)曲线
5.1 电压波动和闪烁检测的基础内容
2、 Pst 1 曲线
5.2 电压波动和闪烁检测试验仪器配置
完整的测试系统包括纯净电源、参考阻抗 网络和谐波/ 电压波动/闪烁分析仪。
纯净电源G的内阻抗和串接于电路的分析 仪M的电流取样通道A的内阻抗均应足够小, 并接于电路的分析仪M的电流取样通道V的内 阻抗均应足够大。
5.2 电压波动和闪烁检测试验仪器配置
电压 标称值
稳态电压 变动值
UN
稳态电压 变动值
最大电压 变动值
5.1 电压波动和闪烁检测的基础内容
1、考核的指标及其限值
(2) 电压波动 (Voltage fluctuation)
由于部分负荷在正常运行时出现冲击性功率变化,造
成实际电压在短时间里较大幅度波动,并且连续偏离额定

输入电压调整率

输入电压调整率

输入电压调整率
1. 测试说明:
输入电压调整率又叫线路调整率、源效应等,在输出满载的情况下,输入电压变化会引起输出电压波动,测试输入电压在全输入范围内变化时输出电压偏离输出整定电压的百分比,一般要求电压调整率不超过±0.1%。

2. 测试仪器:
AC SOURCE,万用表,可调负载装置。

3. 测试线路图:
同图 1。

4. 测试方法:
1)设置可调负载装置,使电源满载输出;
2)调节AC SOURCE,使输入电压为下限值,记录对应的输出电压U1;
3)增大输入电压到额定值,记录对应的输出电压U0;
4)调节输入电压为上限值,记录对应的输出电压U2;
5〕按下式计算:
电压调整率={(U- U0)/U0}×100%
式中:U为U1 和U2中相对U0变化较大的值;
5. 判定标准:
要求电压调整率不超过±0.1%,对于特殊要求的电源,以产品规格书为依据。

BBBBBBB 负载调整率
1. 测试说明:
输入电压为额定值时,因变换负载引起的输出电压波动不应超过规定的范围。

2. 测试仪器:
AC SOURCE,万用表,可调负载装置。

3. 测试线路图:
同图 1。

4. 测试方法:
1)输入电压为额定值,输出电流取最小值,记录最小负载量的输出电压U1;2)调节负载为50%满载,记录对应的输出电压U0;
3)调节负载为满载,记录对应的输出电压U2;
4)负载调整率按以下公式计算:
负载调整率={(U- U0)/U0}×100%式中:U为U1 和U2中相对U0变化较大的值;
5. 判定标准:
应符合其标称技术指标。

GB/T-电能质量-电压波动和闪变

GB/T-电能质量-电压波动和闪变

、GB/T-电能质量-电压波动和闪变————————————————————————————————作者:————————————————————————————————日期:电能质量电压波动和闪变Power quality—Voltage fluctuation and flickerGB12326—2000代替GB12326—1990前言本标准是电能质量系列标准之一,目前已制定颁布的电能质量系列国家标准有:《供电电压允许偏差》(GB 12325—1990);《电压允许波动和闪变》(GB 12326—1990);《公用电网谐波》(GB/T 14549—1993);《三相电压允许不平衡度》(GB/T 15543—1995)和《电力系统频率允许偏差》(GB/T 15945—1995)。

本标准参考了国际电工委员会(IEC)电磁兼容(EMC)标准IEC 61000-3-7等(见参考资料),对国标GB 12326—1990进行了全面的修订。

和GB 12326—1990相比,这次修订的主要内容有:1)将系统电压按高压(HV)、中压(MV)和低压(LV)划分,分别规定了相关的限值,以及对用户指标的分配原则。

2)将国标中闪变指标由引用日本ΔV10改为IEC的短时间闪变P st和长时间闪变P lt 指标,以和国际标准接轨,并符合中国国情。

3)将电压波(变)动限值和变动频度相关联,使标准对此指标的规定更切合实际波动负荷对电网的干扰影响。

4)将原标准中以电压波(变)动为主,改为以闪变值为主(原标准中ΔV10均为推荐值),以和国际标准相对应。

5)对于单个用户闪变允许指标按其协议容量占总供电容量的比例分配,并根据产生干扰量及系统情况分三级处理(原标准中无此内容),既使指标分配较合理,又便于实际执行。

6)引入了闪变叠加、传递等计算公式,高压系统中供电容量的确定方法以及电压变动的计算和闪变的评估等内容,并给出一些典型的实例分析。

电压降测量方法

电压降测量方法

电压降测量方法在电路中,电压降是指电压在电阻、电感、电容等元件中产生的降低。

电压降测量方法是电路分析中的重要内容,正确的电压降测量方法能够准确地分析电路中的电压分布,为电路设计和故障诊断提供有力支持。

一、直流电压降测量方法。

1. 串联法。

串联法是最常用的直流电压降测量方法之一,通过将电压表连接在待测电阻两端,可以直接测量电阻两端的电压降。

这种方法简单易行,适用于各种电阻的测量。

2. 并联法。

并联法是另一种常用的直流电压降测量方法,通过将电压表连接在待测电容或电感的两端,可以直接测量电容或电感两端的电压降。

这种方法同样简单易行,适用于各种电容和电感的测量。

二、交流电压降测量方法。

1. 电压表法。

在交流电路中,可以使用电压表直接测量电路中各个元件两端的电压降。

这种方法简单直接,适用于各种交流电路的电压降测量。

2. 示波器法。

示波器是一种常用的交流电路测量仪器,可以通过示波器测量电路中各个元件两端的电压降。

示波器法能够直观地显示电压波形,适用于对电压波形要求较高的交流电路测量。

三、电压降测量注意事项。

1. 测量精度。

在进行电压降测量时,需要注意测量仪器的精度和测量误差,选择合适的测量仪器和测量方法,以确保测量结果的准确性。

2. 安全防护。

在进行电压降测量时,需要注意安全防护措施,避免触电和短路等意外情况的发生,确保测量过程的安全性。

3. 测量环境。

在进行电压降测量时,需要注意测量环境的影响,避免外界干扰和噪声对测量结果的影响,选择合适的测量环境,以确保测量结果的可靠性。

综上所述,电压降测量方法是电路分析中的重要内容,正确的电压降测量方法能够为电路设计和故障诊断提供有力支持。

在进行电压降测量时,需要选择合适的测量方法和仪器,注意测量精度、安全防护和测量环境,以确保测量结果的准确性和可靠性。

开关电源y电容电压测试方法

开关电源y电容电压测试方法

开关电源y电容电压测试方法你有没有遇到过这样一种情况,电源突然不工作了,打开一看,哎呀,电容坏了!这时候你可能会想,电容坏了也就坏了,反正我也不懂怎么检查。

你可别小看这个小小的电容,它可是开关电源中的关键角色,负责稳定电压和滤波。

如果电容出问题了,不仅仅是电源不稳定,设备还可能会烧掉。

今天咱们就来聊聊如何测试开关电源的电容,简单又实用,保证让你既能动手,又能得心应手。

得说说这电容在开关电源中的重要性。

你想啊,电容就像是电源里的“缓冲器”,它帮助电源滤除一些不稳定的电流,让电压变得更平稳。

没有它,电压波动大,电源输出就会乱七八糟,甚至可能烧毁其他元件。

所以,电容一旦出了问题,电源就可能大功告成——“啪”一声,电源关掉。

可是,怎样才能知道电容是不是坏了呢?别急,听我慢慢道来。

检查电容的外观。

这招虽然简单,但千万不要忽视。

你看看电容的外皮,是不是膨胀了,或者有黑色的烧焦痕迹。

如果有的话,基本可以断定,这个电容已经“死翘翘”了。

就像人一样,外表破损了,里面也差不到哪去。

不过,也有些电容坏了,外观看不出任何问题,这时候我们就得动手测试了。

你可以先把电源切断,记得,不要忘了断电!然后取出电容。

这个时候你可以准备一个万用表,调到电阻档或者电容档(如果万用表支持电容测试的话)。

用万用表的两只探针分别接触电容的两个引脚。

看电阻档的话,刚开始读数可能会显示比较小的数字,然后慢慢变大,最后稳定。

这个过程有点像你给电容“充电”,正常的话,表针会逐渐回到“无穷大”,表示电容可以正常存储电荷。

如果表针一下子就跳到很大的数值,或者始终不变,说明电容有问题,可能是短路了或者漏电了。

如果你是拿万用表测电容,读数就更直观了。

电容的值应该接近它标定上的数值。

如果测量出来的数值差距很大,可能说明电容已经老化或者损坏了。

这种方法简单直观,不会让你花太多时间。

不过,万一你的电容没坏,或者没什么明显的损坏迹象,怎么确认它在电路中正常工作呢?这个时候我们可以试试“振动测试法”。

电压波动与闪变

电压波动与闪变

电压波动与闪变电压波动与闪变一、电压波动与闪变的定义电压波动就是电压均方根值一系列相对快速变动或连续改变的现象,其变化周期大于工频周期(20ms)。

电压波动造成灯光照度不稳定(灯光闪烁)的人眼视感反应称为闪变,换言之,闪变反映了电压波动引起的灯光闪烁对人视感产生的影响;电压闪变是电压波动引起的结果,它不属于电磁现象。

电压闪变与常见的电压波动不同。

(1)电压闪变是指电压形上一种快速的上升及下降,而波动指电压的有效值以低于工频的频率快速或连续变动。

(2)闪变的特点是超高压、瞬时态及高频次。

如果直观地从波形上理解,电压的波动可以造成波形的畸变、不对称,相邻峰值的变化等,但波形曲线是光滑连续的,而闪变更主要的是造成波形的毛刺及间断。

二、电压波动与闪变的检测方法由于电压波动是电压有效值的快速变动,它的波形是工频电压的调幅波。

因此,闪变测试首先是通过检波的方法将波动信号从工频电压中分离出来。

目前国内外电压波动的检测方法有三种,即平方检测、整流检测和有效值检测。

对三种检测方法,论文予以分析、比较,最终确定选用平方检测法的改进法,即本文采用同步电压和小波多分辨率分析检测电压闪变信号。

并对小波分解和同步检波对波动信号的检测文中加以说明。

常用的几种闪变仪中电压波动的检测方法,可归结为由上式解调出调幅波v = mcos ?t,介绍如下。

2.1 平方检波法IEC 推荐的闪变仪采用平方检测方法,即由u (t)、u (t)2和v (t)的波形图例,如图3-1 所示。

经过0.05~35Hz 的带通滤波器滤去直流分量和工频及以上的频率分量,便可以检测出调幅波即电压波动分量,其输出2.2 整流检波法英国ERA 闪变仪采用整流检测的方法。

图3-2(a)所示的电压u ( t )经过整流的波形g ( t )如图3-2(c)所示。

理论上,将g(t)可看成u(t)乘以幅值为±1、频率为工频的矩形波p(t)。

p(t)的波形图如图3-2(b)所示。

电压波动和闪变

电压波动和闪变

电能质量电压波动和闪变Power quality—Voltage fluctuation and flickerGB12326—2000代替GB12326—1990前言本标准是电能质量系列标准之一,目前已制定颁布的电能质量系列国家标准有:《供电电压允许偏差》(GB 12325—1990);《电压允许波动和闪变》(GB 12326—1990);《公用电网谐波》(GB/T 14549—1993);《三相电压允许不平衡度》(GB/T 15543—1995)和《电力系统频率允许偏差》(GB/T 15945—1995)。

本标准参考了国际电工委员会(IEC)电磁兼容(EMC)标准IEC 61000-3-7等(见参考资料),对国标GB 12326—1990进行了全面的修订。

和GB 12326—1990相比,这次修订的主要内容有:1)将系统电压按高压(HV)、中压(MV)和低压(LV)划分,分别规定了相关的限值,以及对用户指标的分配原则。

2)将国标中闪变指标由引用日本ΔV10改为IEC的短时间闪变P st和长时间闪变P lt指标,以和国际标准接轨,并符合中国国情。

3)将电压波(变)动限值和变动频度相关联,使标准对此指标的规定更切合实际波动负荷对电网的干扰影响。

4)将原标准中以电压波(变)动为主,改为以闪变值为主(原标准中ΔV10均为推荐值),以和国际标准相对应。

5)对于单个用户闪变允许指标按其协议容量占总供电容量的比例分配,并根据产生干扰量及系统情况分三级处理(原标准中无此内容),既使指标分配较合理,又便于实际执行。

6)引入了闪变叠加、传递等计算公式,高压系统中供电容量的确定方法以及电压变动的计算和闪变的评估等内容,并给出一些典型的实例分析。

7)对IEC 61000-4-15规定的闪变测量仪作了介绍,并作为标准的附录A,以利于测量仪器的统一。

8)整个标准按国标GB/T1.1和GB/T1.2有关规定作编写。

原标准名称的引导要素“电能质量”英译为“Power quality of electric energy supply”改为国际上通用的“Power quality”,并将本标准名称改为《电能质量电压波动和闪变》。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档